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arbitrary = € R. Denote by [—¢, c] the recurrence interval of (M, ),>¢. It is
then easily verified that there exists some k = k(§) sufficiently large such
that for each (stopping) time § > k with M € [—¢, ¢} there is a further one
¢ > ¢ such that P(M; € [z — 6,2+ 8] | F¢) > v and v > 0 only depends on
8, k and z. Thus we obtain the desired result by a geometric trial argument
similar to the one used in the previous proof.

Acknowledgements. This work was partially prepared during a sum-
mer visit at the Statistics Department of Stanford University to which the
author expresses his deep gratitude for its kind hospitality and stimulating
atmosphere.

References

[} G. Alsmeyer, On the momenis of certain first passage times for lincar growth
processes, Stochastic Process, Appl. 25 (1987), 109-136.

[2] — Rendom walks with stochastically bounded increments: Renewal theory, submit-
ted, 1991.
[3] —, Random walks with stochastically bounded increments: Renewal theory via

Fourier enalysis, submitted, 1991.
[4 R. Durrett, H. Kesten and G. Lawler, Making money from fair games, in:
Random Walks, Brownian Motion and Interacting Particle Systems, R. Durrett
and H. Kesten (eds.), Birkhiiuser, Bogton, 1991, 255-267.
5] R Gundy and D. Siegmund, On a stopping rule and the central limit theorem,
Ann. Math. Statist. 38 (1967), 1915-1817.
6] P.Halland C.C.Heyde, Martingale Limit Theory and Fts Application, Academic
Press, New York, 1980.
[7] J.H.B. Kemperman, The oscillating random walk, Stochastic Process. Appl. 2
(1974), 1-29.
8] H.Kesten and G.F. Lawler, A necessary condition Jor making money from foir
games, Ann. Probab. 20 (1992), 855-882.
9] S.P.Lalley, A first-passage problem for a two-dimensional controlled random walk,
J. Appl. Probab. 23 (1986), 670-678.
[10] J.Lamperti, Oriteria for the recurrence or fransience of stochastlic processes I, J.
Math. Anal. Appl. 1 (1960), 314-330,
[11] B.A.Rogozin and 8. G, Foss, Recurrency of an vscillating random walk, Theor.
Probab. Appl. 23 (1978), 155-162.

MATHEMATISCHES SEMINAR
UNIVERSITAT KIEL
LUDEWIG-MEYN-STRASSE 4
D-2300 KIEL 1, GERMANY

Received March 29, 1998 (3092)

icm

STUDIA MATHEMATICA 110 (3) (1994)

On the invertibility of isometric semigroup representations
by

C. J. XK. BATTY and D. A. GREENFIELD (Oxdord)

Abstract. Let T be a representation of a suitable abelian semigroup S by isometries
on a Banach space. We study the spectral conditions which will imply that T'(s) is invert-
ible for each s in 5. On the way we analyse the relationship between the spectrum of T,
Sp(T, 8), and its unitary spectrum Sp,, (T, §). For § = Z or BY, we establish counections
with polynomial convexity.

1. Introduction. This paper deals chiefly with the question of invert-
ibility of isometric representations of abelian semigroups. Quite apart from
its intrinsic interest, the problem has a hearing on the study of the asymp-
totic behaviour of bounded semigroups of operators. Let S be a suitable
subsemigroup of a locally compact, abelian group @, and T be a bounded
representation of .5 on a complex Banach space X. Let Sp, (T, S) be the
set of all characters in the dual group I' which are approximate eigenval-
ues for T', and Po.,(T*) be the set of characters in I" which are eigenvalues
for T*. If Sp,(T') is countable and Po,(T*) is empty, then, for each z in
X, | T(#)z]| — 0 as t — oo through S. This was shown in [11] for norm-
continuous representations of Ry, in [7] for arbitrary representations of R,
in [3] (independently) for arbitrary representations of Z, and Ry, in [9] for
norm-continuous representations of general semigroups, and in {4] for arbi-
trary (strongly continuous) representations. The arguments in [7], [9], and
[4] all used a functional analytic construction to reduce the problem to the
study of isometric semigroups.

If T" is a representation of S by isometries and Sp, (7, S) is countable, the
question arises whether T is automaticaily invertible. For § = R, this was
an ingredient in the proof of [7], where a short argument using the Hille—
Yosida Theorem showed that T is invertible whenever Sp, (T, R, ) # iR,
and in the case when § = Z. it is elementary that T is invertible whenever
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Sp,(T) # T. In [4], the guestion of invertibility for general 5 was avolded,
but it will be shown by Theorem 5.1 that T' is indeed invertible whenever
Sp, (T, 5) is countable, This leads in turn (although the details are not given
here) to a greatly simplified proof of the stability theorem mentioned above.

The spectrum Sp(T, §) of T was defined in [4] and identified with the
Gelfand spectrum of a certain commutative Banach algebra A, while
Sp, (T, S) was shown to contain the Shilov boundary of .Az; here we show
that in fact Sp, (T, S) coincides with the Shilov boundary, and we deduce
that Sp(T, ) is a certain hull of Sp, (T, S). For § = Z%, Sp(T,Z}) is the
polynomially convex hull in C" of the subset Sp,(T,Z%) of T™, while for
S = R} a similar result holds after applying a Mobius transform of iR"
into T™; these matters are dealt with in Sections 2 and 4. Using some facts
about polynomial convexity of subsets of T™, we are able to deduce that
Sp(T, S) = Spy(T, S) under certain conditions. In all these cases, we are
further able to deduce that T is invertible, and these results are presented
in Section 5. For discrete semigroups, invertibility follows directly from the
property that Sp(T, S) = Sp,(T, 5}, but we do not know whether the same
holds for § = R%. In Section 3 it is shown that any obstruction to invert-
ibility arises in translation semigroups on quotients of L1(S).

The results which we use concerning polynomial convexity are due to
Stolzenberg and Alexander. We are very grateful to Professor Alexander for
providing us with Proposition 4.5, which enabled us to improve our original
version of Theorem 5.3.

2. The spectrum and S-hulls. We shall adopt the terminclogy and
conventions of [4] with only minor changes. Thus, & shall denote a locally
compact, abelian group with dual I', and § will be a measurable subsemi-
group of G with non-empty interior S? in G’ which satisfies §— § = G. Here,
G is assumed to be equipped with the Haar meagure, and we consider 5 with
the restriction of that measure. L*(5) shall be identified with a subspace of
LYG). The dual of §, 8*, is the space of all non-zero, continuous, bounded,
complex homomorphisms of 9, and by the wnitary part of S* we mean

a={x€ 8 :|x(s},=1forall sin S}

We shall identify S¥ with I’ in the obvious way. For f in L*(8) and x in §*
let

-~

Fo) = [ f(s)x(s) ds.
’ g

Finally, we assume that {f f € L}(8)} separates the points of $* from
each other and from gzero.

For § = Z% we identify (Z7)* with D", where Z,. = {0,1,2,...} and
D= {z € C: |z] <1}, by the relationship x(m1,...,ms) = 2[** ... 20",
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Similarly, for S = R%, we identify (R})* with C™, where Ry = {t e R:¢t >
0} and C.. = {z € C: Re 2 < 0}, by x(4y, ... itn) = exp(tizy + ...+ tn2y).

If T is a bounded representation of § on a complex Banach space X we
define the spectrum of T with regard to S to be

Sp(T,8) = {x € §* : |F(x)| < | F(T))| for all  in L*(8)},

where f(T') : X —+ X is defined by

f(T):z— f F(8)T(s)z ds.
s

We shall denote the unitary part of the spectrum, Sp(T, S)NSY, by Sp, (T, S);
Sp(T, S) is clearly a closed subset of $*. If T is a Cy-semigroup, that is, if
5 =Ry, then 8p, (T, §) = o(A) N iR where 4 is the generator of T.

Suppose now that U is a bounded representation of G; then the defini-
tion of Sp(U/, G) in the preceeding paragraph coincides with the standard
definition of the Arveson spectrum [8] and of the finite L-spectrum of I [6].
In [4, Proposition 2.2] it was shown that Sp, (U, S) is equal to the unitary
approximate point spectrum Aoy (U); that is, x € Sp(U, S) if and only if
there exists a net (z,) of elements in X such that ||z,| = 1 and

[U(s)ze — x(s)2al| =0  uniformly on compact subsets of S.

From the conditions imposed on § above it may easily be deduced that, if
C is a compact subset of &, then there exists an s in § such that s+ cs.
This fact may be used to prove the non-trivial half of the equality

(2.1) SP(U: G) = Spu(U, S)&

where we are here identifying I” and §2. It also allows us to use the notation
Aoy (U) without ambiguity.

A representation T' of S by isometries on a complex Banach space X is
said to be invertible if the operator T'(s) is invertible for each s in S. In such
& case T’ may clearly be extended to a group representation I by defining

Ut—s)=THT(s)™", tseb.

PROPOSITION 2.1. Let T be a representation of § by isometries on a
Banach space X. There exist o Banach space X4 containing X (by isometric
isomorphism), and o representation Ty of G by isometries on Xz such that
Tals)x=T(s)z (x € X,s € §) and Sp(Ty,G) = Sp,(T, 5).

Proof. The existence of Xy and Ty is given in [5, Theorem 1]; moreover,
we may assume that {Ty(t)z: ¢t € G,z € X} is dense in X4. (Then (X4, Ty)
is essentially unique.)

If x is in Sp, (T, 8}, then x is an approximate eigenvalue of T and so there
exists a net (o) of norm one elements of X such that || T(s)zo—x(s)za| — 0
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uniformly on compact subsets of 5. Let C' be a compact subset of & and let
s € § be such that s+ C C 5; then

[ Ta(t)z0 ~ x(B)zall = 1Ta(8)(Talt)za — x(t)za)]
< |1 Ta(s + 8)za — x(s +t)zal]
+ |Ix(s + thea — x{)Tals)za
= | Ta(s + t)za — x(s + )70l + [x(s)z
— 0 uniformly for ¢t in C.

o — Ta(8)zal|

Hence x is in Sp(T4, G).

Conversely, let x be in Sp(T4, G); there is a net (yq) in X4 of norm one
elements such that | T4(t)ya — x(t)yall — 0 uniformly on compact subsets of
G. Using the density assumed in the first paragraph, we may arrange that
Yo = Tal—ta)zo for some t, in § and z, in X.Forse S,

IT(8)ze = x(s)za] = [Ta(s - ta)re — x{s)Tu(-ta)all
= I Tu(s)ya — x(s)yall
— 0 uniformly on compact subsets of 5.
Thus x € Sp,(T, 5).
The first statement of the following corollary was proved in [4, Corollary
3.3], but our proof is much more direct.

COROLLARY 2.2. Let T be a representation of S by isomeiries on o
Banach space X.

(1) If X 3 {0}, then Sp (T, 5) is non-empty.

(2) T is norm-continuous if and only if Sp, (T, S) is compact.

Proof. Both statements follow from Proposition 2.1 and the correspond-
ing results for group representations (see [8, Section 8.1]).

We now show that the invertibility theorems to be presented later in
this paper are not vacuous, by proving that examples of representations
exist with arbitrary closed unitary spectra.

Let F be a closed subset of I' and define

Je={f e IN{G): f(x) = 0 for all  in some open neighbourhood of E} ™,
so that Jg is & closed ideal in L1(@). Set X = LY{G)/Jp and define Ug(s) :
X > XforsinG by

Ug(s) : f()+Te— f(-—s)+Je  (f € LYG)).

It may easily be shown that Ug is a representation of G (by isometries)
on X, If one writes ¥ = L1(S) + Jg/Jg (regarding L'(5) as a subspace of
LM@)) and T (s) = Ur(s)|y for s in 9, then T is a representation of § by
isometries on Y. Let || - | & denote the quotient norm of X and Y.
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‘THEOREM 2.3. In the notation above, Sp(Ug,G) =Sp,(Tr, S) =

Proof By(2.1),8p,(Ur,S) = Sp{Ug, G). If fisin L (S), then || 7| TE)H
< ||IF(U=) )|l and hence Sp, (Tg, S) C Sp, (U, S). It suffices to show therefore
that (a) & C Sp, (T, 5), and (b) Sp(Ug, ) C E.

(a) £ C Sp,(Tg,S): S’ satisfies the Fglner condition; that is, there exists
a net ({2,) of compact subsets of § with

(2. + 8) A2,/ — 0
uniformly on compact subsets of S, where | - | denotes the Haar measure of
G restricted to S. Suppose y is in E and set

1
fa(s) = 2oyt (=)

where 1g, is the characteristic function of {2,. We will show that (fat+J8)
is a net of elements of norm one in Y such that

(2.2) | T=(s){fo + JB) — x(5)(fa + JE)|5 — 0

uniformly on compact subsets of S; from these facts we may deduce the
result.

For all ¢,

@3 fat Jells < Mol = [ Vol da= [ prds =1,
a s @

for s € 5,

and for all g in Jg,

(24)  |(Fa =) 00l = fal)l =

I

el ﬂ:

190_ (8)x(—s)x(s)dsi = 1.

Equation (2.4) then implies

1<f s)x(s)lds = [ |(fa
G

which, together with (2.3), shows that ||f, + Jg|/z = 1. To obtain (2.2) we
note that

1T (s){fo + J&) —

—g)(s)| ds = || fa — gli1

X( ) fo: +JE)HE < ||fa=( _5) X(S)fof('ml
f L0, (t — s)x(s — t) — 1g, (E)x(s — 1)|
|92

dt

1 1
= f IT‘??!dH f o dt

(Rats)\f2a ﬂa\(“ﬁ*’)' =l
= (24 + 8)AR2| /24| — 0

uniformly on compact subsets of 5.
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(b) Sp(Ue,G) C E: If f € Jg and g € L'(G), then

FUr) g+ ) = ff c—s)ds+Jg = (f*g) + Jp.

It follows, Jp being an ideal, that f(UE)(g + Jg) = Jg; in other words,
F(Uz) = 0. The result now follows from the fact that for all x not in E
there exists an f in Jg such that f(x) = 1.

Let T" be a bounded representation of § on X, and U be a bounded
representation of G on X, Define

Ar = {F(T): f € L}S)}~
and
By ={f(U): f e L}G)}™,

where closures are taken in the norm topology of B{X).

The maximal ideal space of Ap may be identified with Sp(T" §), while
that of B(U) may be identified with Sp(U, @), in the following way: Each
x in Sp(T, 8) (respectively Sp(U, G)) corresponds to an element ¢, in Ay
(resp. By) where

b F(T) = Flx),  felIrS),

and similarly for By. Moreover, each non-zero complex homomorphism of
Ag (resp. By) is of this form (see [4, Proposition 2.4]).

TueorREM 2.4. The Shilov boundary of Ay contains Sp, (T, S) and is
contained in the approsimate point spectrum Ao(T). In particular, if T is
a representation by isometries, then Ao(T) = Sp, (T, 5) and thus the Shilov
boundary is equal to the unitary spectrum.

Proof. By [4, Proposition 2.5], the Shilov boundary of Ay, Sh{Ap), is
contained in the approximate point spectrum, so it remains to prove the
inclusion Sp, (T, §) C Sh{Ar).

Let x be in Sp, (7, 5). Regarding x as an element of I", and choosing
any open nelghbourhood V of 0in I', we may find a function f in LY(G)

such that f(x) = 1 and f = 0 outside x + V' (see [10, p. 49]). Since § is a
subsemigroup with non-empty interior, there exists an 8 € § such that

[ 1f)ldt <1/,

G\(8~s)

Set gs(t) = f(t ~ s) for t € S, so that g, € L*(S). For v in I', we have
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s = 1F | < 1Galy) — ¥(s) F()]
= |[ fe=n®de— [ 169+ 5) ]
s [ed

=] f f(t)'r(t)dt < f |f(t)|dt<1/4,

G\(&
and thus the Gelfand transform of the element §.(7") of AT peaks on x+ V),
which implies that x is in the Shilov boundary of Ar.

COROLLARY 25. If T is a representation by isometries such that
Spy(T, 8) is countable, then Sp(T, S) = Sp, (T, S).

Proof. If the Shilov boundary of any commutative Banach algebra is
countable, then it is equal to the maximal ideal space [13, p. 55].

See Theorem 5.1 for a result closely related to Corollary 2.5.
S-hulls. For E a closed subset of S} we define the S-hull of E as follows:

S-bullE = {x € 8 :|f(x)| < sup 17(7)] for all f & L1(8)}.
YE

It B = S-hullE, then we shall say that E is S-conver. Suppose T is an
isometric representation of § with unitary spectrum £. If  is in the S-hull
of B, then | f(x)| < sup..¢ |f{)| < | F(T)| for each f in L*(S) by definition
since E is contained in the spectrum; hence the S-hull of F is a subset of
the spectrum.

Suppose instead that x is in the spectrum of T by Theorem 2.4 we
know that E is the Shilov boundary of Ar and hence, for all f in L1(8),

{f(x)| < 8UP,eg | F(~)|, which implies that x is in S-hull E. We have thus
proved the following:

ProrosiTioN 2.6. If T is a representation of S by isometries on X,
then Sp(T,S) = S-hullSp, (T, S). In particular, Sp(T,S) = Sp,(T,S) if
and only if Sp,(T,S) is S-conves.

An important point here is that the S-hull of a set E depends only
on 5 and E, go that if two isometric representations of § have identical
unitary spectra, then their spectra agree entirely. It seems plausible that if
Sp(T, 8) = 8p, (T, 8), then T is invertible. However, we are able to establish
this only in certain cases and the guestion will be considered in the later
sections of this paper. N

If D is a dense subspace of L*(S), then it follows, since || fllo < |I£]]1,
that

S-hullE = {x e 8 : |f(x)| < sug |F(7)] for all € D}.
ve
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If § = Z% and D is the subset of LY(Z7) consisting of all sequences with
only finitely many terms non-zero, then, identifying S* with ", the unit
polydisc, we deduce that the S-hull of a set £ is in fact its polynomially
convex hull. Thus we see, when S = Z7, that the spectrum of an isomet-
ric representation is equal to the polynomially convex hull of its unitary
spectrum and we shall, in this case, write P-hull for Z7} -hull.

3. A characterisation theorem. In the remainder of this paper we
will be trying to answer the question: Under what spectral conditions is an
isometric semigroup representation invertible? T' will be assumed to be a
representation of S by isometries on X. First we show that any obstruction
to this is already contained in the example of Section 2; we use the notation
Ug and Tz as in Theorem 2.3.

THEOREM 3.1. The following are equivalent:

(1) Ty is invertible;

(2) LX(8) + Jg = LYG);

(3) Every representation of § by isometries on & Banach space with
unitary spectrum E is invertible.

Proof. Suppose (1) is true. Let f be in L*(G) and £ > 0. There exists
an s € S that satisfies

[ 1f@)1dt <e/
G\{8—s)
if g denotes the restriction of f to S—s, this may be written as [|[g—f||1 < /2.
Because g, € L'(S), there exists by assumption an h in L'(S) such that

| Te(s)(h + Jg) — (gs + JB)lE < €/2,
hence there is a &k in Jg satisfying
fh+k— gl = ||hs -+ ks — gsl1 < /2.

It now follows trivially that ||f — (h+ k)||1 < € and thus f € L1(S) + Jg.
Suppose (2) is true. Let T be any representation of S by isometries

on some Banach space X with unitary spectrum E. We aim to prove the

following inequality: for £ in L1(9),

(3.1) W) < 1iF + Jelle.

Once this is done the proof continues thus: let sp be an interior point of

S and suppose s € §, z € X with ||z]| = 1, and € > 0. There exists a

neighbourhood V of sg, contained in S, with the property that

IT(t)z — T(so)x|| <e/2, teV.
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Setting f = (1/|V|)1y we then have

-~

ATz — T(so)z]| < /2.

f(-+ s+ o) is in L*(G) and so, by assumption, there exists a g in L}(S)

';lvith 1g(:) = f( + s + s0) + Je|& < £/2, but then, writing y = 9Nz, we
ave

IT(8)y ~ z|| = |T(s + 50)8(T)z — T(s0)z|
< NIT(s + 50)5(T)w — F(T)z]| + | F(T)x — T{so)z]
< 1Gos0(T) — F(T)z| +2/2
< gl —s—s0) = F()+ Jelz +&/2 <&,

so that « is in T'(s)[X]; hence T'(s)[X] = X and T'(s) is invertible. It remains
therefore to prove (3.1).

Let f be in L'(S) and g be in Jg, and let X and Ty be as in Proposition
2.1. Since Sp(Ty, G) = E, it follows that G{T) = 0 by the theory of isometric
group representations [8, Section 8.1]; hence

IF@) = sup IF(T)z] = sup [If(Ta)a]
lzf <1 ll=| <1

-~

< NF T = AT - 3T < 1If — gl
Taking the infimum over all g in Jg, (3.1) is proved.

The final equivalence, (3} implies (1), is trivial.

LEMMA 3.2. Suppose that 0 is in the closure of S° in G end that T is
norm-~continuous. Then for each s in S,

a(T(s)) € {x(s) : x € Sp(T., 9)}.

Proof. The assumptions imply that Az contains Jx and T'(s) for each s
in S. For x in Sp(7', §) we have ¢.,(T'(s)) = x{s) (where ¢,, is as in Section 2)
and hence
o4z (T(s)) S {x(s) : x € Sp(T. 5)}-
The result now follows since o(T'(s)) = op(x)(T(3)} C o4, (T(s)).

THEOREM 3.3. Let E be a closed subset of S

(1) If E satisfies the conditions of Theorem 3.1, then E is S-convex;

(2) If E is S-convez and compact, then E satisfies the conditions of
Theorem 3.1.

Proof (1) Suppose F satisfies the conditions of Theorem 3.1, so T is
invertible and T’y = Ug. For any g in Jg, §{Ug) = 0 and hence
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Agy = {J(Tg): F € LM8)}™ = {f(Ug): f € LS)}~
= {(f+9)"(Ur): f € L), g€ Ja}~
= {(A(Ug) : h € LG)}™ = Bug;

the last but one step is justified by the fact that L'(S) + Jg is dense in
LY{G) and because 1F(U=)|| < [Iflly for all £ in L}{G). The spectrum of
Ty, S-hull E, is associated with the maximal ideal space of Ar,, which by
the above is the same as that of By,. The latter is just E, however, so that
S-hull B = Sp(Tr, S) = E and we are done.

(2) Now suppose E is compact and S-convex. By Corollary 2.2, any
representation of S by isometries with compact unitary spectrum is norm-
continuous. Proposition 2.6 and Lemma 3.2 then give that for each s in 39,
the spectrum of Tg(s) is contained in the set {x(s) : x € E}, but this set is
contained in the circte {z € C: |2| = 1} and hence Tg(s) is invertible. The
invertibility of all T'g(s) follows from this.

COROLLARY 3.4. Let F be a closed subset of the n-torus T™. E is poly-
nomially convez if and only if I"(Z%) + Jg is dense in I'(Z™).

Remark 3.5. It is not clear whether the conclusion of Theorem 3.3(2) is
true in the case when F is not assumed to be compact. If § = R.., then by
Remark 4.2 below, the closed S-convex subsets of iR are precisely the proper
closed subsets. An isometric Cp-semigroup whose spectrum does not contain
iR is invertible (again see Remark 4.2), and hence the full conclusion does
hold when § = R, even for non-compact E. We shall show in Section 5 that
in the case § = R? it is true provided that I is the union of its relatively
open compact sets and note that it is true for all 5 if £ is countable.

4. Some technicalities. Define m : T — €, where C = CU {0}, via
maz— (z+ D (5 -1), i=1,...,n

Note that m is a self-inverting transform.

LEMMA 4.1, For E CiR™, R} -hull B = {z € C" : m(z) € P-hullm(E)}.
Proof For ease of notation we shall also use m to denote the single
transformation # — (2 + 1)/(z — 1}. Suppose that z € C" is such that

m(z) &€ P-hull m(E). For f in L*(R%), let

g(fw) ={f(m(w)): w={wy, .., we) €D, Wi #1,i=1,...,n
0 otherwise.

Since g is a function which is continuous on D" and analytic in the inte-

rior, it may be approximated uniformly by polynomials p. From the defini-

tion of the polynomially convex hull we have p(m(2))| < sup,,em(zy [P(w},
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and it follows that
7)< sup |f(m(w))] = sup |Ff{v)].
wem(E) vel
Thus 2 is in R} -hull £ and one inclusion is proved,

Let g be the polynomial ¢(z) = (2, — o.o(zn—1).Forr =0,1,...,n
define

&r = span{q(z)(1 — Arz) ™' ... (1 — M) N < 1},

where the closure is taken in the topology of uniform convergence on ™. If
f(t) = exp(urts + ... + pnty), where p = m(A), then

Flm(z) = (~3)"aNa(z)(1 = Az1) ™t o (1~ Aza)

Hence,. ifgeé&,, thengom € {f f & LY(R%)}~, where the closure is
taken in the topology of uniform convergence on C”.
We aim to prove the following:

INDUCTIVE HYPOTHESIS (I). Suppose that 1 <r < n, 1< k < oo, o{z) is
a polynomial depending only on the variables zy,. .. 2p_y1. If g(2)p(z) e &y
and q(z)p(z)z; € £ (0 < i < k), then q(2)p(z)zF € &,.

By assumption, ¢(2)p(z) € £-_1. It follows from the definitions of &,._,
and &, that ¢(2)p(2)(1—Az,)~! € £, whenever |A| < 1. Also by assumption,
g(2)p(z)zl € . for 0 < i <k, so

o« k-1

Z 9(2)p(2Y A" 2k = AR g(2)p(2) ((1 ~ Azp)"t — Z)\izi) €&,

i=k i=0
whenever O < [A| < 1. As A — 0, this function converges uniformly on D"
to ¢(z)p(z)zF, which therefore belongs to £,, as required.

Since ¢(z) is in &o, it follows from repeated applications of (I) that
2(2)p(2) € &, for any polynomial p in z,..., 2., 50 (gom)(pom) € {F:
fe L\ Ry},

Now suppose that z is in R?-hull &, so that |f{2)] < sup,c |F(v)] for
all fin L'(R7). It follows from the preceding paragraph that

lg(m(2))p(m(2))] £ sup |g(w)p(w)] < 2° sup |p(w)|
wem(H) wem(E)

for all polynomials p. Replacing p(w) by p(w)® and taking kth roots, it
follows that

n 1/k
IMm@MS(E%@m) sup [p(w)|.

wem(E)
Letting k tend to infinity we deduce that |p(m(z))| < SUPwem(m) [P(w}], and

hence m(z) € P-hullm(E).
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Remark 4.2. A closed subset of the circle T is polynomially convex if
and only if it is proper. The above lemma thus gives the following result: if T
is an isometric Cg-semigroup, that is, a representation of R by isometries,
then ejther Sp(T,Ry) = C- or Sp(T, R.) C iR. This may be compared to
the fact that if A is the generator of T, it is known that either o(A4) = C.. or
T is invertible and o{A) C iR (see [6, p. 39]); it is possible that o(A) = iR.

Remark 4.3. Suppose T is a bounded representation of RT:, so that

Tty .., ) = Tl(t]_) . T.,L(tﬂ)
for commuting, bounded Cy-semigroups T1, ..., . Let A; be the generator
of Ty, and let V; = —(I + A;)(I — A;)™*. Although V; may not be power
bounded, a(V;) = {m(X) : A € o0(4;)} € D. Define Sp(V) to be the set of 2
in C™ such that
Ip(2)] < [lp(V)l

for all polynomials p in n variables. Then Sp(V') is naturally identified with
the Gelfand spectrum of the commutative Banach algebra generated by
ILVA,...,Voin B(X). Let Sp'(V) = {2 € Sp(V): 2z #1 (= 1,...,n}}.

One may now, by methods similar to those used in the proof of Lemma
4.1, prove the following result:

PROPOSITION 4.4, If T is a bounded representation of R%} and V is
defined as above, then m(Sp(T, 9)) = Sp'(V).

A result in polynomial convezity. Let
Zp={zeD": % =1forsomel<j<n}.
The following result has been contributed to us by H. Alexander.

PRrOPOSITION 4.5. If E is a compact set such that Z, C E C Z, UT"
and E\ Z, is the union of its compact, relatively open subsets, then K i
polynomially conves.

Proof. The proof is by induction on n. The case n = 1is trivial.
Suppose that the result holds for subsets of C"~!. Let ¢ = (¢3,...,¢n) €
P-hull E. We wish to show that ¢ € E; there are three cases.

Case 1: ¢; =1 for some j. Then { € Z,, C F.

Case 20 (¢l =1, (1 # 1. Let BEg = {w € C"' : ((1,w) € E}. Since
{z € P-hullE : z; = (1} is a peak set in P-hull B, ({2,...,¢s) € P-hull Ey.
However, Zno1 C By € Zpy UT"! and Ep \ Zp-1 is the union of its
compact, relatively open, subsets, so the inductive hypothesis implies that
P-hull By = Ey. Thus ¢ € E.

Case 3: |G| <L, §#1(5=2,8,...,n). We shall show that this case
contradicts the assumption that ¢ € P-hull B,
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Let g be the polynomial ¢(z) = {21 —1}...(2q — 1), so that ¢(z) = 0
if z € Zy,, and ¢(¢) % 0. Let F = {zeF )lq(z()| > %l)é(g)[}, ’cheqlln(jfl is a
compact subset of B\ Z,,. Now since E \ Z, is the union of its compact
relatively open, subsets, we can choose a compact, relatively open subset,
Ey of E\ Z, such that F C E;. Setting Fy = E\ Ey, we note th;,t Ey is

also compact and open in E, and since |g(z)]| < 1 for all z i
have { ¢ P-hull B, (=) wlg(O)] for all 2 in By, we

Let V; and V4, be disjoint open subsets of C* such that
ELCViC{zeCia=re? r>00<0<2r} and E, CVa.
Now, using Cases 1 and 2 above,
(| {z€P-hullE:r<|z| <1} ={s c P-hull E - {21 =1}
D<r<l
”—«—{ZEE:|211=1}QVELUV2.
By compactness, we can choose 7 < 1 such that
{z€e PmllE:r< lz1] <1} C WV UV,
Let
Q={zcPhullE:r< |z1] < 1} NV
@) is compact and relatively open in {z € P-hullE : r < lz1] < 1}.

The argument is now completed by means of techniques originating in the
Tzvork of S.tolzenberg [12] (see also (2, p. 133]). Since z ~ log z; is holomorphic
in the neighbourhood V; of @, it follows from the Local Maximum Modulus
Principle [12, (1.6)] that '

Oc{logzr i z€ Q) C{logz 1z € (PPt Q) U(Q N E)}.
Now, from the relations
OpnnpQ@={2€Q:|zj=1orr} and QNECE C{z:|n|=1},
it follows that

Ocflogz1:2€ Q} C{we C:Rew =0 or logr}.

Since log z; takes values in a horizontal strip, it follows that

{logz1:2€ Q}C{weC:Rew=0or logr},
and hence @ C {z € D™ : |21 = 1 or logr}. It now follows that the compact
set {z € Q : |%] = 1} is relatively open in P-hull B, Since E \{z€ @ :
{z1] = 1} = E,, it follows from the Shilov Idempotent Theorem that

P-hullE={2¢ Q:lz|=1}U P-hull B,. .

Now we have the required contradiction since ¢ & P-hull B, and 6] < 1.

. COROLLARY 4.6. Let E be a closed subset of iR™, and suppose that E
is the union of its compact, relatively open subsets; then RY-hullE = F.
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Proof. Let m be as in Lemma 4.1. Then m(E) is the union of its com-
pact, relatively open, subsets, and m(E) is contained in m{E)} U Z,. By
Proposition 4.5, P-huilm(E) is also contained in m(E) U Z, and the result
follows from Lemma 4.1.

In the remainder of this section 7' is assumed to be isometric.

LEMMA 4.7. If E is a compact, open subset of Sp(T,S) then there
erists o closed subspoce Y of X which s T-invariont end is such that

Sp(Tly,5) = E.

Proof. We consider the commutative unital Banach algebra obtained by
adjoining the identity operator Iy to Ap: Ay = Ay + CIx. The maximal
ideal space of this algebra is equal to that of Ay in the case when Iy is
already in Az (for example, when 7' is norm-continuous) and otherwise it
is that of Ay with a point adjoined at infinity.

We need a unit to apply Shilov’s Idempotent Theorem to obtain an
idempotent P in Az which satisfies Oy (P) = 1for all x € E and ¢, (P) =0
for x ¢ E. We define Y = P[X] and claim that this is the required subspace.

If f e LYS) and s € S, then T(s)f(T) = fs(T) = F(T)T(s); hence
T(s)P = PT(s) and Y is T-invariant. Let V' denote the restriction of T to
Y. Suppose f isin L}(5), A € C and y € Y; then

—~ .y -

(FV) + Mx)y = (F(T) + Mx )Py = P(F(T) + Mx)y
and hence
(4.1) Ay ={PB:B e Ar}.

It follows from the definitions that Sp(V,S) C Sp(T, 5), so that the only
possible characters on Ay are those of the form ¢,, where x is in Sp(T, §),

-~

and ¢o, which maps f(V) + Alx to A. (4.1) then implies that the only
characters are ¢, for x in E; in other words, Sp(V, §) = E.

LEMMA 4.8. If x is an isolated point in the induced topology of Sp, (T, S),
then x is an eigenvalue of T'.

Proof. Since, by Theorem 2.4, Sp (T, 5) is equal to the Shilov bound-
ary of Ap, x must be isolated in the Shilov boundary. However, any point
isolated in the Shilov boundary must be isolated in the spectrum (see [13,
p- 55]). It now follows from Lemma 4.7 that there is a (non-trivial) T-
invariant subspace ¥ of X such that 7’|y has spectrum {x}, from which we
may deduce that x is an eigenvalue of T (see |4, Proposition 4.1]).

A quotient construction. Let T' be an isometric semigroup representation
on X as above and define I = (),.5T(s)[X]; L is a closed, T-invariant
subspace of X. Now let ¥ denote the quotient space X/L and V denote the
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induced isometric representation of § on V. Clearly the spectrum of V is
contained in that of T,

PROPOSITION 4.9. In the notation above, the unitary spectrum of V con-
tains no isolated points. Furthermore, if § = R’} for some n, then Sp(V, §)
contains no non-empty, compact, open subsets.

Proof. Suppose x were an isolated point in Sp, (V, 8); then by Lemma
4.8; x would be an eigenvalue of V. Let ¥ € Y be an associated eigenvector,
$0 y = & + L for some z in X, and let M be the sum of I, and the linear
span of z. It is easy to see that T|ar would have to he invertible, but this
would imply that M C L and hence z € L and Yy = O—a contradiction.

The proof for R} works in a similar way, for suppose I were a compact
open set in Sp(V, §); then by Lemma 4.7 there would exist a subspaceY of X
such that the spectrum of T}y were E. Then T'ly would be norm-continuous

(see [5]) and therefore invertible. Now it is easy to obtain a contradiction as
above.

5. Our main results, Here we summarize the circumstances in which
we are able to conclude that isometric representations are invertible.

THEOREM 5.1. Let T be a representation of 5 by isometries on o Banach
space X. If Sp (T, 8) is countable, then T is invertible.

Proof. This follows easily from Proposition 4.9 and from the fact that
a representation of § by isometries on a non-trivial Banach space has non-
empty unitary spectrum by Corollary 2.2.

For multiparameter semigroups (S = ZYy or § = R7%), we have estab-
lished connections in Sections 2 and 4 between spectral properties and poly-
nomial convexity of subsets of T™. The latter topic has been studied in [12]

and [1], and leads to the following results.

THEOREM 5.2. Let T be a representation of Z% by isometries on a Ba-
nach space X; if Sp, (T, 5) is polynomially conves, is contained in a Jordan
arc or if it is totally disconnected, then T is invertible.

Proof The first part is merely a restatement of Theorem 3.3. The rest
follow from the fact that if Sp, (T, ) is contained in a Jordan arc or if it is
totally disconnected, then it is polynomially convex (see 12}, 1.

THEOREM 5.3. Let T be o representation of R% by isometries on o Ba-
nach space X. If Sp, (T, R?) is the union of its compact, relatively open
subsets, then T is invertible.

Proof. By Proposition 2.6 and Corollary 4.6,
Sp(T,RY) = R}-hull Sp, (T, R% ) = Sp, (7, R%).
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Let ¥ and V' be as in Proposition 4.9; then, since Sp(V,R%) C Sp(T,R?%),
we see that Sp(V,R}) must be the union of its relatively open compact
subsets. By Proposition 4.9, Sp(V, 5) must be empty and hence ¥ = {0} by
Corollary 2.2, so that X = [, o T(s)[X]. Thus each T'(s) is surjective and
T is invertible.

The assumption in Theorem 5.3 that Sp, (T, R%}) is the union of its com-
pact, relatively open subsets is equivalent to the condition that the connected
components of Sp, (T,R%) are bounded. (We are grateful to Robin Knight
for showing us a proof of this.)
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Remarques sur la structure interne
des composantes connexes semi-Fredholm

par

MOSTAFA MBEKHTA (Lille)

Résumé. Soit C(X,Y) Iensemble des opérateurs fermés & domaines denses dans
Pespace de Banach X & valewrs dans lespace de Banach ¥, muni de la inétrique du
gap. Soit Fr = {T' € C(X,Y) : T semi-Fredholm avec ind(T) = n} et Cpm = {T €
Byt oT) = n+m}, ot oT) est la dimension du noyau de T'. Nous montrons que
U0 Cnym st un ouvert de F, (et donc ouvert dans (X, Y)) et que O, est dense
dans szm Ch,j- Nous déduisons quelques résultats de densités. A la fin de se travail
nous donnons un exemple ¢’espace de Banach X tel que, d'une part, F, n'est pas connexe
dans B(X) et d’autre part, 'ensemble des opérateurs semi-Fredbolm n'est pas dense dans
B(X), contrairement au cas Hilbertien.

Soient X et ¥ deux espaces de Banach et C(X,Y) Pensemble des opé-
rateurs fermés de domaines denses dans X et a valeurs dans Y. Pour T €
C(X,Y), notons N(T) et R(T) respectivement le noyau et image de T. Nous
dirons que T' € C(X,Y) est semi-Fredholm (et nous notons T' € SP(X,Y))
si R(T) est fermé et min(a(T), 8(T)) < oo, ot a(T) =dim N(T) et B(T) =
codim R(T). 8i T € S$(X,Y), alors lindice de T sera noté nd(T) =
o(T) - B(T).

Dans la suite, on utilisera les notions et les notations du (4, ch. IV].

THEOREME 1 [4, théoréme 5,17, ch. IV]. Soit T,8 € C(X,Y) et T semi-

o~

Fredholm. Alors 36 > 0 tel que i §(S,T) < 6, alors :

(1) § est semi-Fredholm;
(2) ind(T) = ind(8);
(3) a(8) < ofT) et B(S) < B(T),

ot 6(5,T) est le gap entre les graphes de S et de T (voir [4, ch. IV, §2]).

Remarque 1. Le théorme 1 montre que ensemble des opérateurs
semi-Fredholm est un ouvert de C(X,Y) muni de la topologie du gap.
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