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From weak to strong types of
Li;-convergence by the Boccee criterion

by

ERIK J BALDER (Utrecht), MARTA GIRARDI (Columbia, S.C.)
and VINCENT JALBY (Montpeltier)

Abstract. Necessary and suflicient oscillation conditions are given for a weakly con-
vergent sequence {resp. relatively weakly compact set) in the Bochner-Lebesgue space E};
to be norm convergent (resp. relatively norm compact), thus extending the known results
for Ll}{. Similarly, necessary and sufficient oscillation conditions are given to pass from
weak to limited (and also to Pettis-norm) convergence in E}g. It is shown that tightress
is a necessary and sufficient condition to pass from limited to sirong convergence. Other
implications between several modes of convergence in Li are also studied.

1. Introduction. Vaguely speaking, a relatively weakly compact set in
£} is relatively norm compact if the functions in the set do not oscillate
too much. Specifically, a relatively weakly compact subset of £}, is relatively
norm compact if and only if it satisfies the Boccee criterion (an oscillation
condition) [G1, G2]. However, the set of constant functions of norm at most
one in £}, already shows that (for a reflexive infinite-dimensional Banach
space E), in the Bochner-Lebesgue space £k, more care is needed in or-
der to pass from weak to strong compactness. In Section 2, we extend from
LY to £} the above weak-to-norm result, along with the sequential ana-
logue. In Section 3, limited ¢convergence [a weakening of strong convergence
[B1, B2]) is examined. Limited convergence provides an extension of the
Lebesgue Dominated Clonvergence Theorem to £k, Necessary and sufficient
conditions to pass from weak to limited convergence are given. In Section 4,
the concept of tightness helps to extend the results from the previous two
sections. In Section 5, convergence in the Pettis norm, a weakening of strong
convergence along lines distinct from limited convergence, is examined, Sim-
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ilarly, necessary and sufficient conditions to pass from weak to Pettis-norm
convergence are given. In the study, implications between several modes of
convergence on L}, are examined.

Throughout this paper (E, | - ||} is a Banach space with dual E* and
Bg is the closed unit ball of E. The triple (2,F, 1) is a finite measure
space. Without loss, we take x to be a probability measure. For B € F,
we often examine the collection 77 (B) of all measurable subsets of B with
(strictly) positive measure and denote F1(£2) by just F*. By LY we denate
the {prequotient) space of all Bochner p-integrable functions from (2 into .
On this space the classical L-seminorm is given by || ffi1 == [, | £]| du and
convergence in this seminorm is called strong convergence.

Recall [IT] that the duai of (L, |- [|1) is the (prequotient) space £ [B]
of scalarly measurable bounded functions from 2 into £*. The subspace LE
of LF.[F] consisting of the strongly measurable functions actually coincides
with L. [E] if and only if F* has the Radon-Nikodym property {RNP) (cf.
[DU, IT]). Convergence in the corresponding weak topology oLy, LE.E)
is called weak convergence. We will also consider the o (L, £F.)-topology
on L},

Also recall that a subset K of £}, functions is uniformly integrable if

J fldu=o.
FllZel

It is well known [N] that K is uniformly integrable if and only if it is bounded
(ie. supreze i f] £1, Is finite) and equi-integrable, i.e.

lim sup
c— 00 fEK

lim su dy = 0.
i 352 [ 15 d

All notations and terminology, not otherwise explained, are as in [DU,
IT, or N].

2. Weak vs. strong convergence in L. Our goal is to determine
precisely when (via an oscillation condition} a weakly convergent sequence
is also strongly convergent, along with the nousequential analogue.

For f € C}E and A € F, the average value and the Bocee oscillation of f
over A are (respectively)

o Jafdu

)=y
_ Ll —malndp
n(4) ’

ohserving the convention that 0/0 is 0. The following elementary inequalities

Bocce-osc f 4 ¢
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are useful:
|Bocce-vse f| 4 — Bocce-osc gl 4| < Bocee-ose (f ~ g)| 4,
Bocee-ose (f 4 g)|a < Bocee-ose f| 4 + Bocce-osc gl a,

pu(A)Bocce-ose |4 < 2 f | 1| de.
A

(2.1)

In the spirit of [G1}, we consider the following oscillation conditions.

DerINITION 2.1 [B3]. A sequence (f4)%%, of functions in £} satisfies
the sequential Docce crilerion if for each subsequence (fx,} of (fi),
each ¢ > 0, and each B in F* there is a set A in F*(B) such that
lim inf; Bocce-ose fr, |4 < €.

DEFINITION 2.2 [G1]. A subset K of £}, satisfies the Bocce eriterion if for
each £ > 0 and each B in F* there is a finite collection A of sets in FT(B)
such that for each f in K there is a set A in A satisfying Bocee-osc f|4 < &

It is known [G1, G2] that a relatively weakly compact subset of L} is
relatively nort compact if and only if it satisfies the Bocce criterion. We
now extend this to £};.

THROREM 2.3. A sequence (fi) in LY converges strongly to fy in L} if
and only if

(1) {fx) converges weakly to fy in L1,

(2) {fi) sotisfies the sequential Bocee eriterion,

(3) Ap = {mp(fr) : k € N} is relatively norm compact in E for each

BeF+.
Condition (1) may be replaced with

(1) (fy) converges to fy in L in the a(Lh, L%.)-topology.
Also, condition (3) may be replaced with

(31 Yimy, [|mp(fe) — mp(fo)l =0 for each B € F*.

Note that Theorem 2.3 need not hold if one replaces condition (1)
(resp. (1)) with (/i) being Canchy in the weak (resp. o(£LE, L% )-) topologly
since £} need not be sequentially complete in this topology. Recall that L},
I8 weakly sequentially complete if and only if E is (see [T]); on T,he other
hand, £, is o(Lh, £ )-sequentially complete if and only if E is weakly
sequentially complete and has the RNP (ef. [BH1], [SW]).

There is a set analogue of Theorem 2.3:

THEOREM 2.4. A subset K of L} is relatively norm compact if and
only if

(1) K is relatively weakly compact,
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(2} K satisfies the Bocce criterion,
(3) Ag = {mp(f) : f € K} is relatively norm compact in E for each
Be Ft.
Condition (1) may be replaced with
2. )-topology.

Note that the above condition (3) is indispensable, as shown by Exam-
ple 3.2 to come. In general, if { f5) is weakly convergent {resp. K is relatively
weakly compact), then the corresponding sets Ap are relatively weakly com-
pact in E. Thus if F is finite-dimensional, then condition (3) in the above
theorems is not necessary.

Tt is possible to prove Theorems 2.3 and 2.4 by using methods similar

to those in [G2]. Here ideas from both [B3] and [G2] are combined. The
following elementary lemmas are useful.

LEMMA 2.5. If f is in L}, then for each £ > 0 and B € F* there is o
set A in FT(B) such that Bocce-osc fa, < € for each subsel Ay of A.

Proof. By strong measurability of f in £} and Egorov’s Theorem, there
exists a sequence of simple functions converging almost uniformly to f. In
combination with (2.1), the remainder of the proof is clear. =

LeMMA 2.6, Let ¢ : 2 — [0,00] be measurable. If for each ¢ > 0 and
each B in FT there exists a set A in FT(B) such that ma(¢) < e, then

Hw) =0 for a.e w.
Proof Fix £ > 0. Let B be the set of all w € 2 with ¢(w) > 2e.

If B € F*, then for the corresponding set A in FT(B) we would have
2ep(A) < ep(A), which cannot be. So B must be a null set. m

(1) K is relatively compact in the o(L},

Proof of Theorem 2.3. Consider a sequence (fx) in £} which
converges strongly to fo. Conditions (1) and (3) follow immediately. Also,
by {2.1) one has

u(A)|Bocce-osc fi|4 ~ Bocce-osc fo|a| < 2 f §fi — folldpp ~ 0
- 7
for each A in FT, By Lemma 2.5 the singleton {fo} satisfies the Bocce
criterion. Thus condition (2} also holds.

As for sufficiency of (1)-(3), note that to prove strong convergence it
is enough to show that any subsequence (fn) of {fx) contains a further
subsequence which converges strongly to fo. By condition (1) the set (fi) is
uniformly integrable; hence ([|fi — foll) must also be uniformly integrable.
So the subsequence (f,) contains a further subsequence (fn,) such that
(| fr; — fol|) converges weakly to some (nonnegative) function ¢ in L. We
shall show that Lemma 2.6 applies to ¢; this then gives ¢ = 0 a.e., which
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finishes the proof. To show that the lemma applies, fitst note that by Lemma
2.5 (applied to fp) and the given Bocce property (2), the sequence (fi — fo)
also satisfles the sequential Bocee criterion. Now fix e > Oand B in F7T. Let
Ain FT(B) be as in Definition 2.1 applied to the subsequence (f5, — fo) of
{f — fo), thus

lim inf Bocee-ose (fr,, — fo)la < e.
i ;

But by the triangle inequality
L
Bocee-osc f”J f(])IA = f ”f‘m fOH - ”mA(fNj - fﬂ)m dtu'y

so by weak convergence of ( I f:,,,j -~ foll) to ¢ and by the given property
(3), this leads us to m4 (¢} < ¢, which is precisely what is needed to apply
TLemma 2.6. =

A close look at the proof reveals that the conditions may be slightly
weakened. Using terminology and results to come in Section 3, note that
condition (1) may be replaced with the two conditions that ( fi,) is uniformly
integrable and that (fi) converges scalarly weakly (see Definition 3.3) to fo
in £1. These two conditions are equivalent to (1), as noted in Remark 3.7.
Also, condition (3') is equivalent to the two conditions that (fy) converges
scalarly weakly to fp and condition (3), Thus, under condition (1) or (1'),
condition (3) is equivalent to (3').

Proof of Theorem 24. It is well known and easy to check that
a subset K of £} is relatively strongly compact if and only if it satisfies
condition (3) and for each 1 > 0 there is a finite measurable partition 7 of
2 such that [, || f— Er(f)|l dp < n for each f in K. Here E;(f) denotes the
conditional expectation of f relative to the fnite algebra generated by .

Consider a relatively strongly compact subset K of £1. Clearly condi-
tions (1) and (3) are satisfied. To see that condition (2) helds, fix e > 0
and B € F*. Next, from the above observation, find the partition m :=
{A1,..., AN} corresponding to n = su(B). Put A = {A;NB € F™ .
A; €} Fix f in K. Since

Z,u A; 0 B)Bocee-ose fla,np < Z;J,(A JBocee-osc fa,

~f”f Zm/l 14,

for at least one A; N B € A we have Bocee-osc fla,ng < &

As for the sufficiency of (1)-(3), note that it is enough to show relative
strong sequential compactness of K. So consider a sequence (fx) in K. By
condition (1), there is a subsequence (fi,) of (f)) that converges weakly to

du < eu(B),

ey




246 E. J. Balder et al

some function fo in £} while condition (2) implies that (fy,) satisfies the
sequential Bocce criterion. Now an appeal to Theorem 2.3 shows that (fy,)
converges strongly, as needed.

As for replacing (1) with ('), recall [BH2] that for the o(L}, L%)-
topology, relatively compact sets and relatively sequentially compact sets
coincide. m

Section 5 gives several variations of the Bocce criterion which also provide
necessary and sufficient conditions to pass from weak to strong convergence
(resp. compactness).

3. Limited convergence. This section examines limited convergence,
a weakening of strong convergence [B1]. Limited convergence provides an
extension to L} of the Vitali Convergence Theorem (VCT), thus alsc of
the Lebesgue Dominated Convergence Theorem {LDCT). Furthermore, it
extends the previous section’s results. In the next section, a tightness con-
dition ties together limited and strong convergence and thus extends the
results of this section.

Let G be the collection of all functions g : £2 x E — R satisfying

(i} g(w,0) = 0 for each w in {2,
(i) glw,-) is weakly o(F, E*)-continuous for each w in {2,
{ii) iglw, )| < Ol - || + ¢(w) for each w in 2, for some C' > 0 and
¢ in L,

(iv) g(-, f()} is F-measurable for each f in L}.
An example of such a function g in G is given by g(w, z)= 3, |z} {z)| La,{w)
. where ] € B and A; € F. The function g given by g(w, z) = ||z|| isin G if
E is finite-dimensional (for only then does g satisfy (ii)). The class G serves
as a “test class” for limited convergence (see Remark 3.9).

DEFINITION 3.1. A sequence (fi) of functions in £} converges limitedly
to fo in L} if limy [, g(w, fu(w) = folw)) du(w) = 0 for each g € G.

Strong convergence implies limited convergence. For first note that a
sequence converges limitedly to f if each subsequence hag a further subse-
quence which converges limitedly to f. Next note that a strongly convergent
sequence has the property that each subsequence has a further subsequence
which is pointwise a.e. strongly convergent. Lastly, note that any uniformly
integrable sequence (f)) which is a.e. weakly null (i.e. there is a set 4 of full
measure such that if z* € E* and w € A then 2* f(w) converges to zero)
converges limitedly. To see this, fix g € G and put hp(w) = g(w, fr(w)).
Condition (iii) gives that the set {hy) is uniformly integrable. Conditions (i)
and (i} give that (ht) is a.e. convergent to 0. So (hi) converges strongly to
zero and so (fi) converges limitedly.
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If E is finite-dimensional then strong and limited convergence coincide
(consider g € G given by g(w,z) = [jz[]). However, as seen by modifying
the next example, for any infinite-dimensional reflexive space E there is a
sequence of L}; functions which converges limitedly but not strongly.

ExaMpLE 3.2 (limited = strong). Take (£2,F, ) to be the interval [0, 11,
equipped with the Lebesgue o-algebra and measure, and E := £2. Setting fj,
identically equal to the kth unit vector ¢ in €% gives a sequence (fr) which
converges limitedly but not strongly to the null function.

Limited convergence implies weak convergence since for each b € L% [E]
the function g defined by g{w,2) = (z,b(w)) is in §. As for the converse
implication, even for finite-dimensional £ weak convergence does not imply
limited convergence. ‘

Towards a variant of the VOT-LDCT for a sequence (fx) in Lk, we
examine the corresponding sequences (z*(fi)) in £} for z* in E*.

DEFINITION 3.3. A sequence (fi) of functions in £} converges scalarly
strongly (vesp. scalarly in measure, scalarly weakly) to fo in £ if the cor-
responding sequence (z*(fy)) in £} converges strongly (resp. in measure,
weakly ) to z*(fy) for each «* in B,

Note the following chain of strict implications:

(3.1) strong = limited = scalarly strong = scalarly in measure.

Since for z* € E* functions of the form g(w, ) = [&*(-})| 1p(w) are in G, lim-
ited convergence implies scalarly strong convergence. The other implications
in (3.1) are clear.

Furthermore, the implications are strict. Example 3.2 showed the first
one is not reversible. The last implication is not reversible even for E = R.
The next example shows that the second implication is also strict.

EXAMPLE 3.4 (scalarly strong = limited). Take (2,7, ), E, and (er)
as in Example 3.2. Let I/ be the dyadic interval [(i —1)277,427%) for j €N
andi=1,...,2%. Consider the sequence (fi) of the functions fy : [0,1] — £2
given by fi(w) = 1 (w)2%ep. Since for every y* 1= (y9); in B* m~ £,

I I ()| dpa(w) = ¥,
2

(fi) converges scalarly strong to the null function. But for the test function
g(&), ('TJ)) = Zj;it €y 1]-%"'1 (w) in gs

T ok 1
J ol felw) dfe) = J 2 di =5,
? it

So {fi) does not converge limitedly to the null function.
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Note that a scalarly strongly convergent sequence need not be uniformly
integrable (as Example 3.4 shows). However, a limitedly convergent se-
quence, being also weakly convergent, is necessarily uniformly integrable.

Limited convergence provides the following extension of the VOT-LDCT
to L.

THECOREM 3.5. Let E* have the RNP. If o uniformly integrable sequence
(f) converges scalarly in measure to fo in Lk, then it also converges limit-

edly to fo.

The necessity of the uniform integrability condition has already been
noted while the necessity of E* having the RNP follows from Remark 5.4.
The proof of Theorem 3.5 uses the following lemma.

LeMMA 3.6. A uniformly integrable sequence (fi) of L functions con-
verges limitedly to the null function provided that, for each N € N, the
sequence (1), of truncated functions converges limitedly to the null June-
tion, where fj;v = Sl peli<v-

Proof Fix g € § with |g(w,)| S Clf - | + ¢(w). Now
| f (6. i) =g i@ du| = | [ g, fufe)) dn
2

(sl
<C [ feldp+ [ ¢ap,
(A [ Fl> ]

80 by uniform integrability of (fy) it follows that
Jm swp | [ (gl Fule)) = g, Y @))) du| =0,
e}

The lemma now follows with ease. m

Proof of Theorem 3.5. Without loss of generality, we assume that
fo =0 and (using the previous lemma) that the f),’s are uniformly bounded.
Note that we may also assume that E* is separable. Indeed, by the Pettis
measurability theorem [DU, Theorem II.1.2], there is a separable subspace
By of E such that the f’s are essentially valued in Fy. Because E* has
the RNP, Ej must be separable (DU, Corollary VIL2.8]. Moreover, if {fi)
converges limitedly to 0 in £} ,: then it also does in E}a

As noted earlier, it is enough to show that every subsequence of {fr) has
a further subsequence that is a.e. weakly null. We assume {without loss of
generality) that the former subsequence is actually the entire sequence ([).

Now let (z}) be a countable dense subset of E*. For each ¢ the sequence

(z; (fi)) converges in measure to zero. So there exists a subsequence (fry)
such that for a.e. w, :
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1i§n 23 (fi, (w)) =0.

By a Cantor diagonalization arguiment there is a set A of full measure and
a subsequence (fx,) such that lim, «¥(fi,(w)) = 0 for each fixed 4 and each
win A. Since the fi’s are uniformly bounded and {z}) are denge in £*, this
pointwise limit property extends so that limp %" (fr, (w)) = 0 for each fixed
z* in B* and cach w in A. Thus, (fy,) I8 a.e. weakly null, as needed. w

Limited convergence also provides an extension of the results from the
previous section; namely, it is possible to pass {rom weak to limited conver-
gence via an oscillation condition. The following string of strict implications
summarizes the ideas thus far.

scalarly strong = scalarly weak <= o(L};, £5)-topology <= weak.

Remark 3.7. A scalarly weakly convergent sequence converges in the
o{LL, £3%.)-topology if and only if it is uniformly integrable. (Recall that
the simple functions are not dense in LF. for infinite-dimensional £.) Con-
vergence in the o(Lk, L% )-topology implies weak convergence if and only
if B* has the RNP (cf. [DG]).

In the light of these observations and Theorem 3.5, we have the following
variant of Theorem 2.3 for limited convergence. ‘

THEOREM 3.8. Let E* have the RNP. A sequence (fi) of Lk functions
converges limitedly to fu in L}; if and only if

(1) (f&) converges weakly to fo in L}, |
(2) (z*(fu)) satisfies the sequential Bocce criterion for each z* in E*.

Condition (1) may be replaced with

(1) (f1) converges to fo in LY in the o(Ll, LF)-topology.

Remark 3.9. Limited convergence for separable reflexive £ was intro-
duced in [B1, B2]. There, the condition (iv) is replaced with

(iv') g is F & B(E)-measgurable, '

Of course, (iv') always implies (iv). To see that (iv) implies (iv') if E. is
separable, consider a function g which satisfies (iv). For each k € N, write
lg =%, s where EX € B(E) and the diameter of By is less than 1/k.
Choose z & E¥. Define gy : 2 x E— R by

gilw, @) = Y glw,w5) Lo ().
n

Since each gy is F x B(E)-measurable and gp converges to g almost every-
where, g is also F @ B(E)-measurable.

e

o
R T PR

ey
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4. The tightness connection. The concept of tightness links strong
and limited convergence. In this section, we assume that E is a separable
Banach space. Tightness is considered here with respect to the norm topol-
ogy on F and only for functions. The following formulation of tightness is
given in [B4].

DEFINITION 4.1. A subset L of L}; is tight if there exists an F ® B(E)-
measurable function A : 2 x B — [0, 00| such that

sup f hlw, fw)) du(w) < oo
fek g

and such that {z € F : h{w,z) < [} is compact for each w & 2 and
each § & R.

In [Jaw], the following equivalent formulation of tightness is observed.

DEFINITION 4.1'. A subset L of £}, is tight if for each £ > 0 there exists
a measurable multifunction F, from (2 to the compact subsets of E such
that -

p{we 2: fw) g F.(w)}) <¢
for each f € L. We say that such a multifunction F, is measurable (i.e.
graph-measurable) if its graph {(w,z) € 2x E : z € F:(w)} is an F @ B(E)-
measurable subset of 22 x E.

To see the equivalence in one direction, denote the supremum in Defini-
tion 4.1 by o and define F(w) as the set of all # € F for which h(w, z) < o/=.
In the other direction, one obtains a sequence (F,} of compact-valued mul-
tifunctions by letting F,, correspond to & = 3~™ in Definition 4.1’. Without
loss of generality we may suppose that (F,{w)) is nondecreasing (rather than
taking finite unions (), ., Fm ). Now a function h satisfying the requirements
of Definition 4.1 is obtained by setting h(w, z) == 2" for z € Fy, (w)\Fy—1(w)
with Fy(w) := 0 and A{w, %) := oo for 2 € E\ |J,, Fy(w).

In Definition 4.1' we may assume without loss of generality that F.(w)
is convex and contains 0 for each w in §2 by considering the corresponding
multifunction w ~+ &5(F(w) U {0}). The measurability of this new map
follows from [CV, Theorem II1.40] and [HU, Remark (1), p. 163]. Therefore,
if L is tight and (By)ser is a family of sets from F, then the set {f1 B;
f € L} is also tight. Note that a bounded sequence in L is tight if E is
finite-dimensional (simply take h(w, z) := |z in Definition 4.1). For further
details on tightness see [B4, B,

Recall the following fact [ACY, Théoréme 6].

FaoT 4.2. A uniformly integrable tight subset of LY, is relatively weakly
compact.
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Although weak compactness is not sufficient to guarantee that the corre-
sponding subsets Ay are relatively norm compact (consider Example 3.2},
the following gencralization of a result of Castaing [C1] shows that uniform
integrability plus tightness is sufficient.

Lemma 4.3, Let L be a tight uniformly integrable subset of £}E. Then
Ag = {mp(f): f € L} is relatively norm compact in E for each B in F+.

Proof. Let the subset L of £}, be uniformly integrable and tight. Since
for each B € Ft the set {f1p : f & L} is also uniformly integrable and
tight, it is enough to show that Ay is relatively norm compact. Arguing as
in Remark (1) on p. 163 of [HU], we may suppose without loss of generality
that F is complete.

Fix 6 > 0. By the uniform integrability of L, thereexist &« > Qand e > 0
such that for each set A of measure at most £ we have

sup [ |flldu<6/2 and sup [ |f]du<6/2

Tet A Litsi>el

Let F; be a multifunction given by Definition 4.1" and G* = F; NaBpg {i.e.
G2 (w) = Fo(w) NaBg, Yw € £2). Since G¥ is convex compact valued and
integrably bounded (that means ||G¥|| = sup{||z| : € G¥(w)} € E,}h), the
subset K¢ = { [, G¢ du} is convex and compact in E [CV, Theorem V.15].
Let now A% be the set of allw € 2 with f{w) € F,(w). Note that 2\ A%) <
€. Bince for each f € L,

J flagdue K,
[I5ll<a]

the set AQY = {flllf\i<ﬂ] flagdu  f € L} is relatively compact in E.
Moreover, the distance between 43" and Ag is at most § since

”ffd,u,— f flA?‘Z“HS f (£l dp + f||f'ln\Af}|\d#S5
f? (171l S <] Ifl>a] 0

for each f & L. Thus Ay, is relatively compact. m
Measure convergent sequences enjoy tightness,
LEMMA 4.4. 4 sequence in L}, which converges in measure is tight.

Proof. Consider a sequence (f3) in £}3 which converges in measure to fo.
For each natural number &, let Ay be the bounded nonnegative image mea-
sure on E induced by u and the measurable function fi : £2 — E. Since E
is & Radon space (thanks to the separability assumption), Ay is a Radon (or




252 E. J. Balder ef al

tight) measure. For each bounded continuous function ¢ € C*(E), we have

(4.1) Me@) = [ d(fi(w)) dp(w).
7]

It is easy to see that the measure convergence of (fi) to fy in £} im-
plies the narrow convergence (or weak convergence in the o(MP (B}, CP(5))-
topology) of (Ag) to Ag. For otherwise there would exist ¢ € CP(E) and a sub-
sequence (fr,) converging almost everywhere to fy and such that (Ak, ()
does not converge to Ag(¢). But by (4.1), this contradicts the Lebesgue
Dominated Convergence Theorem. Therefore, the sequence () is tight in
MP(E) in the classical sense [S, Appendix Theorem 4], which implies that
(f) is tight in the sense of Definitions 4.1 and 4.1/,

From Lemmas 4.3 and 4.4, the following reformulation of Theorem 2.3
follows with ease.

THEOREM 4.5. A sequence (fy) in L} converges strongly to fo in L} if
and only if

(1) (fx) converges weakly to fy in L},

(2) (fx) satisfies the sequential Bocce criterion,

(3) (fr) 28 tight.

Tightness connects strong and limited convergence.

THEOREM 4.6. 4 sequence (fi) of Lk converges strongly to fy if and
only if (fr) is tight and converges limitedly to fy.

Before proceeding with the proof of Theorem 4.6, we note some imme-
diate corollaries.

THEOREM 3.5 (revisited). Let E* have the RNP and E be separable. If
a uniformly integrable tight sequence (fx) converges scalarly in measure to
fo in Ly, then it also converges strongly to fg.

THEOREM 3.8 (revisited). Let E* have the RNP and F be separable. A
sequence (fx) of L} functions converges strongly to fy in LY if and only if
(1) {fu) converges weakly to fo in Lk,

(2) (z*(fr)) satisfies the sequential Bocce criterion for each z* in E*,
(3) (fr) is tight.

Condition (1) may be replaced with
(1) (fa) converges to fy in L} in the o(Lk, %- ) -topology.

. The proof of Theorem 4.6 uses the following standard fact (compare with
Lemma 3.6).
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Facr 4.7. A uniformly integroble sequence (fi) of L} functions con-
verges strongly to the null funclion provided that, for each N & N, the se-
quence (f e of truncated functions converges strongly to the null function,
where fi¥ = fulr <~

Proof of Theorem 4.6, The implication in one direction follows
from our previons work. As for the other direction, let (fi) be a tight
sequence in £}, which converges limitedly to fo. Because the image mea-
sure of ¢ under fy is a Radon measure on [, the singleton {fa} must be
tight. Since the union of two tight scts is again tight, we see that the set
{fv + k € NU{O0}} iy also tight; let b correspond to this set as in Defini-
tion 4.1. Without loss of generality, we assume that fp is the null function
and that the fi’s are uniformly bounded (in £5) by some M > 0. To avoid
the nonmetrizability of the o(E, £*)-topology, we use ideas from [B5]. By
well-known facts about Suslin spaces [S, Corollary 2 of Theorem 11.10], there
exists a metric d on F defining a topology 74 weaker than the weak topology
o(E,E*) and such that (E,7g) is a Suslin space. Define ¢ : 2 x B = R
by ¢(w,x) = max(—|lz|, ~M). For each ¢ > 0, consider the function
¢ 1 2% E — R given by

de(w, z) = Plw, z) + eh(w, ).
From the inf~compactness property of h {see Definition 4.1) it follows that
delw, ) 18 also inf-compact on E for each w € 2 and € > 0; in turn, this im-
plies inf-compactness of the same functions for the weak topology o(F, E*)
and hence for 74. Moreover, the F & B(E)-measurability (1) of ¢, is evident.

For each € > 0 and p € N we define the approximate function ¢% :
2% E— R by

@g(wnm) = Jrelg{qbs(w:y) +pd(:c,y)}.

Evidently, for each £ > 0 the sequence (¢f) is (pointwise) nondecreasing. It
is well known [B4, V1] that ¢? has an F ® B(E)-measurable modification
P2 (e, ¥ {(w,") = ¢P(w, ) a.e) such that for each w € {2 the h.mction
$2(w, ) is d-Lipschitz continnous on & and therefore is o (£, E*)-continuous.
Furthermore, as & well-known property of this approximation, by 74-lower
semicontinuity and boundedness below of ¢g(w, ), we have

e (w, o) = 1’1;1_}1 Tl (w, )
for ae. w and cach ¢ € E. We now set ¥P{w, z) = min(yf{w,z)—¥E(w, 0),p).

Note that —M — eh(w,0) < ﬁg(w,ﬁ) < p for a.e. w, where w = h{w,0) is
integrable in view of Definition 4.1 and fo = 0. For each ¢ > 0 and p € N,

(1) For any of the thres topologies, F is a Suslin space; hence, it has the same Borel
o-algebra B(E).
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the function i satisfies the conditions (i) to (iv) for the test functions of .
Therefore, by the limited convergence of the fi’s, we have

Jn, [ R @) dute) =0,
It follows that
lminf [ 2(w, fi(w)) dp(w) = [ ¥2w,0) duw).
2 n

Thus, for each € > 0 and p € N,
liminf [ ge(w, fi(w)) dp(w) 2 lmind [ 92(w, fi(w)) dp(es)
7] 2

> [ 42w, 0) du(w).
n
The monotone convergence theorem gives, for each £ > 0,

o = liminf [ ge(w, fi(w)) du(w) 2lim 1 [ 42w, 0) du(w)
2 §2

= [ de(w.0)dp(w) =2 [ hiw,0)du(w),
n 7]
thus

0< o <liminf [ B, fulw)) dps(w) + s sup [ hlw, fu(w)) du(w).
n 2

Since ¢(w, fr(w)) = —| fi(w)|], by our initial assumption, the proof is fin-
ished by letting £ go to zerc. m

Fact 4.2 and Theorem 4.5 show that a uniformly integrable tight sequence
in £}, which satisfies the sequential Bocce criterion has a strongly convergent
subsequence. Recall that a sequence (f4) is said to be bounded if sup, || fx||.:
is finite. In the above, if we relax uniform integrability to boundedness, we
need not have strong subsequential convergence (just consider the sequence
(nlipa /n1)n in £}) but we do have measure subsequential convergence. We
can state this result as a strong Biting lemma.

THEOREM 4.8. Let (fi) be a bounded tight sequence in L satisfying
the sequential Bocce criterion. Then there ewists a subsequence, say {fn), of
(f&) and an increasing sequence (Ay) in F such thot

(1) limp 0 p(Ay) = /‘L(Q)a

(2) the sequence (fola,) converges strongly in L},

(8) the sequence (fulgna,) converges to 0 in measure,

Therefore, the subsequence (f,,) converges in measure.
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The proof uses Gaposhkin’s Biting lemma [Ga, Lemma C], which is also
referred to as Slaby’s Biting lemma (cf. [C2]).

BrTive LEMMA. Let (f) be o bounded sequence in L};. Then there exists
a subsequence, say (fn), of (fi) and an increasing sequence {Ay) in F such

that

(1) Tt eoe (A = p(22),
(2) the sequence (fnla,) is uniformly iniegrable in L},

Note that (1) implies that the sequence (fo1gna,. ) converges to O in measure.

Proof of Theorem 4.8, Consider a bounded tight sequence (f;) in
L} which satisfies the sequential Bocce criterion. Apply the Biting lemma
to find the corresponding subsequence, say (f), of (fi) and a sequence (4,)
in F. Since (fnla,) is uniformly integrable and tight, it is relatively weakly
sequentially compact. By passing to a further subsequence we can assume
that (f,1a,) converges weakly in L} Since (fx) satisfies the sequential
Bocee criterion, using condition (1) it is easy to check that (fr1a4,) also
satisfies the sequential Bocece criterion (in the definition, for a fixed B €
FH(£2), apply the criterion to By := BN Ay for a sufficiently large N).
Theorem 4.5 gives that (14, ) converges strongly. w

5. Pettis norm. This section examines Pettis norm convergence in light
of the previous sections.

DEFINITION 5.1. A strongly measurable function f : 2 — E is Pettis
integrable if z*(f) belongs to L} for every * in E* and if for every B in F
there exists g in E such that

fm*(f)d,u.mm*(mg) for all z* € E*.
Fel

The space P}, of (equivalence classes of) all strongly measurable Pettis inte-
grable functions forms a normed linear space under the Pettis (semi )norm

”f“.f’ﬂttia = SUp f |73*(f)] dps
B f

wr e B

Clearly PL contains £}, to which we restrict considerations.

In general, Pettis norm convergence on L} is incomparable with limited
convergence but is comparable with the other modes of convergence in chain
(3.1). A parallel chain of strict implications is

(5.1) strong = Pettis = scalarly strong.
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Note that when E is finite-dimensional, the two chains (3.1) and (5.1} merge
into

strong & Pettis < limited < scalarly strong.
The implications in chain (5.1) are clear; the following two examples show
that they are strict.

ExAMPLE 5.2 (scalarly strong # Pettis). Example 3.2 suffices here but,
for later use, we consider the following variation. Take (2, F, u), £ = £2,
and (e) as in Example 3.2. Consider the Rademacher-type functions fy :
[0,1] — #2 defined by fr(w) = epry(w) where 7y is the kth Rademacher
function. Clearly, (fi,) converges scalarly strongly to the null function yet
the Pettis norm of each fy is one.

EXAMPLE 5.3 (Pettis # strong) [P]. Take (£2,F,4), E, (ex), and (I})

as in Example 3.4. Consider the sequence (fy) of the integrable functions
k

Je 1 02— £ given by fr(w) == E?=1 1ys (w)egn i To see that (fy) converges

in the Pettis norm to the null function, fix y* := (v*); € Bye. Put §* := (o)
and note that

f vt (fi)] dps = Dyﬁ"*w p(Ify=27*g (Zf’zhﬂ)
< 27k H;em ez

Thus || fx||Pettis — 0. But (f;) does not converge strangly since |, o |1 felle dus
=1,

= 27k/2,

Example 5.3 illustrates that a Pettis-norm convergent sequence need
not be uniformly integrable (comsider gy := 25/4 fx). Example 3.2 shows
that a limitedly convergent sequence need not converge in the Pettis norm.
Theorem 3.5 gives that if E* has the RNP, then a uniformly integrable
Pettis-norm convergent sequence in £}, also converges limitedly. The follow-
ing remark shows the necessity of E* having the RNP,

Remark 5.4 [DG). A uniformly integrable Pettis-norm convergent se-
quence also converges in the U(E%E,Coﬂf’m J-topology and, if furthermore E*
has the RNP, then also weakly. But if E* fails the RNP, then there is an
essentially bounded sequence which converges in the Pettis norm but not
weakly (thus not limitedly).

In the case that E = ¢', this sequence is easy to construct.

EXAMPLE 5.5 (Pettis # limited). Let ({2,,4) be as in Example 3.2
and let E = £ Consider the sequence (f3) in £y given by fi(w) =
15t ri(w)ei, where e; is the ith unit vector in #' and ri is the ith
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Rademacher function. Not‘g that (fi) is essentially bounded. As for the Pet-
tis norm of fr, fix v* = (¥} € E™ = £, Since

J vl du=—f|Zum )| i)

=]

Khinchin’s inequality (cf. [D1]) shows that || f4||pewis behaves like 1/+/k and
50 || fxlpectis — 0. Thus {fi) converges scalarly weakly to the null function
and so if it also converges limitedly or weakly, it does so to the null func-
tion. But consider b € L. [E] & (£4)" given by b(w) = (1, =y (w))i, along
with the corrmponding test fuuction glw, z) = (m,b(w)). Since we have
Jolfelw), blw)) dpfw) =1 /2 we see that (fi) does not converge limitedly
1or Weakly

At this time there is no analogue to Theorem 3.5 which would allow
one to pass from scalar-in-measure convergence to Pettis-norm convergence
when E* has the RNP. Note that if the sequence {f) is Cauchy in the Pettis
norm, then the corresponding subsets Ag of E are relatively norm compact
for each B € F*. But even for an essentially bounded (thus uniformly
integrable) sequence (f) for which the Ap are all relatively norm compact,
the implication scalarly in measure => Peitis does not hold in general, as
shown by Example 5.2.

It is possible in certain situations to pass from weak to Pettis-norm
convergence. For this, a measurement of the oscillation relative to the Pettis
norm is needed.

DEFINITION 5.6. For f € £} and A € F the Pettis-Bocee oscillation of
fover Alis

sup Bocce-oscz™(f)|a.
.'I:*EBE»-

Pettis-Bocee-ose fl4 1=

Since Bocce-osca*fla is at most ||2*|Bocce-osc fla, it follows that
Pettis-Bocce-ose f| 4 is at most Bocce-osc f|a.

DEFINITION 5.7, A sequence { fi) of functions in L}, satisfies the sequen-
tial Pettis-Bocee criterion if for each subsequence (fr,) of (f¢), each £ > 0,
and each 3 in F, there is a set A in F+(B) such that

lim inf Pettis-Bocee-osc fi,|a < €.
J

DREFINITION 5.8. A subset K of £ is Pettis uniformly integrable if the
corresponding subset K o= {e*f : x* € Bps, [ € K} of £} is uniformly
integrable.

Clearly, K is Pettis uniformly integrable if and only if it is Pettis-norm
bounded and the corresponding set K is equi-integrable.
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The following variants of Lemma 2.5 and Lemma 2.6, respectively, are
useful.

LEmmaA 5.9. The sequential Pellis-Bocee eriterion is translation invari-
ant.

Proof Let the sequence (fy) satisfy the sequential Pettis-Bocce crite-
rion and fix f € ﬁ};. The fact that (fy + f) also satisfies the Pettis—Bocce
criterion follows directly from the definition, Lemma 2.5, and the observation
that (cf. inequalities (2.1))

Pettis-Bocee-osc (f+ f)la < Pettis-Bocce-osc fi| 4+ Pettis-Bocce-0s¢ f|4. m

LeMMa 5.10. Let (fi) be a Peitis uniformly integrable sequence in Ll
If for each subsequence (fx;) of (fi), each & > 0, and each B in F*, there
ezists o subset A in FY(B) such that
Lol d
n(4)

then (fi) converges to 0 in the Pettis norm.

liminf sup
7 z*EB g«

Proof. Assume (fy) is Pettis uniformly integrable but does not converge
to 0 in the Pettis norm. Since (fx) is Pettis uniformly integrable, the subset
{le*(fe)| : z* € Bge, k € N} of L} is relatively weakly compact. So there
exists € > 0, a subsequence {fy;) of (fx), a sequence (z} i;) in Bg-, and g in
L such that 2e < fo \mk {f&;)| dp and |:)z,c (o)l — g wca,kly in £}. Since

2¢ £ [, 9du, the set B = [g > ¢ is in F+. For any subset A of B with
positive measure,

imi Jalz* (e dpe fAi o, (Fe)ldu [, gdp
]. 1 wfd 3 A
1n:1jnfm*521;;* 2(A) >11m}_1 o) = (A

Thus the lemma holds. m

The Pettis-norm analogue to Theorems 2.3 and 3.8 now follows with
ease,

THEOREM 5,11. A sequence (fy,) in L}
fo in LY if and only if

(1) (fx) ts Pettis uniformly integrable,
(2) (fu) satisfies the sequential Pettis-Bocce eriterion,
(3) limy, [|mp (fr) — mu{fa)| = O for each B € F+.

Proof. Consider a sequence (f3) that converges in the Pettis norm to
foin £} It is easy to check that conditions (1) and {3) hold. Since for z*
in Bg- and A4 in FT,

converges in the Peltis norm to

[Booce-ase *(fi)| 4 ~ Bocce-oscz* (fo) | <

< ;’I%A"jufk — follPettis
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and Bocee-oscz™* (fo)|a < Bocce-ose fy| 4, from Lemma 2.5 we see that (f)
satisfies the sequential Pettis-Bocce criterion.

As for the other implication, consider a sequence (f;) which satisfies
conditions (1) to (3). To show that f — fo in the Pettis norm, we will
show that {fx — fo) satisfies the conditions of Lemma 5.10. First note that
condition (1) gives that (fi — fo) is Pettis uniformly integrable. Fix ¢ > 0
and B in F+ C(msidtr 8, i;11h~'-;(*q11c,11('c (fg\ ) of (f;‘) f:incc (f;t - fo) satisfles

lim inf; Pcttls-BQC(‘euosc'( fk m-fg)\ A< E Smcc

Sale*(fi; = fo)ldu
pn(A)

using (3) we see that

~||ma(fr; = fo)| < Pettis-Bocce-osc { fr; — fo)| 4,
Z*EB g

[a | (F, — fo)l dpe
#(A)

as needed. Thus fi — fo in the Pettis norm. =

liminf sup <E

2 m*EBEn

Remark 5.4 ties weak convergence to Theorem 5.11.

COROLLARY 5.12. A sequence (fi) in L converges in the Pettis norm
to fo in LY and is uniformly integrable if and only if

(1) {fx) conuverges to fo in the o(Lh, LF.)-topology,

(2) {fn) satisfies the sequential Pettis—Bocce criterion,

(3) Ap = {mp(f): k € N} is relatively norm compact in E for each

B in FT.

Condition (3) may be replaced by

(3" Limy, |mp(fi) ~ mp(fo)| =0 for each B in F*.
Furthermore, if E* has the RNP, then (1) is equivalent to

(1Y (fi) converges to fy weakly in L.

Nate that under (1), conditions (3) and (3') are equivalent.
Since a Pettis convergent sequence need not be tight (consider Exam-
ple 5.5 along with Fact 4.2), there is no Pettis analogue to Theorem 4.5.

6. Variation of the Bocce criterion. As noted in this section, several
variations of the sequential Bocce criterion also provided necessary and suf-
ficient conditions to pass from weak to strong convergence. For a sequence
(fi) of functions in £}, consider the following Bocce-like oscillation condi-
tions, .
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The sequence (fy) satisfies oscillation condition (B0} if for each £ > 0
and each B in F1 there is a set C in F7(B) and N € N such that

Bocee-osc filo < &

for each k = N.

The sequence (fy) satisfies oscillation condition (B1) if for each £ > 0
there is a finite measurable partition m = {A;)Y_, of £2 with u(4q) < € and
N € N such that

Bocce-osc fiula, <€
foreach k> Nandl €7 <p.

The sequence (fi) satisfies oscillation condition (B2) if for each & > 0
there is a finite measurable partition = = (A;)L_, of 2 with u{Ap) < e such
that for each collection (B;)F_, of sets with B; in F*(4;) there is N € N
such that

Bocce-ose fi|p, < ¢
for each k> N and 1 <i < p.

The above three oscillation conditions have appeared in the literature

V2, B3, J] under various names. In [J], it is shown that
(B2)=+(B1)<=(B0).

The proof that (B2) implies (B0} and the proof that (B1) implies (B0)

are both straightforward while the proof that (B0) implies (B1) involves

an exhaustion argument. Tt is straightforward (cf. [G1]) to show that (B1)

implies the sequential Bocce criterion,

If the sequence (f3) in £} converges strongly then it satisfies (B2).
This follows from minor variations of earlier arguments and noting that
Lemma 2.5 may be strengthened.

LeMMA 2.5 (revisited). Let f be in L}. For every & > 0 there s a finite
measurable partition m = (A;)f_; of 2 with u(Ag) < £ such that for each
collection (B;)i_, of sets with B; in F1(4,),

Bocce-osc f| g, < g,
foreach 1<i<p,

Thus in Theorem 2.3 (and thus also in the related theorems) oscillation
condition (2) may be replaced with the condition that (fi) satisfies either
oscillation condition (B2), (B1), or (BO).

As for the subset analogue, recall [G1] that a subset K of £} is a set of
small Bocce oscillation if for each £ > 0 there is a finite measurable partition
7= (A;)5., of 2 such that for each f in K,

P
Z,LL(A{,) Bocce-osc fa, < €.

i=1
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As in the £k case [G1], a relatively strongly compact set is a set of small
Bocce oscillation and a set of small Bocce cseillation satisfies the Bocce
criterion. Thus in Theorem 2.4 the oseillation condition (2) may be replaced
by the condition that K be a set of small Bocce oscillation.
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Coincidence of topologies on tensor products
of Kdthe echelon spaces

by

J. BONET (Valencia), A, DEFANT (Oldenburg), A, PERIS (Valencia)
and M. 8§ RAMANUJAN (Ann Arbor, Mich.)

Abstract. We investigate conditions under which the projective and the injective
topologies coincide on the tensor product of two Kothe echelon or coechelon spaces. A
major tool in the proof is the characterization of the em-continuity of the tensor prod-
uct of two diagonal operators from lp to [y, Several sharp forms of this result are also
included.

The aim of this paper is to study the coincidence of the prejective topol-
ogy 7 and the injective topology ¢ on the tensor product of Kdthe echelon
spaces or coechelon spaces.

The motivation for the above study is the well-known characterization
due to Grothendieck [12] that a locally convex space (Lc.s.) E is nuclear
if and only if for each Lcs. F, E®. F = F ®, F, and Grothendieck’s
conjecture that if E and F are lLc.s. such that the & and 7 topologies on
their tensor product coincide then E or F must be nuclear. The related
quadratic problem whether or not the equality F ®. £ = E @, E im-
plies the nuclearity of E, was explicitly raised by Pietsch [20]. In 1983,
Pisier [23] constructed an infinite-dimensional Banach space P such that
P®. P = P @, P, thus answering both Grothendieck’s conjecture and
Pietsch’s question in the negative. John [16] gave several different examples
exhibiting the same phenomenon; his examples were Kdthe echelon spaces
Ap(A) and A (B), with p,q € [1,00) U {0}, and the spaces were Fréchet—
Schwartz spaces, neither being nuclear. However, Pietsch’s quadratic prob-
lem has an affirmative answer for certain classes of lc.s. In fact, if £ is
a projective limit of a reduced spectrum of Banach spaces which are Lp-
spaces (1 < p < oo) in the sense of Lindenstrauss and Pelczyfiski and
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