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Coincidence of topologies on tensor products
of Kdthe echelon spaces

by

J. BONET (Valencia), A, DEFANT (Oldenburg), A, PERIS (Valencia)
and M. 8§ RAMANUJAN (Ann Arbor, Mich.)

Abstract. We investigate conditions under which the projective and the injective
topologies coincide on the tensor product of two Kothe echelon or coechelon spaces. A
major tool in the proof is the characterization of the em-continuity of the tensor prod-
uct of two diagonal operators from lp to [y, Several sharp forms of this result are also
included.

The aim of this paper is to study the coincidence of the prejective topol-
ogy 7 and the injective topology ¢ on the tensor product of Kdthe echelon
spaces or coechelon spaces.

The motivation for the above study is the well-known characterization
due to Grothendieck [12] that a locally convex space (Lc.s.) E is nuclear
if and only if for each Lcs. F, E®. F = F ®, F, and Grothendieck’s
conjecture that if E and F are lLc.s. such that the & and 7 topologies on
their tensor product coincide then E or F must be nuclear. The related
quadratic problem whether or not the equality F ®. £ = E @, E im-
plies the nuclearity of E, was explicitly raised by Pietsch [20]. In 1983,
Pisier [23] constructed an infinite-dimensional Banach space P such that
P®. P = P @, P, thus answering both Grothendieck’s conjecture and
Pietsch’s question in the negative. John [16] gave several different examples
exhibiting the same phenomenon; his examples were Kdthe echelon spaces
Ap(A) and A (B), with p,q € [1,00) U {0}, and the spaces were Fréchet—
Schwartz spaces, neither being nuclear. However, Pietsch’s quadratic prob-
lem has an affirmative answer for certain classes of lc.s. In fact, if £ is
a projective limit of a reduced spectrum of Banach spaces which are Lp-
spaces (1 < p < oo) in the sense of Lindenstrauss and Pelczyfiski and

1991 Mathematics Subject Classification: 46A45, 46A32, 49A80, 46M05, 46820, 46B28,
46B45. :

Key words and phrases: Kéthe echelon spaces, topological tensor products, injective
and projective topologies, tensor products of diagonal operators.
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f E®@, F = E ®, E then F must be nuclear (see, for example, Jar-
chow and John [14]). Also, Jarchow and John [15] have constructed, us-
ing Pisier's space P, a non-nuclear Fréchet-Schwartz space E such that
E®. E=Eg®,; E

Our main result (in §2) gives a complete characterization of the coinci-
dence of the e and 7 topologies on the tensor product A,{A4) @ A, (B) of two
echelon spaces, p,g € [1,00) U {0}. This characterization (sec Theorem 5)
is provided completely in terms of the matrices A and B. A major tool in
the proof is the characterization of the ew-continuity of the tensor product
of two diagonal operators A : [, — I and B :l; — I, on l, ® [,. This result
(Theorem 1) may be of independent interest. Several sharp forms of the
result are also provided. Qur approach is different from John’s [14] where
s-numbers are used.

We also give a characterization of the coincidence of the two topologies
for tensor products of Kéthe coechelon (DFS)-spaces. Finally, an alterna-
tive construction of a Fréchet—Schwartz space E without the approximation
property and such that ¥ ®. E = E®, F is provided and this construction
is simpler than the one in {15].

Qur notation for Banach spaces and tensor products is standard and we
refer the reader to [8]; for Lc.gs. we follow [13 and 18], and we follow the
notation of {4 and 18] for K&the echelon and coechelon spaces. Iy is defined
to be cg.

Acknowledgements, This article was written during a stay of J. Bonet
at the University of Michigan in Spring and Summer, 1993 supported by the
Conselleria de Cultura, Educacié y Ciencia of the Generalitat Valenciana
{Spain); the research of J. Bonet was also partially supported by DGICYT,
Proyecto no. PB%1-0538.

1. ex-Continuity of the temsor product of two diagonal opera-
tors. In this section we present in Theorem 1 a characterization of the gr-
continuity of the tensor product A ® B of two diagonal operators A : 1, — I,
and B : l; — [,. The result is presented in the form in which it is used
in proving our main result in §2. However, because of the possible use and
interest in this result from the purely Banach space point of view, we also
present sharper forms of the result.

Before proving the first theorem we make the following

Observation. (a) If a,b € ¢p are strictly positive sequences, then the
condition > abs(;) < oo for each bijection o : N — N is equivalent to
3 ar(iybssy < 0o for suitable (or for all) bijections r and s such that (ar(i))
and (bs(;y) are decreasing; this is easily seen by noticing that for decreasing
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sequences (;), (yi) with 3 z;y; < oo and for an arbitrary bijection o : N -
N, Tz S Tl + o) Ya (s for all i € N.

(b) If a, b € ¢g are non-negative sequences, then the condition } a;bg(;) <
oo for each bijection o : N — Nis equivalent to }  a,(;yba) < oo for arbitrary
injections r and s from N inte N.

THEOREM 1, Given p,q € [1,00) U {0} ond bounded sequences a =
(@), b = (by) of non-negative nurnbers, let A € L(ly,1p) and B € L(l,, 1) be
the diagonal operators Al(z;)] = (as:) and Bl(y;)] = (bjy;). Then

(1) if 3 asbagsy < oc for each bijection o : N — N, then AQB : l,®.1, —
lp ®n g i85 continuons;

(2) if A@ B, e ly — lp Ry ly 45 continuous, then there exists r,1 <
r < oo, depending only on p and ¢ such thet for esch bijection o : N — N,
(ag,bq(,;)) €l

Proof. (1) First consicder the case where both (a;) and (b;) are decreas-
ing null sequences. Consider an arbitrary C in the unit ball of I, ®. ly; we
may represent it by C = (¢i5) € LIy, 1), ¢ being the index conjugate to p
(in case p = 1 we embed I} ®, X into L(cg, X)), Let M = 3 ab; < co and
for fixed 4, let J; = {j e N: 7 > i} and J; = {jeN:j>1}; let x5, and X7,
be the corresponding characteristic functions.

Define

o @ N
Ry = (x.u- (J)*icv::f) and T; = (X:f(ﬂ)b—j_cﬁ) -
4 /g kT
The coordinates are defined to be zero if the corresponding denominator is
null. Since (a;) and (b;) are decreasing and C' is in the unit ball of L(lp, 1)
we get [|Rill, < 1 and [ T3]l < 1 for each i. We verify that (A® B)C =

S aibi(R; ® e; - e; @ Ty). This follows from
((A & B)G, ej @ 8[) == ((B Q C' < At)(ej),e.l) =. <(B o C)(%ﬂg), 61)

= (B(aj{ci; i), 1) = {(bsageijhi, er) = asbicy;

and
<Z aq;bi(R@; 8 e, -l ey 8 Ti), ey @ ﬁl) = <[ Z biajc.,;je«;] -+ ajbjTj, Bl>
a
= a.,-bgc;j for all l,j.

If one of @ and b is not in ¢o, then (a;by(;)) € I1 for each o implies that a or
bisin Iy, hence the continuity of A® B follows: see, for example, [13, 17.3.8].
We can suppose, hence, that a, b € co\/1. It is possible to reduce the problem
to the case a;,b; > 0, i € N: If, for instance, @ contains null elements, we
can define the inclusion @ : I, — l,, $(e;) == ey, where w: N — N is the
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increasing injection such that a; > 0 if and only if j € II’E @, and let P :
l, — I, the corresponding projection {Pod = I;_). Then, if A is the diagonal
operator corresponding to (a,(iy), we have AQ B = (6@ 1)o(A@ B)o(P®I)

and it is enough to show that A® B is em-continuous. Finally, the assumption
in (1} is equivalent t0 3 au(iybogsy < oo for arbitrary injections ¢, : N — N
hy the observation above.

When a,b € ¢y are strictly positive, we may also assume that (a,) is
decreasing; consider then the bijection ¢ : N — Nsuch that b = (E) = (bgrs))
is decreasing. The map & : ¢ ~ ¥ is an isometry and so it suffices to show
that A ® B € L(l, ®: 15,1, ®x l5); thus the general case is reduced to the
first case.

(2) Case 1: p' < g < co. Assume that A® B is continuous and ||A® B
< M. Since for any bijection & : N «v N, the element > 7 e; ® e,
belongs to the unit ball of I, ®. I, for each n,

T T
(A ® B) (Zei &® eg(,;)) = ZAjfj & g4
j==1 i=1
with || fllp < 1, llgsll £ 1,5 =1,...m, and 372, [A;] < M. Then we also

have

n
axdo(r) = <(A ®B)Y ei® ey ex ® 6a(k)>

i==1

:Z)\jfjkgja(k): k=1,...,n.
J=1
Since f; = (fiu)r € lp and g; = (gjo(k))x € Iy we see, by the generalized
Holder inequality, that f;g; € I, where 1/r = 1/p+ 1/¢ and

1/r
1fs95lle = (32 lfingroml”) " < I fsllollgslle < 1
k
{r = q if p = 0); it follows that

. n 1/r
(akba(k))k €l and (Za};bzm) / < M.
k=1
This is true for each n and thus the proof is complete in this case.

Case 2: 1 < ¢ < p < oo Let @ € I, with |iz[|, < 1 be arbitrary.
Then 370 ) @ie; ® ey belongs to the unit hall in lp ®: 1y for each n € N.
It now follows, as in the previous case, that zgpakby(s = 2311 s ik Gia(k)
for suitable A, f and g. Since 1/p+1/g > 1/p+ 1/p' = 1 we deduce that
(Trarbo(k))x is in the closed ball of radius M in l;; this being true for each
T € I, with ||z||, < 1 we obtain (akborr)) € by, 1 < p' < oo,
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The cages p=1,¢=0and p= 1, ¢ # 0,1 are also covered by the above
discussion by suitably interchanging » and g.

Case 3: p=qg=1 We hreak this case into two cases.

Case 3.1. Assume both o and b are in ¢y and let @, b denote the de-
creasing rearrangernents of their non-null elements and A, B denote the cor-
responding diagonal operators. Observe first that A ® B is em-continuous,
hence A ® B is also em-continuous and let K denote its norm. First re-
call the following well-known estimate (see, for example, [8, p. 56], [11] and
Proposition 3 below): for each n € N, ‘

(%) Vi < |lid@id I @, I — 17 @, 17,

_ Given n, let A, = (@)}, and B, = (Bk)}j:l; we also consider 4, and
By as diagonal operators on [f (without changing notations). Then

1(An) "' @ (Ba)™"  1f @x 1 — 17 @ Il < 1(An) ™ |(Br) ")) = (@ubn) ™
Thus, for each n, and for z €I} ® [,

2l = 1[((An) ™ @ (Bn) ™) o (4,
< (Engn)-—l K- ll2]l2

® Bo)z|lr < (@nbn)  [(An ® Br)zlr

and it now follows from (%) that &,b, < K /+/n and therefore @b € . for all
€ > 0. In view of the earlier observation this is equivalent to (asbs () € la1e
for all € > 0.

Case 3.2: a & cy. We claim, in the presence of our hypothesis on the
er-continuity of 4 ® B, that b € ¢g. If b & ¢o (and a & ¢p), then there
are increasing sequences (i), {jx) of positive integers and £ > 0 such that
@i, = € and by, > £ for each £,

Since A ® B is em-continuous, if K denoctes its norm, we have as in
the previous case 3.1, for each fixed n and the diagonal n X n matrices
An = (@i, ..., 04,), and By = (b, .. . bj.),

(A0 @ (Br)™Ylper < 1/6*  and hence 1 < K/

This being true for each n, we have the required contradiction and thus
beep.

Now we shall show that b € ly4 for all £ > 0, which also implies that
ab € Iy, As before, let b denote the decreasing rearrangement of the non-
null elements of b, Then considering Eﬂ ® By, (in the notation of the previous
paragraph) we conclude that /n < 5”15; 'K and then B € loye, Ve > 0.
"This completes the proof in this case.
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Cased: p=¢g=0.In this case the desired conclusion follows as in Case
3, from the ohservation that, for each n € N,

VR < |lid@id: P @ I — 17 @, 17| = [id®id : I, @ 12 — 12, @, 1] =

We now improve Theorem 1 in the case of decreasing sequernces a and b,
Part (1) below with constant 1 and its proof were suggested to us by
Kwapien. We are very thankful to him.

THEOREM 2. Given p,q € [1,00)U{0} and decreasing null sequences a, b,
let A€ L{l,,l,) and B € L{ly,1,) be the diagonal operators associated with
e and b respectively.

(1) If ab € Iy, then A@ B : I, @ lg — 1, @z ly is continuous and
|4 ® B < [|ab]|1-

() If A@B 1, ®:ly — 1y ®x Iy is continuous, then there is 1 <7 < co
such that ab € I and ||abl,, < 2[|A® B||.

BYIf i/p+1/g=1, then AQ B : I, ®: ly — lg ®x Iy 15 continuous if
and only if ab €ly and |[A® B| = [lab||;.

Proof. (1) This procf was suggested by Kwapieti. We may assume a; =
1 == b;. We denote by ¢ the vector (1, () 1,0,...), k € N. We may write

GZZA}ch,bnz,&J,Cg,US)\JC,kEN,OS}Lg,lGN,andE/\k = ] =
3 - Moreover,

lably = || 3o Awerd|, = D2 Aullentll = 3 Awsallererll.
k k k.l

On the other hand,

A B= Z)\kc’k @B= Z)\kmck ® Oy,
p kol
where Cj, is the diagonal operator associated with ¢. Consequently, | A® B]|
< 2opi Ak l|Cr ® Cif|. Accordingly, it suffices to show that ||Cr ® Cf| <
llexeil|y for all k,1 € N.
To see this, we first assume k < ! and we take an arbitrary element D
in the unit ball of I, ®. I;. We may write D = (d; ;) € L{ly, ;). We have

k
(Ch®CID = ¢ ®(a(di)),
J=1
hence ||Cr ® Ciff < min(k, 1) = jlcr |1, as desired.
Part (2) directly follows from an inspection of the proof of Theorem

1(2), and part (3) follows from (1) above and the proof of (2), Case 1 of
Theoremn 1. m
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Part (1) of the preceding theorem also follows from John [16]; his proof
uses approximation numbers and gives the continuity constant 12 (instead
of 1). For p = 2 gtatement (3) is due to V. Bartik, K. John and J. Korbag
[1, Lernma 1]; they use some standard techniques and the notion of singular
numbers to extend it to arbitrary operators acting between Hilbert spaces.
(1) and (3) for general p and ¢ (in particular, for p = ¢’} seem to be a partial
answer to a question asked there (see [1, Remark 2]).

Remark. In view of the non-symmetric nature of the hypothesis on
aby in (1) and the conclusion on ab, in (2) in Theorem 1, the following
preliminary obgervations are in order.

(i) Congider p = ¢ = 4 and r = 2; then from a result of Defant and
Mascioni [9] it follows that there exists an a € lyg/7,a & Iy (or a? € Iy, a? ¢
l1) such that A® A : {4 ®e la — Iy @x {4 1s not continuous and thus in the
theorem the hypothesis (ab,) € [; cannot n general be weakened.

(ii) Consider a € lgj3,a € Iz, so that a® & lj; again by [9], A® 4 :
I @ by — 14 @n Ly I8 continuons; thus the conclusion in (2) that ab, € . for
gome 7 cannot in general be improved to ab, € [1.

These observations prompt the determination of the optimal I,., replacing
l; in the hypothesis of (1) and in the conclusion of (2); the following results
address this question.

Let us start with a quantitative version of part (2) in Theorems 1 and 2.

PROPOSITION 3. For 1 < p,q < oo denote by u(p, q) the infimum of all
1< r < oo such that for some constant ¢ > 0,

llodllr < cllA® B : 1y ®¢ly — Iy ®r Lol

holds for oll decreasing null sequences a and b. Then

(1/2+1/q if2<p<g
1/241/p f2<q=p
Yp+1/q fp<2and1/p+1/g<];
i/p+1/g ifg<2and l/p+1/g L1,

1/ wlp,g) = 2-1/p~1/q fp22andl/p+1/g21;

2~1/p~1/q #fqg22andl/p+1/g21;
3/2-1/q fes<ps<y
(3/2-1/p ifp<qg<2

Our proof needs the following lemma. One implication of the lemma
follows as in the proof of Case 3.1 of Theorem 1, The converse follows upon
taking o = b= (1,{",1,0,0,...), n € N.

LEMMA. For 1 < r < oo the following are equivalent:
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(HV¥e>03e>0¥neN: nt/(rtel < ellid@id : 17 @ 1) — 1 ® 17|);
(2) ¥e > 0 Je > 0 such that for all decreasing null sequences a, b,
llad||rse S cllA® B :lp @Iy — 1 R byl

For the proof of Proposition 3 it is then enough to give the precise
estimates of (1) above. This is obtained in the remark below. We also refer
to [11]. For two sequences (an) and (by) of strictly positive numbers we write
@ < by, if there is a constant ¢ > 0 such that an < cby for all n € N, and
we Write Gn = bp if an < b, and by, < ap,.

Remark. For 1 <p,g< o0,

lid@id : 1P @ 1 — 12 @ 12| = pl/eesa),
Proof. Denote the left sequence by ¢, (p, q). Since, by symmetry, ¢, (p, )

= t,(g,p) and, by duality, t.(p,q) = ta(p',¢'), it is enough to establish the
following estimates:

(1) tn(p,q) = n¥2 VP for 1<p< g g2
(2) tnlp, q) = /P9 for 1< p< 2 <y < g < o0,

Case 1. We denote by D, the g-dominated norm (see e.g. [21, p. 236]
or [8, p. 210]). By [8, p. 382],

ta(pg) < qu Re l; — lg @ l;” < Dfl(lg = l;)’

and, by 21, p. 316], Dy(lp — I3) = n3/2=Y/? (the infimum computed in [21]
is, in fact, a minimum). For the lower estimate, note first that by {9],

n?2UP IR @, I — 1 @ 17,
hence the factorization
Iy @ Iy —— I3 @ 17
Iy ®e Iy e 1 @

yields the result.
Case 2. Assume 1 < p <2< p' € ¢ < oo, The upper estimate

ta(p,q) < Dp(I — 11y < nt/P1/e

follows similarly to Case 1. For the lower estimate first observe that n <
tn(p,p') since

n T
HZek@)ek” =1 and HZekt@ekH =
k=1 i k=1 i

(the latter estimate can be seen in [8, p. 35 or 120]).
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Now the factorization

07 @ 17— 17 @, 1

18 @ It e 17 @0 1

vields n < t,(p, g)n'/ ¥ =114 which gives the desired conclusion. m
Note that the proof of the proposition is independent of the (simpler)
proof of (the non-quantitative version of) Theorem 1(2).

Unfortunately, we only have partial results on a quantitative version of
Theorem 1(1).

ExaMmpLES. For 1 € p,q < oo denote by v(p,q) the supremum of all
1 < r < oo such that for some constant ¢ > 0,

|A® B : 1 & Iy — lp & Il < cllabd],
holds for all decreasing null sequences a,b. Then

(1) 1< v(pg) < plpg) £ 2

(2) (0. 2) = v(2,p) =1 for L < p < o0;

(3) v(p, g} = 1 whenever 1/p+ 1/q =1;

(4) 2= 7(p,oc) = 4(p,1) for 2 <p < o0

For the extreme (and most important) cases p,q € {1, 2,00} this means
that u(p, ¢} = v(p, ¢) is either 1 or 2. But in general i # v, e.g. for 2 < ¢ < oo
we have u(2,q) = (1/2+ 1/¢)~" > 1 = ¥(2,g). Moreover, in contrast to
w(p, q), the function v(p,q)} is not continuous in p and q.

Proof. (1) The left inequality is Theorem 1{1) (or Theorem 2(1)) and
the right inequality follows from Proposition 3.

(2) It has to be shown that every admissible r ag above is 1. It is a well-
known fact that I, 1 < p < oo, contains all {}’s uniformly complemented,
i.e., there is some constant ¢’ such that for all n € N there is a factorization of
the identity of I§ through Iy, Jn : 1§ — I and Py, 1 Iy — 1§ with || Ju [} Pall <
¢. Using the factorization

[} & 1~ 17 ® 1Y
Jn@id T!%@ic:l
by @ 1 —s b, @, 17
it follows from the remark in the proof of Proposition 3 that n < ¢/'nl/7,
which implies. r = 1.
By the proposition, u(p,q) = 1, hence (3) is a consequence of (1}.
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(4) By (1) it is enough to prove 2 < ¥(p, g}. We follow some ideas of [16]
and give only a sketch.

(a) For every rank n operator T : I — loo, N(T) < en /2T where
¢ > 0 is some universal constant and N stands for the nuclear norm. Indeed,
we have

N(T) = I(T) = Pi(T) < cR(T) < en' |7
(for the notations and necessary results see e.g. [8, 16.3, 11.3, 31.7 and 11.9]).

(b) If S%, stands for the ideal norm coming from the approximation
numbers and the Lorentz sequence ideal I3 1, then we have N(T') < /'S8 ,(T)
for all T : Iy — loo. This follows exactly as in [22, p. 86] together w1th (a,)

(e Using ideas of [16, 2.2] we obtain

4e B < ¢(YaslpaeByie) "7

k=1

29 e 1/(2-¢€)
(; Gb}cbk-) ) .

2. Coincidence of & and 7 topologies. In this section we first con-
sider the coincidence of the projective and injective topologies on the tensor
product of two echelon spaces and obtain a characterization of it in terms
of the defining matrices. The basic tool used is Theorem 1.

We let the following general lemma precede our discussion.

LEMMA 4. Let E = proj,(En, 0nm @ Em — By) and F = proj, (Fy,
Onm : Fm — Fn) be Fréchet spaces which are reduced projective limits of
sequences of Banach spaces. The following conditions are equivalent.

(1) E® F = E ®; F holds topologically;

(2) E®.F = E®, F holds algebraically;

(2 ER.F = ER.F holds algebraically and topologically;
B)VrIM>n: opm ®nm : Em Qe Fy — Bp @y Fp is continuous.

Proof. Clearly (1) and (2) are equivalent and the equivalence of (2)
and (2) follows from the open mapping thecrem for Fréchet spaces.

To show that (2)’ and (3) are equivalent, we first observe that E®.F =
proj, En @y Fy, and E®.F = proj, E,&.F, where the projective limits are
reduced (see [13, 15.4.2 and 16.3.2]). By well-known properties of projective
limits, (2)’ is equivalent to the following condition:

Yrdm > n

Onm®0n m + En®:Fp — E,Q.F, is continuous.

This is clearly equivalent to (3). The proof is complete. =

THEOREM 5. Given Kdthe matrices A = (a™) and B = (b") with af > 0

and b} > 0 for all n,i € N and p,q € [1,00) U {0}, the following are
equivalent:
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(i) Ap(A) ®: Ag(B) = Ap(A) @7 A(B) topologically;
(ii) for each n there exists m such that for each bijection o : N — N,
’be’rl

[ ,

e (i)
3 e
i %

o (i)

Proof. In view of Lemma 4, (i) is equivalent to
¥n Im such that the uuect]on
nm O Trm ¢ By @ By — By @, Fy, is continuous,

where 55 = A (A) = proj, (lp(a)) and F = Ag(B) = proj, (I (2")); thus (i)
is equivalent to

{iii) ¥n Jm such that on,m ® Gnm
is continuous,

tHp(a™) ®e Lg(b™) — Lp(a™) ®x 1y (0")

which, in turn, is equivalent to

(iv) ¥n dm such that R®T 1y ® Iy — Iy ®x g is continuous, where R
is the diagonal map (a"/a™): 1, — I, and T is the diagonal map (§7/™) :
lg = 1.

Now, from Theorem 1, it follows that (ii}=-(iv)<(i). Also, (1}&(iv)=> (by
Theorem 1) ¥ 3m such that (a7}, /(af*b7,)) € I for a suitable r 2 1
and all b1JectJons o. Repeating this process a sufficient number of times so

that I - + ... - I, is contained in Iy we see that (iv)=-(ii). w

The implica,tion (ii)=2(i) in the theorem above, for matrices with a™/a™*
and b™ /6" decreasing, already follows from John [16], where he obtains
some results for matrices obtained as powers of a given strictly decreasing
null sequence. This has also to be compared with [10]. The first examples of
non-nuclear Fréchet-Schwartz spaces E and F such that E®. F = E®, F
holds topologically were obtained by John [16]. In fact, John showed that
there are decreasing sequences ¢ = (a;) and b = (by) of strictly positive
numbers such that a,b € ¢y and ab € I} but a & I, and b & I, for all
p > 0. John's eaxampleb are obtained by taking E = A2(4), F = A(B),
A= (@) = ((a)""), and B = (b*) = (b)),

A Kéthe matrix A = (o) is called regular if /g™t ig decreasing for
every n € N,

CoroLLARY 6. Let A= (a") and B =
The following condilions are sguivalent:

(1) Ap(A) e Ag(B) = Ap(A) B Ay(B) holds topologic a.lly,

(2) Yn3m > n: (@™ /(2™b™) € 1.

This result is no longer true if we drop the regularity assumption. Indeed,
apply [16, Lemma 3.1] to find decreasing sequences a,b € cop with ab € Iy

(b*) be regular Kdthe matrices.
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but ¢ ¢ [, and b & I, for all p > 0. Deﬁne now sequences as follows:
Cop =077, cajy =y, day oy Y odgi1 = b ! for each i € N, and take

= ((c,;)”) and D := ((ds)"). The correspondlng spaces A2(C) and Az(D)
are Fréchet—Schwartz, the quotient {c*d®)/(¢"1d™*) = (a;b;) belongs to
I, but Aa(C) ®¢ Aa(D) and A2(C) &~ Az{D)} do not coincide topologically.
Indeed, if we define o : N — N by ¢(2i) = 2i— 1 and ¢(2i —1) = 2 for every

1 € N, then
Z cndn Zan 1 + an 1

for every n € N, a,nd the conclusmn follows from Theorem 5.

Next we show that the topological identity of the projective and the
injective topologies on the tensor products of two Kéthe echelon spaces has
consequences on the structure of the spaces involved. The case p = g = 1
was already given in [6].

PROPOSITION 7. If Ay (A)®eAg(B) = A (A)®r Ay (B) holds topologically,
then A (A) or Ag(B) is nuclear or both spaces are Fréchet-Schwart.

Proof. We will show that if the topological identity holds and one of
the spaces is not Schwartz, the other must be nuclear. Assume that A (B)
is not Schwartz. There is n' € N such that b, /by, & ¢ for all m > n'.
Accordingly, for every m > n, there are g, > 0 and an injection § : N — N
(which depends on m) such that by g:)/bm6¢i) = &m for every 2 € N. In
order to prove that Ap{A) is nuclear, we fix n > n'. By Theorem 5, we select

m > n with
Z a'n,ibn,cr(i) < o0
T 0m,ibm o (i)

for every bijection o : N — N. We want to show that e, /a., € I;. If this is not
the case, we may suppose without loss of generality that (an 2i/@m 2i)ien €
l1. We take any injection g: N — N whose image is N\ {§(2¢) : 4 € N} and
we define the bijection o : N — N by o(2i) 1= §(2{) and o(2¢ — 1) := p{4),
i € N. We have

anz Cn, 2iby 5 24) Q.24
00 > Z n,0(£) > Z i, 6(24) > e Z 1,28 00,
§

am. 1,0 () i, 2:b m,5(2i) Uy 24

a contradlctlon. n

For comparison, we recall here that Pisier [23] constructed an infinite-
dimensional Banach space P such that P®, P = P®, P holds topologically.

There are more conditions which are equivalent to the ones in Theorem
5. For the definition of vector-valued echelon spaces we refer to [18] and [13].
We refer to [8, pp. 78 fI.] for the norm A4,,.
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PROPOSITION 8. For Kdthe matrices A = (a™) and B = (b") with
o, b > 0 for all i,n € N, the following conditions are also equivalent
to conditions (1) and (ii) in Theorem b:

(ill) If p # 0, then A\ (A)®.A((B) = Ap(A, Ay (B)) holds topologically;

(iv) If p# 1, then Ap(A)BaA(B) = As(4, Ay(B)) holds topologically;

(v) If p# q, then A, (A, Ay (B)) = A (B, \y(A)) holds topologically.

Before we start the proof, we make the following remarks. If p = 0, then
AQ(A)@E-)\U(B) Ao(A, Ag(B)) holds topologically for arbitrary B, If p = 1,
then Ay (A)&, 2, (B) = Ay (4, )\,,(B)) holds topologically for all B. Moreover,
if p = ¢, then AI,(A Ap(B)) = Ap(B, Ap(4)) = A\y{A ® B) for all matrices A
and B, with A® B = (al'b} ) jyenxn-

Proof of Proposition 8. It is easy to see that condition (i) in
Theorem 5 implies conditions (iii)-(v).

We prove that (iil) implies (ii). To do this assume first p # 0, ¢ # 0 and
Ap(A)®: Mg (B} = Ap(A, Ay(B)). This implies

Yndm>n: [[R®S:l®:ly— 1, ®a, L] < oo,

where R and § are the diagonal operators associated with o™ /a™ and b® /6™
respectively.

By a result on so-called Bennet matrices (see [5]) we have

lid : 2 @ 1 = 1 @, 12 = c(p, gnd®)
for each n € N, where
l/g f2<p<gsoo
I/p if2<g¢<p<og;
dpg) =< /g f1ZpL2<ggoo;
l/p f1<¢<25p<oo;
1/2 if1<pg<2

Proceeding as in Case 3 of the proof of Theorem 1, we obtain

af‘bﬂj“) )(IL+E)/A
ey < 00
> ()

for some A > 0. This implies condition (i) of Theorem 5.
fq=0,p#0and \(A)®:Nog(B) = M{A4, Ao (B)), then A, (4, Ao(B)) =

Ao(B, A,(A)), and the conclusion follows from the equivalence of (v) and (ii)

that we are going to check now. The proof of (iv)=>(ii) follows by duality.
To prove (v)=(ii), we assume p < ¢. By {8, p. 79] we have
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hence Ay (A, A(B)) is continuously embedded in A¢(B, Ap(A)). If they coin-
cide topologically we have

YnIm>n: [R®S:lL®al,— b ®a, L) < oo,

where R and § are diagonal operators as above.
Since {lid : I} ®ac I — 17 B4, il = nl/2=1/4 for each n € N, we can
proceed as above to conclude (ii). =

We now present examples of non-nuclear (DFS)-spaces & and H such
that G ®, H = G ®, H holds topologically. We recall that G is a (DFS)-
space if G is the inductive limit of a sequence of Banach spaces (7, such that
the canonical inclusions 4p ni1 : Gr = Gna are compact. We first need the
following {more or less well-known) lemma.

LEMMA 9. Let G = ind, G, and H = ind,, H, be (DFS)-spaces. If the
Banach spaces G, and H, have the approzimation property, then G&. H
and GRH are (DFS)-spaces and we have the following representations as
injective inductive limits:

CBoH = ndn(Gn®H,) ond GB.H = ind, (G,8.Hy).
Moreover, the canonical map 1:5 L G, H — (R H is injective.

Proof. The result for injective tensor products is well known and follows
from [2]. Concerning the projective tensor product, we first apply [13, 15.5.4]
to deduce that G ®, H = ind, (G, ®, H,) holds topologically. Moreover,
the connecting maps

in,n—l—l@jn,n-l—l $Gn@r Hy — Grr.+1®'rrH'ra+l

are compact for every n € N and injective, by the approximation property.
Analogously, the canonical maps

Ln@).?n : Gnéwﬂn —* G@WH
are also injective and continuous. Consequently, we have a continuous injec-
tion

i :indy(Gn& Hy) — OB, H.
Since both spaces induce the same topology on G ® H, we can apply [3, 2.1]
to conclude that j is also open. Since the inductive limit ind,, (G, 8, H,) is
complete (it is a (DFS)-space) and G ® H is dense in it, we see that 7 is also
surjective and the proof of this case is complete. The last statement now
follows easily. One could apply [7, Theorem]. m

If E = proj,(Bn, 0nm : Bm — E,) is a Fréchet-Schwartz space which
is the reduced projective limit of a sequence of Banach spaces (F,) with
compact linking maps gn.m (n < m), then its strong dual B/ is a (DFS)-
space. In fact, B} = ind,E], and we will identify E! with a subspace of
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E'. The linking maps {nnr1 = of 0 0 By — E;, .1 are injective and com-
pact.

ProposItioN 10. Let E = proj,(By, gnm @ By — By) and F =
proj, (Fp, onm @ Fpo — Fn) be Fréchet~Schwarts spaces which are reduced
projective limits of sequences of reflevive Banach spaces with the approxi-
mation property. The following conditions are equivalent:

(1) E®: F = E &y I holds topologically;

(2) Ej @, F) = E & F holds topologically;

(3) E[&:F! = ElnF) holds algebraically;

(3Y El&:F = E[&,F| holds algebraically and topologically;

(4) YnIm >n: BB F. C Bl &, F.;

(4) VnIdm > n: E,@.F., C El &, F,, with continuous inclusion;
(5) Yndm >n:K(E,, F,)C N(E,,F},).

Proof. Since B = ind,E}, and F} = ind, F},, the proof of the equiv-
alence of (2), {(3) and (3)' follows the same lines ag the proof of Lemma, 4,
using the open mapping theorem for (LB)-spaces.

By Lemma 9, B{ &, F = ind, (B, 8 F)) and BB, F, = ind,(E, &, F")
with continuous injections. We then apply Grothendieck’s factorization the-
orem to conclude that (3)' is equivalent to (4)'. Clearly {4) implies (4) and
(4) implies (3).

The equivalence of (4) and (5) follows from [13, 17.1.9,17.3.3 and 18.3.4],
since K (B, F!) = B8, F, and N (B, FlL) = Bl & Fl.

It remains to show the equivalence of (1) and all the other conditions.
Since E @, F and E ®, F are metrizable, condition (1) holds if and only
if (E®. F) = (E ®; F) holds algebraically, or, equivalently, if and only
if (E®:F)Y = (E®.F) holds algebraically. Now, all the spaces involved
are Fréchet-Schwartz spaces, and we can apply Buchwalter’s duality (e.g.
[18, §45.3]) to conclude that (E®.F)' = (E&,F)" holds algebraically if and
only if B &, F = L(E, F) = F! &, F| holds algebraically. This is exactly
condition (3). w

Remark. (1) Proceeding as in [19, 11.3.19 and 11.3.21] one can show
that the conditions in Proposition 10 are squivalent to

(a) B &, F is ultrabornological;

(a) Ef &, F/ is ultrabornological,

If we also assume that £ or F has the bounded approximation prop-
erty, we can apply {19, 11.5.8] to conclude that all those conditions are also
equivalent to '

(b) E & F is barrelled;

(b) E{ &, F} is barrelled.
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(2) If G = indnGn and H = ind, H, are (DFS)-spaces such that G,
and H, have the a.p. for every n € N, then G ®. H is bornological and
G @. H = md, (G, ® Hy,). But, In general, it seeras to he unknown if
G ®. H is bornological for every pair of (DFS)-spaces G and H, although
G&.H iz indeed a (DFS)-space by [2].

COROLLARY 11. Let 1 < p,g < oo. Let A = (a*) and B = (¥") be
reqular Kéthe mairices such that Ap(A) and Ay(B) are Fréchet-Schwartz
spaces. The following conditions are equivalent:

(1) Ap(A), ®e Ag(B)y, = Ap(A)}, @ Aq(A)y, holds topologically;
(2) ¥n3m > n: (a™0")/(@™b™) € L1

From our characterizations above it follows that, if A is regular, then
Ap(4) e Ap(A) = Ap(A) B Xp(A) holds topologically, for 1 < p < oo, if
and only if for each » € N there is m > n such that u"fa™ € lg, Le. if and
only if An(A) is nuclear. This is a particular case of nmuch deeper results
due to Jarchow and John {14] (see also [1] for further references). Very
recently Jarchow and John [15] have used Pisier’s example [23] to construct
a non-nuclear Fréchet-Schwartz space B such that B ®. E = E &, E holds
topologically. We now present a more direct construction of guch a Fréchet—
Schwartz space.

We recall that Schwartz's e-product of two locally convex spaces E and
F is defined by E & F = L (E.,, F) (see e.g. [18]). The canonical map
¥ : EQ,F — EeF is defined by ¢(z @ y)(u) := {z,ujyforc € B,y e F
and u € E'.

Pisier [23, 24] has constructed an infinite-dimensional Banach space P
such that both P and P’ are of cotype 2 and P ®, P = P ®, P holds topo-
logically. John [17] has proved that K (P, P') = N(P, P). We can apply [13,
17.1.9 and 17.3.3] to conclude that the canonical map ¢ : P& P — P'cP
is surjective.

LEMMA 12. There is o (DFS)-space E without the approzimation prop-
erty such that the canonical map ¥ : EQ-E — E ¢ E is surjective.

Proof The dual P’ of the Pisier space P does not have the approxima-
tion property (see [24]). Take an absolutely convex compact subset K of
P! such that the identity operator on P’ cannot be uniformly approximated
on K1 by ﬁniﬂge rank operators on .

The set K; := {f € P'e P' : f(K{) C K1} is an absolutely convex
compact subset of P! & P’ by [18, §44.3(2)]. Since ¢ : P'®,P' — P'¢ P’
is a surjective homomorphism between Banach spaces, ¢ lifts compact sub-
sets. Accordingly, we can apply [18, §41.4(5)] to find sequences (z}) and
(y}) converging to 0 in P’ such that for each z € K there is (M) € h
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with 72k} € 1 and 2 = ¢(3, As(2f ® y})) (and the series converges in
P&, P').

We sclect an absolutely convex compact subset Ky of P’ such that
Kiu{zi}u {yl} © K, and such that K| is compact in the Banach space

%, generated by K.

Proceeding by induction we can select an increasing sequence (K,,) of
absolutely convex compact subsets of P’ such that, if we denote the Banach
space }’}<n by E,, we have

(i) the injection Jn ni1 i Ep — Eqqq is compact,

(i) for all z € P' e I’ with 2(K;) C K, (polar taken in P”) there are
sequences {Zx), (yx) converging to 0 in E, 4y, contained in K41, and there
is (Ap) C K with 3° [Ae| €1 and 2z = ¢(3, Ae(ar @ i)

We define E' 1= indn o, Then F is a (DFS)-space without the approxi-
mation property (see e.g. [13, 18.5.8]). We will show that the canonical map
th: E@,E — E ¢ E is surjective. To do this we consider the commutative
diagram

E& . E—~t—>EcE
‘PJl l#‘iz
@

P'@p P~ P g P!
where @1 and g are the canonical maps associated with the continucus
inclusion 7 : B — P’.

We fix z € Ee BB = L,(E',E). There is n € N such that 2(K}) C K,
(the polar e taken in E'). Then y(2)(K3) C Ky (the polar o taken in P).
By (ii) above we can find (2x) C Knt1, (yx) C Kps1 and (Ag) € K with
3> |Ak] € 1 such that

ealz) = ¢ Mulor @),
But the series w=" Ay (21 @yi) converges in Byi.q @ Fny1, hence in E®,.E.
Accordingly,
@)= T Maler 8 1) i PBL P

Consequently, wp(z) = #(ip1(2)) = wa(¥(z)). Since 2 is injective, we con-
clude that 2z = («) and v is surjective. =

THEOREM 138. There 18 a Fréchei-Schwartz space F without the approz-
imation property such that F @, F = F @, F holds topologically.

Proof. By Lemma 12 there is a (DFS)-space E without the approxima-
tion property such that the canonical map ¢ : E®,EF — Ee B is surjective.
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By Buchwalter’s duality (e.g. [18, 45.3]) both E&.E and E ¢ E are (DFS)-
spaces. Accordingly, ¥ is a surjective homomorphism that lifts bounded (or
compact) sets. This implies that

¢': (Ee B), — (B&, E),
is a monomorphism. Buchwalter’s duality again yields that

VA i’)‘g’#E{) — Iy, e B,
is a monomorphism. It is eagy to see that the restriction of 1% to the tensor
product coincides with the identity. Consequently, B &, B = E| ®. E|
holds topologically.

The space F' := B is Fréchet-Schwartz, does not have the approximation
property and the topologies £ and 7 coincide on @ F. »
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