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Topologies and bornologies
determined by operator ideals, IT

by
NGAI-CHING WONG (Kao-hsiung)

Ahstract. Let 9 be an operator ideal on LOS's. A continuous seminorm p of a LCS
X i3 said to be Ql—cammuous if Qp € A(X, X)), where Xy is the completion of the

normed space Xp = X/p~ (0} and Qp is the canonical map. p is said to be a Groth{2()-
seminorm if there is a continuous seminorm ¢ of A such that p < ¢ and the canonical
map épq : Xq ~+ Xy belongs to A( Xy, Xp). Tt is well known that when % is the ideal of
absolutely summing (resp. precompact, weakly compact) operators, a LCS X is a nuclear
(resp. Schwartz, infra-Schwartz) space if and only if every continuous seminorm p of X is
A~continuous if and only if every continuous seminorm p of X is a Groth{%)-seminorm. In
this paper, we extend this equivalence to arbitrary operator ideals 2 and discuss several
aspects of these constructions which were initiated by A. Grothendieck and D. Randtke,
respectively, A bornological version of the theory is also obtained.

1. Introduction. Let X be a LCS (locally convex space) and p a contin-
uous seminorm of X. Denote by X, the quotient space X/p~*(0) equipped
with the quotient seminorm (in fact norm) |+ ||+ @, denotes the canonical
map froma X onto X, and @p denotes the unigue map induced by @, from
X into the completion f,, of X,. If ¢ is a continuous seminorm of X such
that p < ¢ (i.e. p(z) < ¢(z), Vo € X), the canonical maps QQpg : Xy — Xp
and ém : )?q — .52",, are continuous,

Let 2 be an operator ideal on Banach spaces. Following A. Pietsch. [10],
we call & LOS X a Groth(®)-space if for each continuous seminorm p of X
there is a continuous seminorm g of X such that p < g and Qpg € A(X,, Xp).
This amounts to saying that the completion X of X is a topological projec-
tive limit ll_@QWXq of Banach spaces of type 2 (cf. [7]). A. Grothendieck’s
construction of nuclear spaces is a model of Groth(2)-spaces. In fact, a LCS
X is a nuclear (resp. Schwartz, infra-Schwartz) space if it is a Groth(91)-
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154 N.-C. Wong

space (resp. Groth(R,)-space, Groth(20)-space), where 9 (resp. £,,%0) is
the ideal of nuclear (resp. precompact, weakly compact) operators. It is
known that a locally convex space X is a Groth(®)-space if and only if the
identity operator idy of X belongs to the right superior extension A™P of
2 to LCS’s [10].

Another usual way to deal with this kind of spaces is due 1o D. Rand-
tke [11]. A continuous seminorm p of a LOS X is said to be 2A-continuous
if the canonical map ép : X — X, belongs to the injective hull A of
2. X is said to he an U-topological space if every continuous seminorm
of X is R-continuous. For example, a LCS X is nuclear (resp. Schwartz,
infra-Schwartz) if X is an M- (resp. &,~, -} topological space.

The advantage of the construction of Grothendieck is that we need only
pay attention to Banach spaces operators, while the construction of Randtke
appears to be simpler and easier to apply. In this paper, we shall prove that
these two constructions are in fact equivalent. Motivated by those examples
of classical spaces, we define the notions of ideal topologies (2-topologies in
§3) and Grothendieck topologies (Groth{2)-topologies in §4) associated with
an operator ideal 2. Our main result, Theorem 5.1, says that Groth(RM)-
topology = A™P-topology on LCS’s. In particular, a LCS X is a Groth{R(™M)-
space if and only if X is an U™P-topological space.

We also discuss dual concepts of Grothendieck spaces and 2-topological
spaces, i.e. co-Grothendieck spaces and 2A-bornological spaces, which also at-
tract some research interests covering co-nuclear spaces, co-Schwartz spaces,
semi-Montel spaces, and semi-reflexive spaces.

Finally, we refer the readers to [4, 5, 7-10, 20] concerning Groth(%)-
spaces and co-Groth(®l)-spaces, and to [6, 9, 11, 13-17, 19, 20] concerning
fl-topological spaces and 2(-bornological spaces for further information, and
in particular to [21] for a quick review of the theory of ideal topologies and
bornologies.

2. Notations and preliminaries. We shall follow the terminology
of [21]. Let X and ¥ be LCS's. We denote by £8(X,Y), £(X,Y), and
L*(X,Y) the collection of all operators from X into ¥ which are bounded
(ie. sending a 0-neighborhood to a bounded set), continuous, and locally
bounded (i.e. sending bounded sets to bounded sets), respectively. Denote
by Xg a vector space X equipped with a locally convex (Hausdorff) topology
9, and by X™ a vector space X equipped with a convex vector (separated)
bornology M. Uy always denotes the closed unit ball of a normed space N.

A subset B of a LCS X is said to be a disk if B is absolutely convez, ie.
AB + 3B C B whenever |A|+ |8 < 1. A disk B is said to be a o-disk, or
absolutely o-conves if 3, Ab, converges in X and the sum belongs to B
whenever (A,) € U, and b, € B, n = 1,2,... With each bounded disk B in
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X there is associated a normed space X(B) = | a0 AB equipped with the
gauge 75 of B as its norm, where yp(z) = inf{\ > 0:2 € AB},Vz € X(B).
The canonical map Jp sending z in X(B) to z in X is continuous. Moreover,
if A is a bounded disk in X such that B C 4 then the canonical map J4p
sending @ in the normed space X(B) to z in the normed space X (A) is
bounded. A bounded disk B in X is said to be infracomplete if X (B) is
complete with respect to vp. It is known that a bounded and closed disk
B in X is absolutely o-convex if and only if B is infracomplete [21]. X is
said to be infracomplete if the von Neumann bornology Myon(X), i€, the
bornology of all topologically bounded subsets of X, has a basis consisting
of infracomplete subsets of X, or equivalently, o-disked subsets of X. In
other words, (X, My,n(X)) is a complete convex bornological vector space
(cf. [2]).

Let X and ¥ be LCS’s. Q' in L(X,Y) is said to be a bornological sur-
jection if @ is onto and induces the bornology of ¥ (i.e. for each bounded
subset B of ¥ there is a bounded subset A of X such that Q*A = B). Let C
be either the class [l of locally convex spaces or the class B of Banach spaces.
An operator ideal 2 on € is said to be bornologically surjective if whenever
T is a continuous operator from X into Y and @ is a bornological surjection
from Xy onto X such that 7'Q € A(Xo,Y), we have T' € A(X,Y), where
X, X0, Y € C. The bornologically surjective hull AP of % is the intersec-
tion of all bornologically surjective operator ideals containing 2. If € = B,
we have 2APSY = ANyt if ¢ = I then they are, in general, different
(cf. [18]}. We would like to mention that since a surjection is not always a
bornological surjection (cf. [12, Ex. 4.9 and 4.20] or [18]), Theorem 4.10(c}
in {21] should be rewritten by replacing the word “surjective” by the phrase
“bornologically surjective”. All other results in [21] are unaffected.

We quote two recent results for Jater reference.

ProposrTioN 2.1 ([1]). We can associate with each LCS Y o LCS ¥'*°
and an infection J§° in L(Y,Y) such thet the injective hull ™ of an
operator ideal 2 on LCS’s is given by

Q[inj(X, VY e= {T & ,C,(X, Y) : J@OT = Qi(X, YW)} .

PROPOSITION 2.2 ([18]). We can associate with each LCS X o LOS X*
and a bornological surjection Q% in L(X*, X) such that the bornologically
surjective hull of an operator ideal A on LOS’s is given by

mlialir(X, Y) - {T € ,C,(_X,Y} : TQ_“%( S .ﬂ(XZL’Y)}. :

3. A-topologies and A-bornologies. Let A be an operator ideal on
C, where € is either the class of LCUS's or the class of Banach spaces. The
A-topology T(A)(Xp) of an Xy in € is defined to be the projective topology of
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X, with respect to the family {7 € A(X,Y) : ¥ € €} and the U-bornology
B(A)(Yy) of an ¥y in € is defined to be the inductive bornology of Yy with
respect to the family {T € A(X,Yy) : X &€ €}. In other words, T(A}( Xy) is
the coarsest locally convex topology T of Xp such that all operators in 2(
with Xy as domain are still continuous with respect to T, i.e. (X, Y) C
L(Xoy,Y), VY € G and B(A)(Yy) is the smallest convex vector bornology
B of ¥, such that all operators in % with Y, as range are still locally bounded
with respect to B, e, WX, Yo) C L¥(X,Y), VX € € Even more precisely,
a seminorm p of Xy is T(2A)-continuous (or simply -continuous) if and only
if there is & 7" in AU(X;,Y) for some ¥ in € and a continuous seminorm ¢ of
Y such that p(z) < q(T'z), Yz € Xo; and a subset B of ¥y is B(2)-bounded
(or simply A-bounded) if and only if there is a T in 2{X,Y}) for some X in
€ and a bounded subset A of X such that B C T'4 (see [21]).

3.1, A-topologies and A-topological spaces

PROPOSITION 3.1. Let 2 be an operator ideal on LCS’s. The A-topology
cotncides with the A™ -topology on every LCS X. Moreover, a continuous
seminorm p of X is U-continuous if and only if Q, € A (X, X,) #f and
only if Qp € AN(X, X,).

Proof. It is obvious that the 2™-topology is always finer than the %-
topology on X. It suffices to show that for every LCS ¥ and T in 2™ (X, Y},
T is also continuous with respect to the -topology of X. By Proposition 2.1,
JPT € A(X,Y™°). Since J{° is an injection, the first assertion follows. On
the other hand, we have shown in [21] that @, € %™ (X, X,) if and only if
p is W-continuous, and thus if and only if p is 2l-continuous. We are done
as the canonical map Jy, : Q, — Q,, is an injection and QP = JQp. w

Recall that a LCS X is said to be RU-topological if its original topology
Sor1(X) coincides with the 2-topology, i.e. Goi(X) = TRANX) (cf. [21]).

COROLLARY 8.2. Let U be an operator ideal on LCS’s and X a LCS.
The following are all equivalent.

(1) X is A-topological.
(2) LP(X,Y) C L.’lil"d (X,Y) for every LCS Y.
(3) L(X, F) =A™ (X, F) for every normed {or Banach) space F.

EXAMPLE 3.3. When 2 is.the ideal M of nuclear operators or the ideal
of absolutely summing operators (resp. the ideal R, of precompact operators,
‘the ideal 20 of weakly compact operators), the corresponding 2-topological
spaces are nuclear spaces (resp. Schwartz spaces, infra-Schwartz spaces).
Corollary: 3.2 serves as a prototype of a class of theorems concerning these
spaces (see e.g. [20; pp. 17, 26, 149 and 157)).
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In the sequel, € denoctes either the class of LY’ or the clags of Banach
spaces. The following includes a result of Jarchow [6, Proposition 3] in the
context of Banach spaces.

THEOREM 3.4. Let A be a surjective operator ideal on € and X,Y € C.
If Y is a (topological) quotient space of X then the U-topology of Y is the
quotient topology indueed by the U-topology of X.

Proof Let @ be the quotient map from X onto V. Let Xy (resp.
Yy) denote the LOS X (resp. Y) equipped with the 2-topology. We have
Q € L(Xy,Ya) [21, Theorem 3.8]. This implies that the A-topology of ¥
is weaker than the quotient topology induced by the Y-topology of X. Let
p be an -continuous seminorm of X and g the quotient seminorm of ¥
induced by p. Let Qg, X - Xp, Qq Y — Yq and Q X — Y be
the canonical maps. By Proposition 3.1 (or 21, Lemma 3 8] for the Ba—
nach space version), Q€ f?l“”(X X,). Now §,Q = Qep@p € AMI(X,V,)
implies Q, € (AW (Y, Y}I) since @ is a surjection. However, (%)M ig
always surjective, by Proposition 2.1. As a result, (%) (54 )in Thus
Qq € (AMFYRI(Y, ¥} = (Y, Y,) since A is surjective. This implies that g
is Y-continuous. Therefore, the Y-topology of ¥ coincides with the quotient
topology induced by the 2A-topology of X. w

COROLLARY 3.5. Let 2 be a surjective operator ideal on €. Then o quo-
tient space of an A-topological space 1s again an A-topological space.

3.2, A-bornologies and A-bornological spaces

Prorosrrion 3.6. Let 2 be an operator ideal on LCS’s. The A-bornology
coincides with the AP -bornology on every LCS. Moreover, a bounded sub-
set By of a LOS Y is U-bounded if and only if Jp € AW (Y(B),Y), where
B is the absolutely convexr hull of By and Jg is the canonical map. When 2
is surjective, we can replace AP by 2A.

Proof. The first part is similar to Proposition 3.1, For the rest, with-
out loss of generality we can assume that 2 is bornologically surjective. If
Jp € WY (B),Y) then By C Jgly(p) is, by definition, %-bounded in ¥
Conversely, if By is 2-bounded in Y, B is also U-bounded in ¥ and we
can choose a bounded disk A in a LG& X and a T in U(X,Y) such that
TA = B. So we have a T in L(X(A),Y(B)) such that TJ4 = JpTt.
Now TJ4 € (X (A),Y) and the hornological surjectivity of Ty implies
I € (Y (B),Y). The last agsertion follows from [18, Corollary 2.6] which
says that 2P (N,Y) = (N, Y) for every normed space N and every LCS
Y if A is surjective, w ‘
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Recall that a LCS Y is sald to be ™-bornological if its von Neumann
bornology (i.e. the family of all topologically bounded subsets of ¥') coincides
with the 2-bornology {cf. [21]).

COROLLARY 3.7. Let U be an operator ideol on LCS’s and Y a LCS. The
following are all equivalent.

(1} Y is A-bornological.

(2) LP(X,Y) c AP (X, Y) for every LOS X.

(8) L(N,Y) = AP (N, Y) for every normed space N,
In case Y s infracomplete, they are all equivalent to

(3)' L(E,Y) = AP (E\Y) for every Banach space E.
If 9 is surjective, we can replace AP by A in oll the above statements.

Proof. We just mention that the last assertion follows from [18, Corol-
lary 2.6]. =

EXAMPLE 3.8. When 2 is the ideal 91 of nuclear operators or the ideal
of absolutely summing operators (resp. the ideal &, of precompact operators,
the ideal 20 of weakly compact operators), the corresponding 2-bornological
spaces are co-nuclear spaces (resp. semi-Montel spaces and semi-reflexive
spaces). Corollary 3.7 serves as a prototype of a class of theorems concerning
these spaces (see e.g. [3]).

Let C be either the class of LCS’s or the class of Banach spaces.

THEOREM 3.9. Let A be an injective operator ideal on C and X,Y € €. If
Y is a (topological) subspace of X then the Y-bornology of Y is the subspace
bornelogy inherited from the 2A-bornology of X.

Proof. Similar to Theorem 3.4. Note that we have (Psuw)inl =
by Propositions 2.1 and 2.2 in this case. =

COROLLARY 3.10. Let 2 be an injective operator ideal on C. Then a
subspace of an U-bornological space is again an U-bornological space.

(Q[inj )hsur

4. Grothendieck topologies and Grothendieck bornologies

4.1. Groth()-topologies and Groth(R)-spaces

DEFINITION. Let % be an operator ideal on Banach spaces. We call a
continuous seminorm p of a LCS X a Groth(2)-seminorm if there is a
continuous seminorm ¢ of X such that p < g and @y € WX, X,).

Remark. Two operator ideals % and 9 on Banach spaces are said to be
equivalent if there are positive integers m and n such that 2™ C B and B" C
2. In this case, a continuous seminorm p of a LCS X is a Groth(%)-seminorm
if and only if p is a Groth(%)-seminorm (cf. [10] or [7]). An operator ideal
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is said to be quasi-injective if A is equivalent to an injective operator ideal.
For example, the ideal M of nuclear operators is quasi-injective since it is
equivalent to the injective ideal T of absolutely summing operators. In fact,
P NP (cf 20, p. 145]).

ProprosITION 4.1, Let & be an operator ideal on Banach spaces and let
D, P1, -+, Pn be Groth(RA)-seminorms of o LOS X

(a) Ap is @ Groth(R)-seminorm of X for ull A = 0.

{b) If py 15 u continuous seminorm of X such that po < p then po is a
Groth(R(}-seminorm. N

(c) pr+.. . pu s a Groth(A™)-seminorm. In case 2 is quosi-injective,
P14+ .o+ pn 08 o Groth(®)-seminorm.

Proof. (a) and (b) are trivial. ¥or (¢), let q1,. .., gn be continuons semi-
norms of X such that p, < ¢; and Q; = Qmm = QL(X,I ,X,,‘), i=1,.
Let pg = p1 -+ . +pﬂ and gn =g + ...+ an. Let Jp 1 Xp, — @E Xpw and

Jg: qu — By, X,“ be the canonical isometric embeddmgs Let jx : Xp, —
B, Xp; and 7y Dy, XW — Xq,c, k=1,.
dings and pro;ectmna, respectively. We want to prove that Qo = quo

longs to 20! “J(qu, Xm) Note that J,Qo = (j1Qi7m1+ .. —I—annﬂrn)Jq Smce
Qe UK, , X, )k =1,...,n,it follows that J,Qo € A(Xy,, B, Xp, )} and
hence Qg € UM (J?,l(,, Xfpn). That is, po is a Groth(A™)-seminorm of X.

DEerFINITION. Let 2L be a quasi-injective operator ideal on Banach spaces
and X a L.CS, The Groth(2)-topology of X is defined to be the locally convex
(Hausdorff) topology of X determined by all Groth(2l)-seminorms.

Recall that a LCS X is called a Groth(2)-space for some operator ideal
2 on Banach spaces if idy € A™P(X,X) (cf. [10]). It is easy to see that
for a quasi-injective operator ideal 2 on Banach spaces, a LCS X is a
Groth(®!)-space if and only if the topology of X coincides with the Groth(®)-
topology. In this case, the completion X of X is a topological projective limit
Jim QMX of Banach spaces of type 2 (cf. [7]).

.44, be the canonical embed—

4.2, Groth({2)-bornologies and co-Groth{)-spaces

DEFINITION. Lot 2 be an operator ideal on Banach spaces. A bounded
o-disk B in & LGS X is said to be Groth(2)-bounded in X if there is a
bounded e-disk A in X such that B C A and the canonical map Jap €
A(X(B), X(A)). Note that, in this case, both X(A) and X (B} axe Banach
Spaces.

Remark. If % and B are two equivalent operator ideals on B'ana,ch
spaces then a bounded o-disk B in a LCS X is Groth(2)-bounded if and
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only if B is Groth(B)-bounded (cf. [7]}. An operator ideal % is said to be
quasi-surjective if A is equivalent to a surjective operator ideal.

ProrosrrioN 4.2. Let U be an operator ideal on Banach spoces and let
B, B:,..., By, be Groth(%)-bounded o-disks in o LCS X.

(a) AB 1is Groth(?1)-bounded for all A > 0.

(b) If By is a bounded subset of X and By C B then the o-disked hull
I'z(By) of By ezists in X and is Groth{2)-bounded in X,

{(¢) I'e(B1+ ...+ By) is Groth(2¥")-bounded in X. In case A is quosi-
surjective, I'o(By +...+ B,) is Groth(R()-bounded in X.

Proof, Similar to Proposition 4.1. m

DEFINITION. Let 2 be a quasi-surjective operator ideal on Banach spaces.
The Groth(2()-bornology of a LCS X is defined to be the convex vector
bornology of X determined by all Groth(2)-bounded o-digks in X.

DerFINITION. A LCS is called a eo-Groth(™)-space if all hounded o-disks
in X are Groth(2()-bounded. It is equivalent to say that idx € 2™?(X, X).

It is easy to see that for a quasi-surjective operator ideal % on Banach
spaces, an infracomplete LCS X is a co-Groth(2)-space if and only if the von
Neumann bornology Myon (X) of X coincides with the Groth(2()-bornology.
In this case, the complete convex bornological space X is a bornological
inductive limit lim J45X{B) of Banach spaces of type 2.

5. Coincidence of ideal topologies (bornologies) and
Grothendieck topologies (bornologies)

THEOREM 5.1. Let % be an operator ideal on Banach spaces. The
Groth(2(™)-topology coincides with the A™P -topology on every LCS and the
Groth(RA59)-bornology coincides with the AP -bornology on every infracom-
plete LCS. In particular, we have

(a) A LGS X 15 a Groth(U™)-space if and only if X ia an A™P-topol-
ogical space.

(b) An infracomplete LCS X s a co-Groth(A™)-space if and only if X
is an WP -bornological space.

(c) The A-topology (resp. U-bornology) coincides with the Groth(AH)-
topology (resp. Groth(%A¥**)-bornology) on Banach spaces.

Pr.o of, Iiet » be an Q[f“P~Eontinuous seminorm of X. Then @p €
(Arueyini( Xp) = ()R (X, X)), by [18, Proposition 3.5]. Consequently,
a factorization Qp = ST exists, where S € AW (E, X,) and T € L(X, E) for
some Banach space E. Define ‘

9(@) = ISIT=l|, VYzeX.
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Then ¢ is a continuous seminorm of X such that
p(z) = |Gp(@)|| = [T ||| |T2| = ¢z), VzeX.

Note that T’ induces an [t in L()? ¢ &) such that T" = R@q. Now, @m‘ =
SR e U ()? g }?p). Therefore, p is a Groth (2(™)-seminorm of X.

Conversely, if p is a Groth(2™)-seminorm of jf then there exists a con-
tinuous seminorm ¢ of X such that p < ¢ and Qpq € (X, X,). As a
result, @,, = @pq@q e An(X, Xp) and thus p is YA-continuous,

We leave the bornological case to the readers, and comment that the
infracompleteness assumption is merely to give us a chance to utilize the
extension condition. =

Remark. Let A be an operator ideal on Banach spaces and %y be an
extension of & to LCS’s. It is plain that if 2y < 2A™? then WUg-topology =
YruP-topology; and if ™Ay C 2 then Ag-bornology = WP-bornology at
least on infracomplete L.CS’s. For instance, T == UL [20, p. 144], where Np
is the quasi-injective ideal of nuclear operators between Banach spaces. Con-
sequently, M-topology = Groth(Mg)-topology on every LCS. This explains
why the constructions of Grothendieck and Randtke match in the case of
nuclear spaces. The discussion is similar for Schwartz and infra-Schwartz
spaces and their “co-spaces”.
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One-parameter subgroups and the B-C-H formula
by

WOJCIECH WOJITYNSKI (Warszawa)

Abstract. An algebraic scheme for Lie theory of topological groups with “large” fam-
ilies of one-parameter subgroups is proposed. Such groups are quotients of “ER-groups”,
i.e. topological groups equipped additionally with the continuous sxterior binary operation
of multiplication by real numbers, and generated by special (“exponential”) elements. It
is proved that under natural conditions on the topology of an ER-group its group multi-
plication is described by the B-C-H formula in terms of the associated Lie algebra.

1. Introduction. The notion of a Lie group of infinite dimensions is not
well founded. The differential manifold approach which is basic for the classi-
cal (finite-dimensional) theory may be successfully applied only to Banach—
Lie groups ([1], [9]). This class, however, appears to be too restrictive to
incorporate most of interesting infinite-dimensional examples. Difficulties in
extending the manifold approach beyond the frames of Banach case are of
two kinds, which correspond to the two main limitations of the differential
calculus in non-Banach spaces: lack of the ezistence and unigueness theorem
for ordinary differential equations and lack of the inverse map theorem for
smooth mappings. In the classical theory one associates with a given group
G its Lie algebra g which is usually defined to be the Lie algebra of all left
(or equivalently right) invariant vector fields on . This step presents no dif-
ficulty whatsoever, but to make it meaningful ¢ has to be better connected
with the group structure of G. Classically this is achieved by associating
with each X € g its properly selected integral curve, which happens to
be a one-parameter subgroup of . Thus the validity of the existence and
uniqueness theorem provides a one-to-one map 4 from g to A(G), the set
of all continuous one-parameter subgroups of G. In the absence of this the-
orem, e.g. for Fréchet-Lie groups, it is not known whether such a group
has a single nontrivial one-parameter subgroup (cf. [9]). On the other hand,
0o examples disproving bijectivity of ¢ : ¢ — A(Q) are known in this case,
Concluding, the lack of methods for establishing bijectivity of ¢ : g — A(G)
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