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Operators in finite distributive
subspace lattices 11

by

N. K. SPANOUDAKIS (Iraklion)

Abstract. In a previous paper we gave an example of a finite distributive subspace
lattice £ on a Hilbert space and a rank two operator of Alg £ that cannot be written as
a finite sum of rank one operators from Alg £. The lattice £ was a specific realization of
the free distributive lattice on three generators. In the present paper, which is a sequel
to the aforementioned one, we study Alg L for the general free distributive lattice with
three generators (on a normed space). Necessary and sufficient conditions are given for
1) a finite rank operator of Alg £ to be written as a finite sum of rank ones from Alg L,
and 2) a realization of £ to contain a finite rank operator of Alg L with the preceding
property. These results are then used to show the curiosity that the product of two finite
rank operators of Alg L always has the above property.

1. Introduction. This paper is a continuation of 7], of which we shall
assume familiarity and whose notation we follow.

Briefly, if £ is a subspace lattice on a normed space X, a general question
is whether every finite rank operator of Alg £ has the FRP, i.e. whether it
can be written as a finite sum of rank one operators from Alg £. The question
is more natural in the case of completely distributive £, as Alg £ then has a
large supply of rank one operators [4]. Indeed, in the special case of a nest £
the answer is affirmative [1, 6] and so is the case when £ is a complete atormic
Boolean subspace lattice [5, 3]. (In some of these results & was assumed a
Hilbert, space.) For general completely distributive lattices the answer was
again shown to be affirmative if the underlying space was finite-dimensional
[5] but the question was finally settled negatively by Hopenwasser and Moore
[2] in infinite dimensions. In the same paper they give an affirmative answer
if £ is a finite width (see [2] for the definition} commutative subspace lattice.
Their example of a completely distributive subspace lattice £ for which Alg £
fails the FRP has an infinite number of elements. This then left open the
case of finite distributive subspace lattices £, which was settled negatively
in [7]. There, a specific realization of the free distributive lattice L3 was
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given together with an example of a rank two operator in Alg £, which fails
the FRP.

In the present paper we systematically discuss Alg £, for any realization
of L3 {on a normed space). For instance, we give necessary and sufficient
conditions for a finite rank operater to be in Alg £, (Theorem 1) and, sec-
ondly, to have the FRP (Theorem 2). By the example in [7] it follows that
the two requirements are distinct and that our statements are not vacuous.
Also Theorem 3 characterizes the realizations of £3 which do not have the
FRP.

Finally, we apply the above to show that if T, F € Alg £, are of finite
rank, then their product TF does have the FRP.

We shall now Introduce some new notation. Let X be a normed space.
IfT € B(X), f* € X and M C X, we denote hy T|yr and f*lm the
restrictions of T' and f* to M respectively. Also, if T € B(X) we define
KerT = {z € X : Tz = 0}. The symbol “C” will mean proper inclusion.

Let Z; (i = 1,...,n) be closed subspaces of X. We say that the set
{Z;si=1,...,n} is linearly independent if for each selection 0 2y € 2y
the set {7 : i = 1,...,n} is linearly independent. If Z; (i = 1,...,n) are
subspaces of X' we shall denote by \V{Z; : ¢ =1,...,n} the smallest (closed)
subspace of X which contains all the Z;.

Let Y be a subspace of X'. We say that a subspace Z of X is a complermnent
AYImXKZNY =0and Z+Y = X. It is casy to see that if X is
finite-dimensional then for each ¥ C X there is a complement of ¥ in .

We know that if T € B(X) is a finite rank operator then R(T*) =
(Ker T)*. Also, for L C X we have R(T*) C Lt if and only if L C KerT
(T finite rank).

We shall also use the following lemmas (the first one is in [4]):

LeMMA 1. Let X be a normed space, let £ be o subspace lattice on X
andlet 0 # e* € X* and 0 £ f € X. Then e* ® f € AlgLl if and only if
there is an N € L such that f € N and e* € (N.)*. u

* The next lemma is essentially a corollary of Lemma, 1.

LEMMA 2. Let X and £ be as in Lemma 1. Then any non-zero finite
rank operator R € B(X) for which there is an N € £ with R(R) C N and
N_ C Ker R necessarily has the FRP. BPurthermore, R can be written as o
sum of rank Rt rank one operators from Alg L.

Proof. Let {z; : i=1,...,n} be a basis of R(R). Then there are unique
Yi € A" such that R= Y7 4 ® &;. Obviously (Ry=(z:i=1,...,n)
and (y7 « i = L,...,n)= R(R*) € N+. By Lemma 1 each yi®my; (i =
L;-..,n) belongs to Alg £, that is, R has the FRP. =

LEMMA 3. Let R € B(X) be a finite rank operator and Yy, Ya be subspaces
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of X such that R(R) C Y1+Ya. Then there are finite rank operators Ry, R €
B(X) such that R = Ri + Ry, R(R;) CY; and R(R}) S R(R*) (1 =1,2).

Proof. As in the proof of Lemma 2, the R can be written in the form
R =3 4 ®x;. So, there are {t; : 4 = 1,...,n} C ¥; and {s; : i =
1,...,n} €Y such that z; = ¢, + s (i = 1,...,n). Then the operators
Ry =i ¥ ®t; and Ry = 30, 47 ® s; satisfy the conclusions of the
lemma. u

2. The free distributive lattice £3. In this section we discuss in a
systematic way the finite rank operators of Alg £, for any realization of the
free distributive subspace lattice £3 on 3 generators. Our main result is a
characterization of the set of finite rank operators of Alg £, as well as its
gubalgebra of operators with the FRP. As already mentioned, it follows from
[7] that these two algebras need not coincide.

Firat we shall give some lemmas valid for general finite distributive sub-
space lattices on a normed space.

Levma 4. Let £ be o finite distributive subspuce lottice on a normed
space and {L;:i=1,...,n} C £. Then

NLi-=\/{Mel:L¢M, i=1,...,n}
i=1
Proof By distributivity we have

n
ﬂLi_ =L N...NLy_
=1

=(ViKiet: L g kip)n...n(\VikKner: L, ¢ Ka})
=\{Kin..NK,: K el, Li K, i=1,...,n}
C\VIMel: LigM, i=1,.,n}
But if L; 1¢_ M then M C L;_ so the reverse inclusion also holds, showing
equality of the two sides, as required. =

LeMMA 5. Let £ be o finite subspace lattice on o normed space X and
W # 0 a finite-dimensional subspace of X. Then there exists anm €N, a
subset Mo(W) = My ={M;:i=1,...,m} of £, and subspaces 0 £ W; C
M;nW (i=1,...,m) such that

(1) FL € £ then LOW = \/{W; : M; C L}.

In particular, if LNW # 0 then there isani € {1,...,m} such that M; C L.
Also (applying this to L= X), W=V {W;:i=1,...,m}.
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(2) For each i € {1,...,m} we have W; N (V{WNL : L e L and
LCM%})=O.

Proof. We define Zy = V{WNL:LelLand L C X} It Zy =0 we
take m = 1, My = X, and Wy = W. In this case no further step is to be
taken. If we have proper inclusion 0 C Zy C W, then we take Wi to be a
complement of Z) in W and M) =&, Then 0 ¢ W, CW. If finally Z; = W
we do not define any M; on this step.

In case 2y # 0, consider the maximal elements (with respect to inclusion
order) of the (non-empty) set {L € £L: L C X and LN W 3 0}, which we
denote by Ny,...,Np. Wedefine Z, = \{Z,NL:L &L and L C N}
(Note that for L ¢ X we have WNL = Z1NL.) If Zy = 0, we get M;, = Ny,
where iy = 2 if M has been defined and iy = 1 otherwise. We also define
Wi, = Z1 NNy (= WNNyp). In this case no further steps are to be taken as
far as Ny is concerned but we continue in a similar manner with Na, ..., Nj.
L0 C Zy € Z, "Ny then we define M;, = Ny, where iy = 2 if M| has been
defined and 4y = 1 if not. Also we take 0 % W;, C W to be a complement of
Zz in Zy N Np. Then 0 # W'io CWnNM,;,. If Zy =2Z; N N1 we do not define
any new M; on this step.

We next consider the maximal elements of the set {L € £: LN W # 0
and L ¢ Ni} and for each of these we continue in a manner similar to
the ahove. Since £ is a finite lattice, this process terminates after a finite
number of steps. After this we continue in a similar manner with the rest of
the maximal elements Ny, ..., Ny. By deleting any of the M,’s if necessary
we may suppose that they are pairwise distinet. It is clear from the way the
construction was made that the conclusions of the lemma are satisfied. m

Let L be a finite distributive subspace lattice on a normed space A and
let F € B{X) be of finite rank. By Lemma 5 applied to W == R(F) we find
meENMo={M;:i=1,...,m}CLand 0AW; C M;NW,i = 1...,m,
which satisfy the conclusions of the lemma.

For such an operator F and with the notation just defined, we have the
following

LEMMA 6. The following are equinalent:
() FeAlgk,
() F{Mier Mi-) VWi {1,...,m}~1I}, ¥IC {1,...,m}.
In particular, (ii) implies that F(NL, M;..) = 0.
Proof. (i)=-(i). Assume first that M & C is such that for each i € J

we have M; ¢ M, and that z € M. Then Fz € F(X)N M, so from (1) of
Lerarna 5 it follows that

Fre \{{Wi: My € MY C\/{Wi:ie {1,...,m} ~1I}.
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In the general case, it follows from Lemima 4 that

F(ﬂM-_)=F(V{ME£:Mi,@M, z‘el})

el
C \{F(M):MeLand M, ¢ M, i€ I}.

Now,ifw e {F(M): M ecLand M; £ M,i< I} then thereisan M € £
and a z € M such that M; € M (i € I) and w = Fz. From the first part of
the proof, Fz € V{W; : i € {1,...,m}—TI}, which is a closed subspace. Thus
also V{F(M): M eLand M;  M,icI}) C\{W,:ic{1,...,m}— I}
as required.

(ii)=(1). Let M € L be arbitrary. Define I = {i € {1,...,m} : M; C M}
(which may be empty). For i ¢ I we have M; € M andso M C M; and
hence M C ;o Mi—. Thus F(M) C \/{W; : i € I}, which is a subspace
of M as required. =

COROLLARY. If for some F as in Lemma 6 the set {W; :i=1,...,m}
is linearly independent, then F hos the FRP. In fact, it can be written as o
sum of rank F' rank one operators of Alg L.

Indeed, there are F; ¢ B(X) such that R(F;) = W, and F =31~ F. If
z € My.. then Fz e \[{W; :i=2,...,m} (Lemma 6), so F1(z) =0 and so
Fi(M1-) =0. Thus (Lemma 2} F; has the FRP. In a similar way, all other
gummands of F, and hence F itself, have the FRP. The final statement of
the corollary is now clear. m

Let now L3 denote the free distributive lattice with three generators on
a normed space X. The Hasse diagram of L3 is given in Figure 1 of {7].

As declared in Figure 1 of [7] the three generators of £ are K, K, Kj.
Moreover, we have
Li=KiNKy, Ni=LiVig= (KiﬂKg)V (Kl ﬂKg) = I{;Lﬂ(KQVKg)
and cyclically for Ly, Lg, Na, N3. Also

M= (KJ_ NKz) V(K1 NKs)V (K, ﬂKg)
=Ly VIaVIg=N VN, VNy=K;_NKs NKa_.
Moreover, L. = K3, Lo_ = K3, Ig_ = Ky, and N;— = K;_, i =1,2,3.
Also, since LD M = L_ =X = (L_)*" =0, for each rank one operator in
Alg Ly, the N of Lemma 1 is in {ILy, Ni, K; : ¢ = 1,2,3}.

The aim of the rest of this section is to prove necessary and sufficient
conditions for a finite rank operator 1) to belong to Alg £y {Theorem 1),
and 2) to have the FRP (Theorem 2). Then (Theorem 3) we characterize
those realizations of £3 which do not have the FRP. The example in [7]

shows that Theorem 3 is meaningful. Moreover, we expect difficulties in
the proofs, which would take into account the subtleties of each specific
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realization. As the proofs are cumbersome, we shall divide them in lemmas,
but keep a constant notation throughout.

Let then @ be a finite rank operator. By Lemma 5 applied to W = R(Q)
there are Mo(R(Q)) = Mo(Q) € L3, and 0 # Wr(Q) C LNR(Q), L ¢
Mo(R(Q)), satistying the conclusions of the Jemma. We define

Ml = {L13L21L33N17N2:N371{1:I(21KS}‘

We take a basis of \/{WL(Q) : L € Mo(R(Q)) N M} and we extend it (if
necessary) to a basis of R(Q), using vectors of V{W5(Q): L € My(R(Q))
— Mi}.

From this it is clear that there are finite rank operators T and S such
that @ =T + .5, and

R(T) = \{WL(Q) : L € Mo(R(Q)) N M1},  R(T)NR(S) = 0.

We now apply Lemma 5 for W = R(T) and we find My(R(T)) C Ls,
and 0 £ W (T) C LNR(T), L € Mo(R(T)), which satisfy the conclusions
of the lemma.

With this notation we show

LEMMA 7. The inclusion Mo(R(T)) € M holds.

Proof. It is sufficient to prove that for each Lo € Mo(R(T")) we have
M ¢ Lg. Suppose on the contrary that, for example, Ly = M . {The other
cases, such as Lo = MV K or Lg = K7 V K etc. are similar.) For 0 % z €
Wy, from the definition of T' there exist z; € Wi(T') for L € Mo(R(Q)) N
M such that
Z = Z Zy,.

LeMo(R(Q))NAM,
Without loss of generality we may suppose that My C Mo(R(Q)). We have

Eg, =& — Z ZLEKlﬂ{MVI{QVK3}=N]_.
LEMI""{K]_}

So zr; € Wie, (@) N (V{R(Q)N L : L C K3}) =0 (see Lemma 5(2)). That
18, 2y, = 0 and similarly zx, = 2x, = 0. So finally we have
Z = Z Z
LE{LiuLLLH:Nl:N%NS}
But this contradicts (2) of Lemma 5. The contradiction establishes the
claim. w

- In the following we use the shorthand M, = Mu(R{T)) and W, =
Wi (T).
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LemmA 8. Let N be any one of N1, Na, N3. Then the set {Wy : L €
Mo — {N}} is linearly independent.

Proof. Without loss of generality we may suppose that My = M, where
My is as before. To be specific let N be N3. For L € M; — {N3} let 0 #
z1, € Wi and Ap € C be such that > Ayzz = 0, where the summation runs
over I € My ~ {N3}. We shall show that A; =0 for each L € M; — {Na}.
Since »

AL ZLy + ALy 2Ly + ALsZLs T AN 2N+ A2, + Ak 2Ky + Ak 2K

7= —)\Ksz}{z € (MV K v Kg) N K3 = Ns,
part (2) of Lemma 5 shows that Ay, = 0. Thus

AL 2Ly bt ALgRLy + ALgZrg + AN 2N, + ANy ZNg + AR, 2K,
= Ak, 2k, € (MV K1})N Ky =Ny
and consequently Ag, = 0 as well. Hence also
AL 20y + ALy 20g + ALaZLs + AN 2N, T AN, 2N, = Ak 2K, E MNK =N
so that Ax, = 0. Moreover, we have
AL 22y + ALy2Ly + ANy 2N, = ~ALyZLg ~ ANaZNy € N1 M Na = Ly,

80 Any 2w, € (T(X)N L) V(T (X)NL3) and so Ay, = 0. Similarly we obtain
An, = 0. Finally,

AL 2L, + ALy2L, = —ALz3Ls € (La1VIa)nLy=10

so that A, = 0 and hence Ap, 21, = —AL,21, € Ly N Ly = 0. Therefore
AL, = AL, =0 m

Let us now discuss the case when one of N1, Ng, N3 happens to belong
to My. For notational convenience, suppose N3 € AMg. Then the choice
of vectors in Lemma 5 also produces the subspace Wiy,. At this point we
shall investigate a little more closely this space which we shall split in two
subspaces, according to whether they are independent or not of the set of
subspaces {Wy, : L € My, L # N3}. To be precise, we proceed as follows:
We define Wy, 2 to be a complement of

Wiyl = (\/{WL v Le Mo~ {Ng}}) N Wy,

in Wy,. Hereafter we shall use only the Wy, and the Wy, 2, which we
shall rename Wy and (a new) Wy, respectively. With this new symbolism,
the set {Wy, : L € Mg} is linearly independent and

(¥) Wo € \/{Wr: L€ Mo — {Ns}},

Enn N
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Of course the Wy, Wy, inherit the properties required by Lemma 5. In a
way similar to the first part of the proof of Lemma 8, it is easy to see that
in the inclusion (%) we may omit the K.

In fact, let 2 € Wy. There are z, € Wy, L € {Ly, Lg, Ly, Ny, Ny,
Ky, K, K3}, such that

2= E 2l
Le{Li,La, L3, N1, Ny K1,K5,Ks}
‘We have

Le{ly,Le,Ly,N1,Ng, Ky, K}

zr, € Ky ﬂ{ﬂ/[\/ K1V Ky} = Ny

and 80 zg, € Wi, N (W N N3) = 0 from Lemma 5(2). Similarly zg, = 2,
= (. That is, we have

Wo C V{WL : L€ Mo {Ly,Lg, Ly, Ny, Na}}

Hence, if {z; : j = 1,...,k} is a basis of W (we assume W % 0) and if
L ¢ Myn{Ly, Ly, Ly, N1, N} and 5 € {1,...,k}, then there are vectors
T L€ Wr. such that

Ty = Z HN
LEMU“{L;,LQ,LQ,NJ,NQ}
If Wy = 0 we take ;1 = 0 for each L, j.
Since (using (1) of Lemma 5} R(T) = V{W, : L € My}, there are
(unique) finite rank T, € B(X) such that R(T;) = Wy, and

T= Z Tr.

LeMy
Using this notation we are in a position to state our theorem which
characterizes the finite rank operators in Alg L4, Of course we could state
the theorem. for any permutation of Ny, Na, N3 but the one given is just as
good.

TaeoREM 1. The finite rank operator @ = T'+ 8 = 3, Mo 1+ 8
belongs to Alg L if and only if

(l) Tt has the FRP for L e My {Lg, Ly, N3, Ky, Ko, K,;}

(2) If Ny € My then R(T}:}l) - (N1_.. M Na_)']".

(3) IfNQ € Mg then R(TR&) C (N:z._ M Ng__)‘L.

(4) There exist ATEA*, j=1,...,k, such that

k
KaCKer(To=3 N ®es.)  for L€ (Lo, Ny, Na} N M.
i=1

) 5 =0.
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Proof. We shall prove the theorem only in the case Mg = M3, 0 C
Wo © Wy v Wiy, The other cases are similar.

We suppose, first, that conditions (1) to (5) hold, and we shall prove
that @ =T+5 =T € AlgL,. For this it is sufficient to prove that T{K;) C
K (1=1,2,3).

From (1), each of Tr,, Ty, Tvgs Tkes Tieyy Try belongs to Alg L3, s0
we only need to prove that the operator Ty = Ty, + T, + T, leaves Ky,
Ky, Ky invariant. By (3), we have Ky C No_ M N3 C Ker T, . Therefore
To(Kl) Q qul(Iir])-l- TNI (I{l) g L1 VN1 g Kl, showing that TO(Kl) Q Kl:
Similarly To(K2) G K. Finally, let u € K3 be arbitrary. We have (from (4))

k
> 2 AW

Le{L1,N1,Na} 7=1

Tolw)= > Tiw)s=

Le{Lly,N,Na}

k
= Z)\;‘(u) Z TL

Le{Ly,N1,Ng}

k
= z)‘?(u)(%‘“ > zj,L) € Ny V LsV Ls C K3,
j=1 Le{Ls,La}

as required, completing the proof of the sufficiency.

Tn the other direction, suppose that @) € Alg L3. We are to prove that
conditions (1) to (5) hold.

We suppose first that there is Ly € Mo{(Q) — M. Then Lo = X Let
r € X, From Lemma. 6 we have ’

Qs € Q( (2= : L & My(Q) = Mi})
C V{We: L e Mo(Q) nMu} =R(T).

So Sz = Qz — Tz € R(S)NR(T) =0, that is, 5§ = 0.

1T Mp(Q) € M, then clearly § = 0. So finally § =0 and T’ = @ €
Alg [:3.

We shall now prove conditions (1) to (4).

Since K = Ky.. (1 Ks. N N N N3 N Ls_, using Lemma 6 we have

T(K1) € \/{Wr : L € {Ly, L2, Ny, Ka }}-

But T'= 3 e . Tr and since the set {Wy, : L € My} is linearly inglepen_
dent, we conclude Ky C Ker T}, for L € {L3, N2, N3, K2, K3}. In particular,
Ls_ C Ker Ty, and hence (Lemma 2) Ty, has the FRP. Working similarly
for Ky = K- NKs— NNy N N3N Ls.. we find that Ks € Ker1j, for
L € {Ly, N1, N3, K, Kz} Hence Lo C Ker Ty, and so Ty, has the FRP.
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Now, as K3 = Ky.. N Ko N Ni_ 0 N3_ N Li_, Lemma 6 shows that
R(T\x,) € V{Ws : L€ {Ly, La, Nu, Ks}} vV Wy
= \/{Ws: L€ {Ls, L, Ny, KG}} V ;1 =1,..., k).

There are, thus, linear functionals AT € A* (= 1,...,k) and an operator
Ty € B(X) such that R(Ty) € \V{Wy : L € {Lg,Ls, N3, K3}} and

i
Ty = T | gy - Z(/\;lj{_;) @z,

=1
(We can prove, in a manner similar to Lemma 6, that the set
{WL Le {Lz,Lg,Ng, Kd}} U {W[)}

is linearly independent and so the A}|x, and Ti|x, are uniquely defined.)
Also, since

Ny=Ki_NKs_NKs_NN;.. MNo.NNs_NL; . C Ky,

we have T(N3) C V{Wr : L € {L3, L3}} and from the preceding observation
we conclude that A} € (Ns)t, 5=1,... &k Also

k
Tl =T+ le) e (3 ay)
J=1 Le{L1,Ly Fa, Ny N2}
k
=Tilx, + Y > k) ® 0

Le{Ly,Ly,La, Ny, Na} j=1
Thus,

k
(%)  KiCKe(T.-Y X i) L€ {Ly, Ny, Ny}
=1

(which is (4)), and K3 C Ker Ty, if I € {K;, K3}
Finally, from all the preceding relations we also conclude that
Ny. =Ky VE;C KerTNa,
Ki_=KVK;C Ker Ty,
Ky =K1 VK C Ker T,
Ky =K, vV Ry C KerTy,.

Combining that with the previously established facts, we have (1) (from
Lemma 2},

. Recall. that A% € (N3, j = 1,...,k, so from (#%) we have Ny C
er Ty,. Thus Ny N N3 = N3V Ky C Ker Ty, which is equivalent to (2).
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Working similarly we can prove (3}, and the proof of the theorem is
complete. m

EXAMPLE. It is perhaps instructive at this point to give an example
which explains why the counterexample in [7] works. Suppose that there
exist (non-zero) vectors z1,za,y},y5 € X (where X is now a Hilbert space)
such that

T € N1, 23 €Na, i€ (Nl_)l v (N3_)"J“, Yz € (Ngﬁ)J' N (Nsw)'l‘
and, moreover,

m otz € Ny, g3 =yf —y3 € (M)t v (W)t

The situation in the counterexample in {7] is precisely such a case. Set now
To=yi®z+y; @20
(as in [7]). It is easy to see that for this Tp we have
Mo = {N1, No, N3}, Wy, = (a1}, Wa, = (22), Wo= (21 +22),
Ty =y @21, Tn, =y @22
Obviously, Tp satisfies (2) and (3). For (4) we take A* =y and we have
Ty, = A*®21=0 and Ty, — A" @z = {13 — ") Q@22 = (—y3) ® z3.

Since y3 € (N1.)* V (No)t = (N1 N Na2)t € Ky, condition (4) of
Theorem 1 holds and so Ty isin Alg £3.

As we have seen, it is possible that not all finite rank operators of Alg Ly
have the FRP. Theorem 2 below characterizes those T € Alg L3, for any
given realization of L3, which do have the FRP. Again, to facilitate presen-
tation, we shall resort to lemmas. The notation used is as above.

LEMMA 9. Let R € Alg L3 be o finite rank operator. If R(R) C L1+ La
+ Ly, then R has the FRP.

Proof. Let {z :1=1,...,n} be abasis of R(R). Then there is {yf : i =
1,...,n} € X* such that R =, ¥y ® . Since 2z; € R(R) C Ly + La+Ls
for each 1, there are z;; € X {j =1,2,3) such that z; = z;1 + 22+ 213 and
3 C Ly (5 =1,2,3). We define Ry = 3, 4 ®z,5 for j = 1,2,3. Then
R = Ry + By 4 Ry with R(RJ) C Ly

If ip & {1,2,3} and 2z € Ly, - then Rz = Riz + Ryz + Rgz € L.,-_Dw.
Since L; € Ly, for 4 # ip, it follows that R;,(z) € Li,-. Thus R, (z) €

Li,— N L, = 0 and consequently L;,_ C Ker R,;. Therefore, by Lemma 2,
R;, has the FRP for ig = 1,2,3 and the proof is complete. =

LeMMA 10. Let P € B(X) be a finite rank operator such that for some
fized 3o € {1,2,3} we hove K;,— C Ker P (equivalently, R(P*) © (K )™).
Then R{P) = P(Kj,).



234 N. K. Spanoudakis

Proof. Let z € X. Since K;, VK, = X, there are sequences {r,, }22, C
K;, and {t,}22, C K;,— such that r, + t, — 2. Then Pr, + Pt, — Pa.
But Kj,— € Ker P, s0 Pt, =0 and Pr, — Pz Thus Pz € P(K,,). Since
P(K;,) is a finite-dimensional space, it is closed and we have Pz € P(K;,).
Thus R{P) C P(K;,). The other inclusion is trivial. m

Let T' be a finite rank operator in Alg £y and My as in Lemma 5. We
also suppose that N1, Ng € My, We define Whya = Wy, M (L + .[.;2)
and let Wy, v be a complement of Wy, 4 in Wy,. Similarly, we define
Waa,+ = Wi, N (L1 -+ Ly), and take Wy, v to be a complement of Wy, .. in
Wi, Since R(Tw,) = Wy, = W, 4 + Wi,y for i € {1,2}, there are (from
Lemma 3) finite rank operators T, ., Tv,,v such that T, = T'n; 4 + Ty, v,
R(Tw: ) € Wi s R(Tw,v) € Wiv,v and R(TF, o) € R(TR,)-

We can now formulate the second main result of this paper. Again we
could state it using a permutation of {Ny, Na, N3}, but the following is good
enough.

THEOREM 2. An operator T' € Alg L3 has the FRP if and only if
(1) If N1 € Mo then R(Tj, ) © (Ne=)t + (V)L
(2) If Ny € Mgy Then R(T§, v} € (Np )t -+ (N3 )+

Proof. We prove the theorem in the case Mgy = M. As other cases are
similar and simpler, we omit them. We suppose first that T € Alg £y has
the FRP and we show (1) and (2).

Since T € Alg L3, from (1) of Theorem 1 we conclude that the operator
Tr, + Ty, + Ty, has the FRP, that is, it can be written as a finite sum of
rank one operators from Alg £3. From Lemma 1 for such a rank one R there
is L € £ such that R(R) € L and R(R*) C (L.)*. We define I}, to be the
sum of those R which have the same L (that is, the same N of Lemma 1).
It is clear that R(Fy) G L, R(F}) € (L.)+ and

Toy +Tny +Tn, = Z Fy.

LeM;
For each z € X we have
Fie,(2) = (TM +Tn + TNy~ Y FL)(Z)
LeMy—{Ky}

€ K3n (M VKV KQ) = Ifg NEKz. = N;g.

That is, R(Fg,) C Ns. Since also K;_ = Na_ we can without loss of
generality suppose that

T, + Ty + Ty, == 3 Fy.
Le{Li,Niti=1,2,3}
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For z € Ko NK3_ = Ky N Kz NNy N Nj_, using Lemma, 6 we have
Tze \[{Wy: L € {L, Ly, Lg, Ny, K1 }}

and therefore Tw,(z) = 0. Consequently, (T, + Tw, + Ty, )(z) = (Fr, +
Fp, + Fry + Fy, + Fr, + Fp,)(2) gives
Tr,(2) + Ty, (Z) = (Fr, + Fpy + Fr, + FNl)(z)
and Fr,(2) € NyNLs =0 and so
Fy, (z) =Tn (z) + TLI(z) - ¥, (z) - FLz{z)'
Since R{F ) € (N1-)* = (K1_)*, from Temma 10 we conclude that
R(Fn,) = Fn,(K1). Since also Ky C Ko_ N K3_, we have
Fy, (K1) € T, (Kq) + Ty (Kv) + Fir, (K + Fro(Ky)
CTn (K1) + L1+ La CR(Tw,) + Ly + La,
and thus
R{Fy,) €Wy, + L1 + La.
So from Lemma 3 there are three finite rank operators which have sum Fly,,
their ranges are in Wy, Iy and Ly and the ranges of their adjoints are in
R(F%,) € (N1-)*". But for i € {1,2} we have (N1_.)* C (Z;_)*. Thus from
Lemma 2 it is clear that we can rewrite the operator } o1y nium103) FL
in such a way that R{Fx,) C Wx, (and the other assumptions for the Fy,
are still satisfied).
Similarly (starting from a z € K1-NKs_) we can suppose that R(Fy,) €
Wy, . Since
FN3 =TL1 +TN1 _I_TNQ —FL1 _FLg _FL3 _FN]‘ ‘FNQ:
we have
R(FNB) - ];/V,p\r1 + 1I—/1'-’7N2 ~PL]_ + Ly + Ls.
Hence for L € {L1,.Lq, L3, Nl,NQ} there are Fly, 1 such that
Fy, = Z Fi, L,
LE{LI)L21L3$N1rNZ}
R(Pyyy) € Wiv, and R(FY, ) © R(Ff,) € (Na-)t, i = 1,2 Gonse-
quently, for each z € &,
(Fia,v: + Fig, Ly + Fg o — Tia — Ty + Fry + Frp + ) (2)
= (=Fny,Ny — FNg,Le + T — FLy — Fn,)(z) € Nuy Ng = Ly
Therefore R(Fi, vy — Ty + Fvy) © L1+ Lz Also R(Fg,v,) © Wiy, =
Wh,,+ + Wh, v so there are (Lemma 3) Fing, n,,+ and Fg n,,v such that

Fg, vy = Frg N+ + Fvg,v,vs
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R(Fngmat) GWai,ts R(Fngnv) & Wy and
R(Frgvew) CR{EFN, n) € (Ns_)*+
Similarly we prove the existence of T, 4, Fy,+ (With R{Tw, 4}, R(Fn, )
C Wi, ) and Tw, v, Fy v (with R(Tw, v), R{Fw,v) © W, ,v) such that
Ty, = TNy + Ty, Fvy = v o+ Fy
and R(Ff, ) G R(Ff,) € (N1-)*. So
R(Fng vy v — Ty v + Fovgv)
C R{Fnyn, = Ty + Fny )+ R(Fny w0 — T+ + Fvy )
- {(Ll + Lz) N WNl} NWy,v= WNl,-F N Wiy = 0.

Thus Tw,.v = Fag vy + Frney 0 T = FRy vyv + Fiy v and so
R(TH, v) € ROFR o) + R(F e v) € (Na )t + (M),

which is (1).

In a similar manner we obtain (2), and the proof of the necessity part is
complete.

We now suppose that (1) and (2) hold. We shall prove that T has the
FRP. Since T € Alg La, from Theorem 1 it is sufficient to prove that Ty, +
Ty, + 11, has the FRP.

Using the hypothesis we can find finite rank operators Sy 1, Sivy,3, SN2,2:
8,3 such that

TN1,\/ ZSNI,l—FSNl,B, TNz,V ZSNZ,Z + SNg,L'n
R(S%, ) S (Vi)™ R{Sn.i) S R(Tw,v), i=1,3,
’R’(Sj\b,i) - (Ni—)La ’R'(SNz,i) CR(Tnyv), =2,3.
Thus'
Ty, + TNy + oy =Ty + Ty v + Tovg b + Ty v + T,
= TN1»+ + SN],I + SN1,3 -+ TN;,-p + S'Ng,‘z + JS'NQ,:; T,
= Sny,1+ SNy 3+ Sne 2 + Sy s + 5,
where S is the obvious operator and its range is in Ly -+ Ly -+ Ly,

Since Sy, 1 and S, 2 have the FRP from Lemma 2, it is sufficient to
prove that the operator Sy, s + Sn,.3 + .5, which is in Alg £y, also hag the
FRP.

Let z € K. Then Sy, 3(2) + Sy, ,3(2) + S(2) € Ky N M € Ns. Hence by
Lemma 10, R(Sn,,3 + Sn.,3) € Ly + N3. From this, using Lemma 3, it is
clear that Sw, 3+ Sn,,3 can be written as a sum of two fnite rank operators
with their ranges in Ly and N3 respectively and such that the second has
the FRP (from Lemmas 3 and 2). But then it is sufficient to prove that an
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operator which has range in L; + Ly -~ L has the FRP. This follows from
Lemma 9 and the proof of the theorem is complete.

Remarks. 1) Let Ty be the operator of the example just after Theo-
rem 1. Since R(T ) = (yf) (i = 1,2) it is clear when T, has and when it
fails the FRP. The counterexample in [7] is such that it fails the FRP.

2) The proof of Theorem 2 also shows that if 7" € Alg £3 has the FRP
then it can be written as a sum of rank one operators of AlgLg with at
most 3rank T terms. Notice that rank T as the number of summands is not
always possible. Indeed, in [2] Hopenwasser and Moore construct a specific
realization of £3 and a finite rank T' € Alg £5 which requires strictly more
than rank T' terms in its decomposition as a sum of rank one operators from
Alg L.

In a reflexive Banach space we have the following characterization of
those realizations of £3 which do not have the FRP.

THEOREM 3. Let L4 be o realization of L3. The following ere equivolent:

(i) Ly does not have the FRP.
(ii) (Nl + NQ) N {N3 — (LQ + L3)} ?’: 0 and

{(M NN ) " (Vo AN Y I{ (NN ) = (V) + (N ) 1)} £ 8.
{ili) There 1s o rank two operator in Alg L without the FRP.

Remark. The second condition in (ji) is simply the first one but for the
lattice {L+ : L € £4}.

Proof of Theorem 3. ()=(ii). Suppose T € Alg L} fails the FRP
and (N1 + Na) N {N3 — (Lz + L3)} = 0. We shall use the usual notation for
M, Wo, x4, Ty, etc. concerning T'.

Since each z; can be written as

L= Z X4.L
LeMon{Ly,La,La,N1,Na}
it follows that z; € (Ny -+ Np) N N3. But then, from the hypothesis, z; €
Lo+ Ly. Let w € K3. Using the first part of the proof of Theorem 1, we find
that (T, 4 T, + Ty )u € Ly + La, so there are 2 € Ly and t3 € La such
that T, u + T, u + Tyt = ty +t3 and also

Trou+ Tvu—ty = ~Tnyu+1t3 € Ny NNy = Ly,

Thus T, (Ka) € Ly - Ly and T, (K3) C Ly + L3. Moreover, T, v (K3) C
L1+ Ly and Ty, v(K3) C L1 + Lz. From the definition of Ty, v, T,y we
obtain T, v(K3) = T,,v(K3) = 0. Since (Theorem 1) T, v(N1~ N Na-)
= 0 and T, v{No— NN3_) = 0 we have Ty, v(V1—) = Ty, v (Vi-N N3}V
K3) = 0, that is, T, v and similarly T, v have the FRP. From Lemma 9
we now deduce that Ty, +Tx, -~ T, , and so (Theorem 1) T, has the FRP, a
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contradiction. This proves the first relation of (ii}. Working similarly for the
lattice {L* : I € £4} and the operator T, we obtain the second relation.
(ii)=(iii}. Let T be the rank two operator described in the Example
after Theorem 1 and with the farther hypothesis that @y + 22 & Ly Ly and
vi & (M)t + (Na_)*. Then we also have 1 ¢ Ly + L2 and @y € Ly + Lg.
In fact, if for example z1 = £ +1g where t{ € Ly and {3 € L then ¢y + g =
(z1 +29) — t2 € Ny NNy = L, that is, z1 -+ 22 € L2 + L, a contradiction.
Arguing similarly for 7, ¥4, from Theorem 2 we see that T fails the FRP.
(ili)=(i). Obvious. =

Remark. It is clear that relations (ii) can be replaced by others cycli-
cally generated.

3. An application. As we have seen the FRP may fail for finite ranlk
operators in AlgCs, for the free distributive lattice £4 on 3 generators.
We show here, as an application of Theorem 1, the [cllowing curiosity: the
product of two finite rank operators of Alg L3 always has the FRP. Thus for
example the square F? of a finite rank operator F' € Alg L3 always has the
FRP. Notice, however, that F? may be zero. For instance, this is the case
for the F' in the counterexample in [7].

TuroreM 4. If T,R € AlgL; then TR has the FRP,

Proof Let Ty, for L € My be as defined at the beginning of the proof
of Theorem 1, and Ry, the respective operators for R. We have

T= )Y Ti,
LeM;
where we take Ty, = 0if L & My — M. Similarly
R= Y Ry
LeM,
Since for L € {Ljy, L3, N3, K1, Ko, K3}, each Ry has the FRP, clearly the
same is true for TR, So to complete the proof it is sufficient to prove that
the operator
TR-TRy,-TRy, —TRyn,—~TRg, —-TFRg, —TRKS =T Ry +T Ry, +TRy,

of Alg L3 has the FRP. We use the conditions (1)-(3) of Theorem 1 and so
we have -

TRy, +TBpy, + TRy, = (T, +Tpo) By, + (Te, + Try)Bw, + Tuu Ri,
} = To, (Byy + Ry ++ Bry) + Ty Bv, + Tig By,
"The ‘conclusion now follows from Lemma 9. m

icm

Operators in subspace lattices 239

The author wishes to thank M. S. Lambrou without whose help it would
have been impossible to write this paper. He is also grateful to the referee
for several suggestions.

References

[1] 1. A, Erdos, Operators of finite rank in nest algebras, J. London Math. Soc. 43
{1968}, 391-397.

[2] A Hopenwasser and R. Moore, Finite rank operators in reflewive operator alge-
bras, J. London Math. Soc. (2} 27 (1983), 331-338.

{3) M. 8. Lambrouy, Approzimants, commutants and double commuiants in normed
algebras, ibid. 25 (1982), 499-512.

4] W. E. Longstaff, Strongly reflezive lattices, ibid. 11 (1975), 491—498.

[B] —, Operators of rank one in reflexive algebras, Canad. J. Math. 28 (1976), 19-23.

6] N. K. Spanoudakis, Generalizations of ceriain nest algebra results, Proc. Amer.
Math. Soc. 115 (1992), 711-723.

[7] —, Operators in finite distributive subspace lattices I, Math. Proc. Cambridge Philos.
Soc. 113 (1993), 141-146.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CRETE

714 09, IRAKLION

CRETE, GREECEH

Receved November 25, 1992 (3031)
Revised version January 25, 1994

R B R A

o

=
!
:

N N ——
B e B R st 5




