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Some Sawyer type inequalities for martingales
by
XIANG-QIAN CHANG (Manhattan, Kan.)

Abstract. Some murtingale analogues of Sawyer's two-weight norm inequality for
the Hardy- Littlewood maximal function M are shown for the Doob maximal function
of martingales.

1. Introduction. Throughout this paper, we will only consider closed
discrete martingales f = (f,,) with respect to a probability space (2, F, P)
and a filtration {F,}n30 with F = V/, o, Fn. That is to say, fn = E(f| Fn)
forall nand f € LY($2, F, P). We will also follow the convention of Zygmund
to denote by ¢, a constant which only depends on p. However, it may be
different in different lines or different theorems. Recall the fundamental work
of B. Muckenhoupt [4], who showed in 1972 the weighted Hardy-Littlewood
inequality.

THEOREM (Muckenhoupt). If p > 1, then the weighted norm inequality
(1) J MfPwdz <cp [ |fPwde
R® ‘R7

holds for every f € LP(w) if and only if the weight w satisfies Muckenhoupt’s
Ay-condition

w0 gl ) @)

Q Q . ‘
where Mf = supg T%JT Jo |f1dy, the Hardy-Littlewood mazimal function,
and &) denotes an arbitrary cube in R™. : :

On the other hand, the martingale version of the Hardy-Littlewood in-
equality is the famous Doob inequality [1]. So it is natural to consider the

~ martingale analogue of inequality (1). To this end, we need the counterpart

of the Ap~condition for martingales. Say a martingale w = (wn) satisfies the
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Ay-condition if

(Ap) sup | E(w | Fo) E((L/w)/ 0 | )P oo < 00

In 1977, Izumisawa and Kazamaki [3] proved the following martingale ana-
logue of Muckenhoupt’s weighted inequality for the Doob maximal function
F* =sup, | fa| of a martingale f = (fy).

THEOREM {lzumisawa-Kazamald). For all p > 1, and every martingale
f=(fn), we have

(a) The A,-condition is o necessary condition for the weighled norm
inequality

(2) [ FrwdP < ¢y [ 1fPwdP.
Q2 n

to hold.
(b) Ifw = (wy) also satisfies the step regular condition: wy, < cwpy for
oll n > 0, then the Ap-condition is sufficient for (2) to hold.

!

For a given weight w, we denote by o(w) = (1L/w)*/ =V = o'~ (or
simply o) its conjugate weight, where p’ is the conjugate exponent of p.
Thus the 4,-condition can be expressed as sup,, [|wnoZ ! ||w < oo, Where
we, = E(w | Fp), and o, = E(o | Fn). Say a pair (v,w) satisfies A, if
Sup,, [|[no (w)h e < co.

Muckenhoupt not only considered the one weight problem, but also raised
the question: What condition on a pair of weights (v, w) is necessary and
sufficient for the two-weight norm inequality

(3) [ Mf)ypvdz <cp [ |FPwda

R R"
to hold? Suggested by the A -condition, the first natural candidate seems
to be

ol ) @) e

]
But it turns out that (4) is equivalent to the weak type (p,p) inequality for
the operator M f. The right condition on (v, w) which fully characterizes (3)
was only found in 1982 by E. Sawyer [5].

DEFINITION. Say a pair of weights (v, w) satisfies Sawyer's S,- condition if
(Sp) : [ M (xqo)Pvde < ¢y [ oda
Q

Q
for every cube Q in R™, where x¢ is the characteristic function of Q.
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THROREM (Sawyer). If p > 1, then the Hardy-Littlewood mazimal op-
erator M f is bounded from L7 (wdz) to LP(vdz) if and only if the weights
(v,w) in R" satisfy the Sawyer S,-condition.

We will show some Sawyer type inequalities for martingales in Section 2.
We end this section with notations of the tailed maximal function for a
martingale f = (f,.): *f, = S,y (1fm ), and of the weighted conditional
expectation with respect to wdP : Ey(- | -). Here we assume w is nonnega-
tive and £(w) = 1. It s not hard to verify the formula

S 1
(5) E"u.l(j | -Fn) == E—-E(fw | ,'En)

It is also easy, from the definition of conditional expectation, to check the
following chain formula:

(6) B(XE(Y | F)) =E(EX | F)Y)

where X and ¥ are random variables, and ' is a sub-c-algebra of F.

2. Sawyer type inequalities for martingales. First of all, we need
the martingale counterpart of the 8,-condition.

DEFINITION. For a given pair of nonnegative martingales v = (v,,) and
w = (wy), we say (v, w) satisfies the Sp-conidition if there exists a constant
¢p such that for all n = 0,

(Sp) El('on)Pv | Fo] < cpom.

We say that w satisfies Ay, or S, if (w,w) has that property. In the
equal weight case, Hunt-Kurtz-Neugebauer [2] have shown, in the classical
setting, that A, < S,. The following theorem shows that our S, is a proper
martingale analogue of the 8,-condition.

THEOREM 1. The martingele w = {wy) satisfies A, if and only if it
satisfics Sp.

The direction &, = A, iy easy. Before proving the other direction let us
first prove a lemma, which is probably well known, but does not appear in
the standard references. '

LemMa (conditional version of Doob’s inequa,lity)’. If p > 1, then for
anyn 2 0, we have
E('gh|Fr) < B (|g]” | Fn)
for any martingale g = (gn).

Proof. In fact, for any fixed F' &€ F, take f = xrg. Then for any
m 2 n, fm = E(xrg | Fm) = X#gm, 50 that *f, = xr'gn. By applying
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Doob’s inequality to f we get

[ xr'aP= ["aP < [ fPdP< ¢, [ [fPdP=c, [ xrigldP,
n 02 2 2 £2
Le, f598 dP < ¢, [ |g|? AP, which implies B(*gE | ) < ¢, B{|gl? | ).

Proof of Theorem 1. Suppose w satisfies Ap. Then for m > n, we
have oy, < ¢p[1/wm ]/ ®P~1. Since

~ 1 - 1
Ew(wﬂl |}-m) = w——E(’UJ l'LU I ]::m) = '“’L;}-;L-,

™
we get
Om < CP[Ew(w—l | Fm)]pvp
or .
(sup 0 )P < ¢p[sup E'w(w“l | J—"m)]p’.

D mzn

Taking the conditional expectation with respect to E, and uéing the con-
ditional version of Doob’s inequality with index p’, we have

E'w[( SuUp )P | Fa] < CPE’W[{ sup Ew('w“l ‘ ﬁm})pl | Fn)
man man

—~ ' 1 !
LcepBuw™ | F) =cp—Euw ™ w | ] = cpfi.
Wy, W,
Finally, E[(Supmzn am)pw | -Fn.] = Ew[(supmz'n am)p I f‘"}wn < pOn,
which is Sp.

THEOREM 2. Sy is o necessary condition for the two-weight norm in-
equality

(7) [ *vdP < e, [ |ffPwdP
e 2
to hold.

Proof. Take f = xpo, for F an arbitrary set in F,. Then for any
m 2 n, fm = Bxro | Fn) = x5 E(0 | Fr) = X5cm, and therefore * P =
xr'of,. Hence from (7) we know that [, xpolvdP < ¢, [, xpoPwdP. But -
o =wl™P = w =o', g oPw = oP¢'P = o, hence by the definition of
conditional expectation the theorem is proved.

Whether S, is also a sufficient condition is still unknown, at least to
this author. It seems that we need some sort of “regular” condition, like the
one in Izumisawa-Kazamaki’s theorem, to guarantee the sufficiency of Sp.
Nevertheless, we present the following two theorems, which, we hope, will
shed some light for the further study.
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THROREM 3. If (v,w) satisfies the uniform regular condition vy /o, <
cw/a, then Ay 18 a sufficient condition for (7} to hold.

Proof. For any A > 0, define two stopping times
r=inf{n:|fu| > A}, T =inf{n:|fal> 22}
Clearly 7 £ T, and {T' < o0} = {r < 00, |fr| > 2A}. We now show
(8) P{f* > 2} < 9:\’1 [ vap,
{r<e}
where ¥ = [f|(v/a)"/ P First, by the chain formula (6), we have
PAS* > 20} = P{T < o0} = Py{r < 00, ifz] > 2A}

1 1
<sy S MrvdP < o[BS Fr)xgreooyvdP
{r <o} 0

1 1
=53 Ezf B (X {r<oopv | Fr) dP = 5;{ <f }|f§deP.

Now, using the Hélder inequality, we see that

.7'-11) dP

1
Rir>oys 5 [ 10E(Z
2A Ty
{r<o0}
:% [ o2 |f|Blorv*/Pu™?" | Fr)dP
{r<eo}
[ ortlfIB(otw | Fr)P Blu | Fr)V? dP.
{r<eo}

S
2A

IA

Finally, by the A,-condition and the uniform regular condition, we get

Cy - | '
P'u{f* > 2/\} < ?ZJ;T G-Tllfio-%/?’vé_!/? 4p

{r<oet
= % [ 1wy fop)? aP < % [ Ifl(w/a)? aP.
{r<c} {7{0?}
Multiply both sides of (8) by pA*~! and integrate with respect to A from 0
to co, to obtain

00 ‘ 0 p-—lcp
[ ow=ip >2)\}d)\50fp,\ 3 | Y dPa).

0 {r<oc}
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By Fubini’s theorem and Holder’s inequality we have

"

[ (/2PwdP <oy [Y [ AP=2dNdP
£ 7 0

2

< CP(!‘[ e’ dP) 1/#(;[ |j-'[;vd-p/p’ dp)i/ﬁ‘

Since o~P/P = g~(P~1) =y, Theorem 3 is proved.

Before we give the next theorem, first we need the following definitions of
reverse Holder inequality for a pair of weights, and the strong 8p~condition.
Hereafter, we assume odP = o(w)dP is a probability measure.

DEFINITION. We say a pair (v,w) satisfies the reverse Hélder inequality
of order p, and write (v, w) € RM,, if there exists a constant ¢, such that

(Ry) a;/pvglq/ﬁl < e, E(c P P | Fp)
for every stopping time 7.

DEFINITION. We say a pair of weights (v,w) satisfies the strong S,-
condition, denoted by 88, if for any stopping times 7% < Th, there exists a
constant ¢, such that

(S5) E('ofv | Fr) < com,.

If Ty < T are stopping times, let (*4f7)* = supy, <p e, |fn| denote the
cut maximal function.

THEOREM 4. If (v,w) satisfies the strong Sp-condition SS, and the re-
verse Holder inequality RH,,, then we have (7).
Proof. Similar to what we did before, define two stopping times
Ty=inf{n: fr > A}, To=inf{n: /% >22}
Then 77 £ Ty and {f* > 22} = {I% < oo} CH{TY < oo, f:}"wg - f’?’i—l > A},
so that Py, (f* > 2)) < Py(T) < oo, I3y = fr—1 > A)or
J viP= [ wap< J vdP.
{f">2x} - {Ta<ec} {1y <o, 3 = f5, —1>A}

Noticing that Fy, C Fr,, we have the estimate of the maximal function by
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the weighted maximal function:

(" = sup |E(f | Fu)l= sup {|B,(fol | Flom}
T TiEm<Ty

Ty L<mgTy

< sup {[B(fo™ [ Full} sup  om < (B (fomH)2) (o),
TiSm<Ts T:<mS Ty

where & denotes the maximal functional with respect to the weighted mea-
gure odP. Apply the Hélder inequality to obtain

1 . 1
J varss [ Uh-fhovdP sy [ (BT)eap
{f*>2A} {1y <oa} {Ty <o)
1 J‘ (’1'1 (fo_m’l)'l‘a)&(*gﬂ )U dP
{T <0}

=< [ (C(fe™)™)E[(og)v | Fr)dP
{Ty <o}

[ U ECoR v | Fr) By | Fr,)7 P,

Then using the strong Sp-condition and reverse Holder inequality, we get

f 'ud.PSEE f (Tl(fd‘l)Tz)’"‘a%pv%p{dP
{r/*>2x} {T <o}

<Z [ (oY BN | Fr)ap

{Ti<e0}

"f f (Tl(fa.ml)Tz)io.l/‘pvl/p dP
{Ti<gon}
(fcr”l)’ial/pv”pf dP.

{7y <oe}
The Fp, measurability of (“t(fo~1)T3)* is the key point in the above argu-
ment, Proceeding as in the previous proof, by the Fubini theorem, I-Io}c}er
inequality, and the Dool maximal inequality for the weighted probability
measure od P, we have

[ rrwdP e, [ [(fom )V PodP ey [ 1fIPoPodP = ¢y [ |fPwdP.
2 2 a ?

Dot

k]

il

<

>k

This completes the proof of Theorem 4.

Finally, the author wishes to express his sincere thanks to Professor
A, Browder of Brown University and the referee.
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Oscillatory kernels in certain Hardy-type spaces

hy

LUNG-KEE CHEN (Corvallis, Oreg.) and
DASHAN FPAN (Miwaukee, Wis.)

Abstract. We consider a convolution operator T'f = pv. {2 * § with z) =
I((x)a“"('“), where K () is an (n,8) kernel near the origin and an (o, 8), a > n, ker-
nel away from the origin; h(z) &5 a real-valued C™ function on R™ \ {0}. We give a
criterion for such an operator to be bounded from the space HE(R™) into itself.

* 1. Introduction and notations. Let 2 = (zy,...,2,) € R™ and h(z)
be a real-valued function. Consider the oscillatory kernel £2(z) = K(z)e*h(®)
with K (x) being an (n, §) kernel near the origin of R and an (e, 5) kernel
away from the origin, An (e, ) kernel K is a function on R™\ {0} satisfying
(1.1) DK (2)| < Cylz|~o1V]
with |J] < 8, © 5 0. The phase function h(z) is a C* function on R™ \ {0}
satisfying (1.2) and (1.3):

(1.2) D’ h(z)| < Cylal>V!
for all multi-indices J with |J| £ M, o # 0, where M and b are positive
integers, and
(1.3) [Vh(z)| > ClzlP~?,
where V = (d;,,...,8,,) is the gradient operator.

For the above defined kernel £2(2), the associated oscillatory singular
integral T" ig defined by

(14) Tiy) =pv. [ MKy~ 2)f(2) de,

"
where () satisfies (1.1) and in addition, there exists an £ > 0 such that
(1.5) p.v. f K (z)dz = 0.

< n|Le
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