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for each ¢ with 8,11 < [t —to| £ é,. Finally, define z(fo) = toxo. We show
that ' (t0) = zo. If §pt1 < |At| € by, then
:U(to -+ At) — Cc(to) _ I(tg + At) - (to + At)m’o
At ¢ ’ - At
ProsLEM. Let X be an F-space with trivial dual. Does every continuous
function from [a, b] into X have a primitive? What happens for X = L, with
0<p<1?

1
< . m
o)

Addendum (January 1994). Recently Professor N. J. Kalton sent me his short
preprint “The existence of primitives for continuous functions in quasi-Banach space”
which contains an affirmative answer to the Problem in the setting of quasi-Banach spaces.
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A recurrence theorem for square-integrable martingales
by

GEROLD ALSMEYER (Kiel)

Abstraet. Let (Mrn)p»p be a zero-mean martingale with canonical filtration (Fr)pn»o
and stochastically La-bounded increments ¥3,Y3, ..., which means that B

P([Ya| >t | Fp1) S 1—H@) asforalln>1,¢>0

and some square-infegrable distribution H on [0,c0). Let - Y1 E(Y? | Prne1). It
is the main result of this paper that each such martingale is a.s. convergent on {V < co}
and recurrent on {V = oo}, i.e. P(Mn € [-¢,¢ lo. | ¥ = c0) = 1 for some ¢ > 0.
This generalizes a recent result by Durrett, Kesten and Lawler [4] who consider the case
of only finitely many square-integrable increment distributions. As an application of our
recurrence theorem, we obtain an extension of Blackwell's renewal theorem to a fairly
general class of processes with independent increments and linear positive drift function.

1. Introduction. Let (S,)n>0 be a random walk with i.i.d. zero-mean,

non-vanishing increments Xj, Xs,... Then (S,)n>p is recurrent with re-
currence set B = R in case of non-arithmetic increments, and R = dZ if
X1, Xq,. .. are d-arithmetic for some d > 0. In any case

(1.1) P(|5,|<cio)=1

for all ¢ > 0. Dispensing with the stationarity assumption on X1, X, ...,
(1.1) need no longer be true. Durrett, Kesten and Lawler [4] give an exam-
ple of a random walk (Sy)n>o which converges a.s. to oo, even though its
increments are independent and drawn from a set of merely two zero-mean
digtributions. On the other hand, they also show that (1.1) holds true for suf-
fciently large ¢ provided that X1, Xs, ... are independent and drawn from a
finite et of distributions with mean 0 and finite, positive variances. In fact,
their result is even stated for so-called controlled random walks, that is, gen-
eral martingales with square-integrable conditional increment distributions
drawn from a finite set. Although their proof uses the finiteness of the latter
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set, there is no strong intuitive evidence for this being indispensable as long
as the conditional variances remain bounded. It is the major contribution
of this article to support the previous conjecture by extending the result
to a rather general class of martingales with square-integrable increments,
to be defined further below. While Durrett, Kesten and Lawler’s work wag
initiated by related questions on p-type branching processes, formulated by
A. Spataru in a letter to F. Spitzer (see [4]}, our interest grew out of renewal
theoretic investigations on a certain class of linear submartingales in [1]-{3].
In fact, the proof of Blackwell’s renewal theorem for linearly growing ran-
dom walks with independent, but non-stationary increments naturally leacs
to the question of recurrence of a martingale of the form M, = S, — 57,
n > 0, if a coupling argument is used. Here {Sa)nzo is the random walk of
interest and (S}, — Sj)nx>o forms an independent copy of (S, — So)nz0. The
delay Sj is chosen in a suitable manner, as usual for a coupling proof. A
more detailed account is given in Section 2 where we derive an extension of
Blackwell’s renewal theorem to a fairly broad class of linear random walks
with independent increments.

Before we formulate our results, we give some definitions and notations.
A sequence (Yy,)n30, adapted to a fltration (Fr)nzp, is called stochastically

bounded (with respect to (F,)nxo) if there are integrable distributions FaNel
such that for all n > L and £ € R,

(1.2) G(t) < P(Ya<t|Fuoy) € F(t) as.

where the convention of identifying a distribution with its distribution func-
tion has been used, i.e. F(¢) = F{{—00,1]), etc. F and  are called a mino-
rant and a majorant for (V,,)p>1, resp. If F and @ have both finite variances,
(Yn)n>1 is called stochastically Lo-bounded. Tt is eagily seen that the lat-
ter assumption is slightly stronger than conditional uniform integrability of
Y2 Y2, ... with respect to (Fn)nzo and slightly weaker than the frequently
encountered conditional Lyapunov-type condition

(1.3) up IBUYaP | Faei)lloe < 00 for some § > 0,

where ||| denotes the usual Loo-norm on the nunderlying probability space.
In particular, it implies uniform boundedness of the conditional variances
of ¥1,Y3,... Note also that the condition for stochastic La-houndedness in
the Abstract is indeed equivalent to the one chosen here,

Now let: (M )n>0 be a zero-mean square-integrable martingale with in-
crements ¥7,Ys, ..., canonical filtration (Frnlnzo and

(1.4) V2= ZE(};? | Fowr) and V2= lim V=" E(V? | Fu).

L3
i=1 izl
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For n > 0 let further

(15)  Mp= M, 1(v < 00) + > Wari-31{v;1 < 0o = 13),
i=1
where

(1.6) vw=0 and w=inf{j21:V2__ -V

Upo1

>1} forn =1

and (Wy)n>o defines a random walk with i.i.d. standard normal increments
and independent of (AL, ),,»q. It is easily verified that (ﬁn)nzg forms again
a zero-mean square-integrable martingale, whose increments are denoted
by ¥i,Y,... and its canonical filtration by (ﬁn)n20~ The introduction of
(Wi )n>o is for purely technical reasons which become apparent in the proof
of Theorem 1 in Section 3.

THEOREM 1. Let (My)n»o be a zero-mean square-integrable martingale
such that }71, 172, ... are stochastically Ly-bounded (with respect to (ﬁ'n)nzg).
Then, for some ¢ > 0,

(1.7) P(My, converges or M, € [~c,¢| 1.0.) = 1.
More precisely, M, converges a.s. on {V < oo} and
(1.8) P(M, € [~c,d 40| V=00)=1 for somec>0.
Observe that stochastic Ly-boundedness of }71,172, ... could have been

claimed also only for )711(1/1 < 00), Yal{vy < 0),... because outside the
restricting events the ?n are obviously just chi-square variables of degree 1
and thus clearly stochastically Lo-bounded. _

At first sight (1.8) does not exclude the possibility of M, being conver-
gent on {V = oc}. However, the following corollary sets us right.

COROLLARY L. In the sttuction of Theoremn 1, on {V = oo},

(1.9) liminf My, = —00 ond limsup M, =0 a.s.
R0 n-—+00

This is an extension of the Chung—Fuchs-Ornstein Theorem and has been
known for martingales (My)np0 which satisfy Esup,s;|¥n| < oo, where
(1.9) holds true on the event {M,, diverges}, see [6], p. 32. Corollary 1 shows
that uncder the assumptions of Theorem 1 the latter event a.s. coincides with
{V = oo}

Our second corollary deals with an interesting subclass of martingales
for which Theorem 1 holds true, namely those being very close to random
walks with i.i.d. zero-mean increments with positive variance. It contains, in
particular, all martingales with conditional increment distributions drawn
from a finite set of distributions with positive variance. In the latter case,
Corollary 2 has been obtained by Durrett, Kesten and Lawler [4], Theorem 1.



224 G. Alsmeyer

COROLLARY 2. Let (My )0 be a zero-mean square-integrable martingale
with stochastically Ly-bounded Y1,Yo, . .. which further satisfy

(1.10) VZ2-V2, =B Fosl) 20?2 as.

Jor all n > ng > 1 and some o2 > 0 not depending on n. Then, for some
e >0,

(1.11) P(M, & [-c, ¢ io0)=1
and (1.9) holds true.
A combination of Theorem 1 with a geometric trial avgument will prove

CoROLLARY 3. In the situation of Theorem 1, define

e (8) = liminf max {\P(0 < (Mnyy — Mn)* <] F)c .

1.12
T G0 = tmint s (1P(oes ~ M1 = £, )

fort> 0 and k > 1. Suppose V = co a.s. and, for some & > 0,
(1.13) s1p BV ai(6)>0 forall §€(0,e).

Then (My)nxo 45 recurrent on R, i.e. P(My, € [z ~¢e,2+¢] i.0.) = 1 for all
R ande > 0. If (My)nso is concentrated on o lattice dZ, d > 0, and if
instead of (1.13),

(1.14) 21;12 B (dyvai(d) >0

holds true, then (Mp)n>o is recurrent on dZ, i.e. P(M, = kd 1.0.)= 1 for
each k € Z.

Dispensing with conditions like {1.13) or (1.14), it is easy to provide
an example of a recurrent martingale which never visits a sufficiently small
neighborhood of 0.

A number of papers have dealt with related recurrence problems, the
earliest one we know of being by Lamperti [10]. Kemperman [7], Rogozin
and Foss [11] and Lalley [9] consider so-called oscillating random walks, a
subclass of random walks with finitely many increment distributions. The
latter are studied by Durrett, Kesten and Lawler [4], as already mentioned,
and in a recent companion paper by Kesten and Lawler 8].

The proofs of the previous results are presented in Section 3. The next
section is devoted to an extension of Blackwell’s renewal theorem to certain

random walks with independent increments by combining Corollary 3 with
a result from [2].

| 2. An extension of Blackwell’s renewal theorem. Suppose (S, )n>q
1s a randem walk with Sy = 0 and stochastically stable (s.s.) increments
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X1, X2, ... with mean 6 € (0, o), which means that Xy, X,, ... are stochas-
tically bounded and satisty the mean stability condition

(2.1) lim sup ||k E(Spk — Sy | Gn) — 8l =0,
k—o0 nz0
where Gy, = o(So,...,5,). These random walks have been shown in {2] to

satisfy the following Blackwell-type renewal theorem (see Proposition 5.1):
U = 3,55 P8 € ) denotes the renewal measure of (8,)n50 and £
Lebesgue measure on R, then for each & > 0, there is a delay distribution H
guch that

(2.2)  (f-+e)" (D) < lim inf H + U (¢ + 1)
<limsup H +« U(t+ 1) < (8 —e) " (D).

t—co

It has further been shown in [2], and also in [3], that even
(2.3) Jim U+ 1) = 6 1eo(1)

holds true for certain subclasses of random walks, the intrinsic feature of
which is that they “contain” a random walk with i.i.d. increments ([2]) or
with independent increments sharing an appropriate distributional regu-
larity property ([3]). As for the former ones, (2.3) follows by employing a
coupling argument based upon the recurrence of a zero-mean random walk
with 1.i.d. increrments. With the results in Section 1 of this paper, we can pro-
ceed in a similar manner to obtain (2.3) for a fairly general class of random
walks with independent increments to be introduced below. Their obvious
property must be that their symmetrizations form recurrent martingales on
R making for a successful coupling.

Given a random walk (Sp)n>o with canonical filtration G and incre-
ments X3, X3, ..., we call (z,)n>1 & sequence of uniform poinis of increase
for (Xp)n»1 if there is a positive function f, defined on any interval (0, ),
such that for all § € (0,£) and n > n{6),

(24) PO < (Xp —2n)” < 6| Gn-1)
VPO < (X —an)T <6 Gp1) = f(6) as.
As one can easily see, (S,)n>0 is non-arithmetic under (2.4), i.e.
P(S,—SpedZforalln>0)<1 foralld>0.
It is further easily verified that each stochastically bounded sequence

(Xn)np1 with P(X, € - | Gn—1) being continuous a.s. for all n > 1 possesses
a sequence of uniform points of increase. Combining (2.2) with Corollary 3,

we can prove

THEOREM 2. Let (8, )nz0 be o random walk with So = 0, renewal mea-
sure U and independent, s.s. increments X1, Xa, ... with positive mean 8.
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Suppose further that (X,)n>1 possesses o sequence (Zn)n>1 of uniform
points of increase. Then (2.3) holds true.

Proof. Suppose first (X,)n>1 to be even stochastically Lo-bounded,
thus in particular uniformly square-integrable. Let (X7 },>1 be an indepen-
dent copy of (Xn)np1 with associated random walk (5] )n>q. Let further
S} be independent of (X, X )np1 and with distribution H. It follows that
H = U is the renewal measure of (S} )n>o. Given an arbitrary € > 0, we
choose H such that (2.2) holds true. (2.4) and a simple estimation imply

(2.5) 2P0 < (Xn—X5)F < 26) = P(0 < | X, — X,| < 26)
> P00 < X, =z, <OPO < | X, —an| < 8) 2 f(6)°  as.
for each sufficiently small § > 0, which shows that M, = S, — 5,,, n > 0,

satisfies condition (1.13) of Corollary 3. Furthermore, lims.g f(6) == 0, s0
that

25 25
E(X,~ X3 > [ 4P(r < |Xo— X}| < 26)dt > [ 2(4(8)7 - £(t)*)dt >0
0 0
for all n > ng(6). This shows that (M) also satisfies the conditions of
Corollary 2 and we thus infer that it is recurrent on R. As a consequence,
the e-coupling time

T=inf{n2>0:|%, ~ 8, <&}
is a.s. finite, and the associated coupling process
(26) S =S8,1{T2n)+ (8, - 8§+ ST <n), n>0,
defines a copy of (Sy)n>0 and thus has the same renewal measure U. (2.3} is
now derived by a standard estimation of U(t+1) — H « U(t + I), the details
of which may e.g. be found in [2].

If (Xn)nz1 is only stochastically (Li-)bounded, then note first that
(Zn)nz: must be bounded because of a simple tightness argument. As a
consequence, we can choose X/ to be an independent copy of X, given
|Xn| € 1+sup,5y 25, and equal to X, otherwise, We leave it to the reader to
verify that the above coupling argument still applies because M, = S, ~ 5/,
n 2 0,1s a martingale with now even bounded increments, and the coupling
process (Sn)nzo in (2.6) is still a copy of (Sy)nzo.

Remarks. (a) It is not difficult to formulate an arithmetic version of
condition (2.4) and then of Theorem 2 also. However, in contrast to the
arithmetic case this does not lead to an improvement over the results in [2]
and {3], and we therefore omit further details.

(b) It is natural to ask why Xy, X3,... have to be independent in the
above theorem, because M,, = S, — 5/, n 2 0, is also recurrent without
this assumption. Unfortunately, the coupling process (§ﬂ)n_>_g in (2.6} then
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needs no longer be a copy of (Sn)n>0, which is essential for the coupling
argument.

3. Proofs of the results in Section 1. In the following, we assume
that the martingale {M,)n>0 under consideration is defined on a measur-
able space (2, A) which is large enough to carry a family of probability
measures Py such that Py((M,)n>0 € -} = 9 for ¥ € ¥, the set of all mar-
tingal distributions “starting at 07, i.e. Py(My = 0) = 1. We denote by ¥p ¢
the subset of those 7 such that, under Py and with respect to its canon-
ical filtration (Fr.)n>0, (Mn)n>o has stochastically Ls-bounded increments
Y1, Ys,. .. with minorant F and majorant (& which are thus assumed to be
square-integrable. As a further subclass we consider W}:G containing those
¢ such that ¥1, Y5, ... additionally satisfy (1.10) with 0. = 1 under Py, ie.

(3.1) Ey(¥Y2 | Faoy) 21 as foralln> 1.
Let us also define
Pn(2,-) = Py((Mnik — Ma)kso € - | (Mo, ..., M) = z),
Q@) = Py(Myyr = Mo € | (Mo, My) = )
fory €W, n>0,k>1andz € R", and finally
Drc:={Qh (z, ) in >0,z € R™' and ¢ € U7 ;).
We first prove

LeMMA 1. For all square-integrable F, G with G < F, there is some
£ > 0 such that

3.2 inf , 0 d inf —00, — .
32)  dof Q50))>0 an ool (o0, —€)) >0

Proof Let D = Dpg, ¢ < 1 and suppose there is a sequence @, € D,
n > 1, such that @,([—a,a]) = 1 as n — oco. Since D is relatively compact,
we may assume that @, converges weakly to some Q. Consequently, by
stochastic La-boundedness

lim 22 Qu(de) = f e? Qdz) < a® < 1,

Nn—00

which contradicts (3.1). We have thus shown infgep Q([—¢,€]°) > 0. A
similar argument utilizing [z Q(dz) = 0 for all @ € D also proves (3.2). We
omit further details.

For b € R, we next define the first passage times
() =inf{n > 0: M, >b}, = (b)=inf{n>0:M, < b}
and
7{b) = inf{n > 0: |M,| > b}.
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LEMMA 2. For all square-integrable F', G with G < F, there is some
positwe constant C such that

(3.3) sup Ey7(b) < CH.
verf o
Moreover,
(3.4) lim sup |P¢(M.,-(b) > b) — 1/2| = Q.
b—+0o +
YEF L o

Proof. Without loss of generality we may assume € = 1 in (3.2). Then
forallbe N,

flp := SUp sup sup Qx,zb(m,[—2b,2b})<l,
we“";‘,G n>0xeRntl

which implies after successive conditioning

Py(r(b) > 2nb) < Py(|Map; — May(j—1y| < 2bfor 1 <5 <m) < nf
and therefore
(3.5) Py(r{b) < 00) =1 and Eyr{(h)? < o

for all 9 € ., b > 0 and p > 0. For the proof of {3.3), we employ a
similar argument to that in Gundy and Siegmund [5]. For m,n > 1 put
Ya(m) = ¥, 1(|¥5] > m). By stochastic Ly-boundedness of ¥3,Ya, ... we can
choose m so large that, given any ¢ € (0, 1),

(3.6) sup  sup || By (Ya(m)? | Fruri)leo < €2
pedf n2l

With the help of the optional sampling theorem, (3.1), {3.6) and the in-
equality Mf(b) < (b4 |Yrw|)?, we now obtain for all ¢ € WEG,

(k)
Eyr(v) < By (Y- By(Y? | Fi-)) = By My

i=1
S Ep(b+ [Yorp))® < Bylb+ m+ Yoy (m) )2
< (b + m)2 -+ Z(b + m){E¢YT(b) (m)2}1/2 + EQPYT(),) (m)2
1/ (b

(3 v
F=1

< (b4 m)? + 2e(b + m){Eyr(8) )12 + 2 Eyr(b),

<(b+m)?+20b+ m){Ew(gl’}(m)z)}
i=1

hence
( b+m
{Byr(b)}1/2

2
_ + Eﬂ'*) =1,
and the latter inequality obviously implies (3.3) for some C' > 0.
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In order to prove (3.4), let R, = Mewy — b Ry = —b—~ M, and
Ay = {Rp > 0} for b > 0. Note that AS = {R- > 0} and that
Rp1(Ay) 4 Rop1(45) < Yoyl

Another appeal to the optional sampling theorem combined with the previ-
ous inequality and (3.3) then gives for all ¢ € Ui,

0=EyM,sy =b(2Py(As) ~1)+ [ RedPy— [ R_,dP,
Ag AS
S B2Py(Ap) — 1) +m + {Ey Yo (m)*}/*
S B(2Py(Ap) — 1) +m + e{ By (b))}
< B(2Py(Ay) — 1) + m -+ C2p
and similarly
0 > b(2Py(A4s) — 1) — m — eC/?.
Both inequalities together show
Pu(4y) —1/2] < m/b+eCL/2,

But £ > 0 can be made arbitrarily small by choosing m sufficiently large, so
that

lim sup |Py(As) —1/2| =0,

b—oo 1/'15!7;_@

which is the same as (3.4).

LeMMA 3. In the situotion of Lemma 2, 77 (b) is Py-a.s. finite for all
b>0andy e W};%.,G_ Furthermore, there exists ¢ > 0 such that

3.7 k= inf inf Pu(rT(B) < e(b+1)3) > 0.
(3.7) S RGO <

Proof Choose a so large that, by (3.4), Py(M, 4 < —b) < 2/3 for all
b>aand ¢ € P . Define

Te(b) = inf{n > 1: |Mepn — M| > b}

for b 2 0 and each a.s. finite stopping time ¢ with respect to (F,)n>0, and
then recursively

§i=7(b) and fp=fn-1+ T5n~1(|MEn-1|) for n > 2.
As one can easily see, {77(b) > £,} C A,, where

A, = {M£1 < =b, MEz ”'“Mfs. < _iMflln' .- ’an " MEn-l < _|MEn-1|}
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for each n > 1, so that for each 1 € !Tf;".’G,

Py(rt(8) > £0) < [ Pye_ (oot 0 (Mrqag,_ 1y <=M, _, ) dPy
An—l

2 k3
< ;Pw(An—l) < ... (inductively) < (5) ,

thus Py(77(b) < oo
ghould be ohserved.

As for (3.7), we note that for all b > a, with ¢ as chosen at the beginning
of the proof, and for C' as in (3.3),

inf Py(r*(0) <408%) 2 inf  Py(r(b) < 408, Moy > b)

i

=1, where ¢¢,_, (Mo, ..., Mg, _,),") € !‘p;’_,G Fy-as.

‘f’E‘p;,c YE¥L o
> inf Py(M;g >b)~ sup Py(r(h) > 4CH)
196"{";:.0 ![JE!P;.:G
1 Eyr(b) 1 1
> 5 — sup >-—-=>0
B8 yesy, 40P T3 4

The desired conclusion follows by choosing ¢ > 4C large enough so that
Py(7(b) < c(b+1)%) also hag a uniform. positive lower bound for all ¢ €
E"I',':,G and 0 € b < a.

Next, we define for b > 0 and ¢ € !P}T’G,

rHby -1
Hy(b,) = Bo( Y 1Ma€ ) =T Py(rt () > n, Mo € ).
n=0 n>0

LEMMA 4. In the situation of Lemma 2, there exists some ¢ > 0 such
that for all o > 0,

(3.8) : sup sup Hy (b, (b — z,8]) < ez + 1)
"'[’E!p;‘-,a b0

Proof Let R} = M5y — b for b > 0. We obtain for all 4 € !Z’;G and
b>0,

H’k"(b7 (b - ‘J:,bD

rHa-RE__)-1

= Em( >

{R:-_ESE} n=0

[where ¥, = ¢ (My,..., M,),"), and 7 = 77 (b — )]

1(My € (B, @~ RL])) 4P,
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= [ Hy(zs-Rf_,(-R}f z- R 1)dPy
{R} <=}

< sup sup Hy(y, [y — =, ¥]).
¢ewglcysw

A similar calculation with ¢, £ as in Lemma 3 and with N denoting the
integer part of e(y + 1)? leads to

Hy(y, (y — z,9])

mH(y)-1
Se(y+1)°+ E«p( Y, UMae(y—eyl,ri(y) > N))
n=N+1
=c{y +1)*
+ f HwN((Mg,...,MN),-)(y_MN7(y_" MN —-Tuy—MND dP’e,b
{rt(y)>n}
<e(z+ 1%+ (1 k) sup sup Hy(b, (b — x,b])

seu , b20

for all ¢y € ¥, and 0 € y < . By combining both previous inequalities
and taking suprema we finally infer

sup sup Hy (b, (b—z,b]) <c(l+z)2+(1—k) sup sup Hy(b, (b— z,b]),
vewd , b20 vewy , b20

and this obviously proves (3.8).

Needless to say, all previous results for 7 (b) are also true for +~(b)
as follows by switching to (—M, ), »q. After these preparations we are now
ready to prove the results in Section 1. We begin with the proof of Theorem 1
which can be combined with that of Corollary 2.

Proof of Theorem 1 and Corollary 2 Put o2 = E(Y? |
Fui) for n > 1. Then, for each b > 0, M, (b) = Z?zll’}l(WE <b),n>0,
is a zero-mean square-integrable martingale which further satisfies

n n
EM,(b)° =Y EYJ1(VZ<b) =) ol(V; <b) <BVII(V2<H) <b
i=1 g=1
for all n > 0. Thus M,(b) converges a.s. for each b > 0 by the martingale
convergence theorem, and this is equivalent to the a.s. convergence of M,,
on {V < oo}
For the second part of the proot we readopt the notation which we have
used for the lemmata above. So we denote by Py (instead of P) the un-
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derlying probability measure if ¢ € ¥ is the given distribution of (M, }n>o.
The resulting dependence of V,, and V eon ¢, however, is suppressed in
the following, which means that we keep writing Vi, and V' only. Suppose
R/,(V 00) > 0 and consider the martingale (M )n>0 as defined in (1 5); let

w,b denote its distribution under Py. By assumption of Theorem 1, zL: € !T/FG

if ', G are a minorant and a majorant of Y1,Y2, ..., respectively. Valid-
ity of (3.1) for the latter sequence is evident from (1.6). Moreover, the
quadratic variation sequence V7 := 3.0, Ey(Y7@ | Fj.1) converges a.s.

to 0o as n — oo, and finally
(3.9) Py(M, €[—c,dio)=1 = Py(M, cl-cdio|V=00)=1,
where the latter assertion is the one still to be proved. We will therefore

finish the proof of Theorem 1 by showing the first assertion of (3.9), and in
order to save notation we replace (ﬂ?ﬂ)nzg by (Mp)a>o itself and assume
that its distribution ¢ is an element of Q?EG, in particular V = oo FPy-a.s.
This, however, means nothing but proving Corollary 2 next.

Let Tgt(b) = inf{n > 1: 2(Meyn — M) > b} for each a.s. finite stopping
time £ and define (o = 77(0),

El = CO + T+("M$n): Cl = ‘51 + Tg—l- (‘ZV[&):
52=C1+T$(“MC1)7 Ce= &2 +T—;(Mfz)a R

which are easily seen to be the successive random times where M, moves
from (—o00,0) to (0,00) or vice versa. Since ¥y, Ya,... are supposed to be
stochastically Ly-bounded with minorant F and majorant G, we induc-
tively infer from Lemma 3 that £, < oo and (, < oo Py-as. for all
n > 1 where 9. ((My,...,M,),") € Q?FG Py-a.s. for each as. finite stop-

ping time 7 is repeatedly used Recalling the definitions of R} and Hy(b,-)
from the proof of Lemma 4, we now infer that for alln = 1, s > 0 and
Py((Gne1, Mg, ..., M, _,) € -)-almost all (k,z) € N x R¥,

(310) Py(Me, > s|Cn-1 =k, (Mo,..., Mx) = ) = Py, (5 (RF,, >s)
= Z f Pw(m,-)(Y;a >3~k ~y | Maoy = y)

nal (*ml_mk]

X APy (z,)(Mn—1 € dy, TH(—2y) > n)

< f (1-Gls -z —y)) Hy, (o) (~25, dy)

(—Dé,-m;,]

[ Hopo,) =k, (=i + 8 — £, —23]) G{dt)

(8,00)
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< [ els—t+1)*G(ay),

(8,00)

where My, _, = zi < 0, stochastic Lo-boundedness of ¥3, Ya, ..., (z,7) &
W}rg, a change of variables and Lemma 4 for the final inequality have been
utilized. Since G is square-integrable, we thus obtain for sufficiently large s,

sup || Py(Me, > s | F¢,_y)leo < 1/2
n=l

and then by successive conditioning Py (M, € [0,s] i.0.) = 1. A similar
procedure yields Py(M,, € [—s,0] i.0.) = I, and both results together vield
the asserted recurrence of (Mp)nso prov1ded v ek,

Remark. Basically we have just shown that Durrett, Kesten and Law-
ler’s [4] proof of the recurrence part of Theorem 1 in case of finitely many
increment distributions runs through also if Y7, Ys,... are merely stochas-
tically Lo-bounded with a uniform lower bound for the conditional vari-
ances. The major difference is that their proof of the crucial Lemma 3 (their
Lemma (4.1)) is based on Skorokhod imbedding and makes explicit use of
dealing only with finitely many increment distributions. Moreover, there
seems to be a little gap in their argument corresponding to (3.10), because
they use (3.8) of Lemma 4 as stated here, but prove it only with SUPp»0
replaced by supg<p<s-

Proof of Corollary 1. The same reasoning as in the previous proof
shows that we may assume without loss of gemerality that (M,).>0 has
a distribution 1 € ¥} F.g With square-integrable F,(, so that in particular
Py(V = ) = 1. By Theorem 1, M, then visits an interval [-e,¢] Lo
Py-as., and we denote by {; = 0,£1,£,... the successive visit times. By
Lemma 1, there is some & > 0 such that

B = nzlgfgf'zlﬂp'gb(l%“ﬁ >el ffn+i—l)i!°‘> > 0.

Consequently, by successive conditioning for every m > 1,
Py(Me,pym — M <mefor0<k<n)<(1~8m)" =0
as n — oo, and therefore
Py(Me \sm >—c+meio)=1

for m > 1. But the latter obviously implies limsup,_, . M, = oo Py-as.
The other assertion of the corollary follows analogously when considering

(—=Mp)n>0.

Proof of Corollary 3. We only give a sketch of the proof here
from which the formal procedure can be easily deduced. Consider the non-
arithmetic case, assume (1.13) and pick an arbitrarily small § > 0 and an
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arbitrary = € R. Denote by [—¢, c] the recurrence interval of (M, ),>¢. It is
then easily verified that there exists some k = k(§) sufficiently large such
that for each (stopping) time § > k with M € [—¢, ¢} there is a further one
¢ > ¢ such that P(M; € [z — 6,2+ 8] | F¢) > v and v > 0 only depends on
8, k and z. Thus we obtain the desired result by a geometric trial argument
similar to the one used in the previous proof.
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On the invertibility of isometric semigroup representations
by

C. J. XK. BATTY and D. A. GREENFIELD (Oxdord)

Abstract. Let T be a representation of a suitable abelian semigroup S by isometries
on a Banach space. We study the spectral conditions which will imply that T'(s) is invert-
ible for each s in 5. On the way we analyse the relationship between the spectrum of T,
Sp(T, 8), and its unitary spectrum Sp,, (T, §). For § = Z or BY, we establish counections
with polynomial convexity.

1. Introduction. This paper deals chiefly with the question of invert-
ibility of isometric representations of abelian semigroups. Quite apart from
its intrinsic interest, the problem has a hearing on the study of the asymp-
totic behaviour of bounded semigroups of operators. Let S be a suitable
subsemigroup of a locally compact, abelian group @, and T be a bounded
representation of .5 on a complex Banach space X. Let Sp, (T, S) be the
set of all characters in the dual group I' which are approximate eigenval-
ues for T', and Po.,(T*) be the set of characters in I" which are eigenvalues
for T*. If Sp,(T') is countable and Po,(T*) is empty, then, for each z in
X, | T(#)z]| — 0 as t — oo through S. This was shown in [11] for norm-
continuous representations of Ry, in [7] for arbitrary representations of R,
in [3] (independently) for arbitrary representations of Z, and Ry, in [9] for
norm-continuous representations of general semigroups, and in {4] for arbi-
trary (strongly continuous) representations. The arguments in [7], [9], and
[4] all used a functional analytic construction to reduce the problem to the
study of isometric semigroups.

If T" is a representation of S by isometries and Sp, (7, S) is countable, the
question arises whether T is automaticaily invertible. For § = R, this was
an ingredient in the proof of [7], where a short argument using the Hille—
Yosida Theorem showed that T is invertible whenever Sp, (T, R, ) # iR,
and in the case when § = Z. it is elementary that T is invertible whenever
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