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Characterization of strict C*-algebras

by

Q. Yo, ARISTOV (Moscow)

Abstract. A Banach algebra A is called strict if the product morphism is continuous
with reapect to the weak norm in A @ A. The following result is proved: A C™-algebra
iy strict if and only if all ity irreducible vepresentations are fAnite-dimensional and their
dimengions are bounded.

The purpose of this work is to prove a criterion of the strictness of a
C*-algebra in terms of ity irreducible representations.

DErINITION. We say that a Banach algebra A is strict if the (product)
linear operator R4+ A®y A~ A, a ® b ab, is bounded.
Here A ¢, A is the algebraic tensor product with the weak norm

H Zh: ag o) by Hw i gUp {‘ }]‘: Tladg(by)
fe=l fe=1

Strict Banach algebras were considered in [6] (where the term “injec-
tive” was used) and in [5]. For example, the algebras C'*[q,b] and I; are
strict, but L'(@) for an infinite topological group G, the algebra of nu-
clear operators in an infinite-dimensional Hilbert space and [, for p > 1
are not strict [B]. There are strict algebras among C'*-algebras, namely
C($2) where £2 i3 a locally compact space (this was proved in fact by
wothendieck [2]) and an arbitrary finite-dimengional C*-algebra, for in-
stance, the algebra M, of complex n x n matrices with operator norm.
Howover, K(1), the algebra of compact operators in an infinite-dimensional
Hilbert space £, is not striet [3], The proof of thiy fact (see Remark be-
low) i3 hased on the existence in K(H) of any number of one-dimensional
operators with identical initial spaces and pajrwise orthogonal ranges, It also

hge A IFI £, ol < 1.
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works, after small modifications, for the algebra @,; My, the cy-direct
sum of matrix algebras. This proof serves as a pattern for the general
case.

Our main result is

THEOREM. A C*-algebra is strict if and only if all its trreducible repre-
sentations are finite-dimensional and their dimensions are bounded.

PROPOSITION 1. Let vy,...,un be elements of o C*-algebra A such that

(A) 1 22 viul 2 n,

BY || 3 Ml = (5 (A #)H2 for any complex numbers Ay.
Then |[Ral; 2 n.

Proof Denote by K the linear span of {v},...,ui}. If f € A* and
£l < 1, then || flg| £ 1. Condition (B) implies that K is isometrically

isororphic to an n-dimensional Hilbert space. Hence, (3 |f (”-?)12)1/ P2l
Similarly we have {37 lg{v)?)¥/2 < 1.

Letu = Y 0! ®v; € A®, A. It is obvious that ||[Ra(u
On the other hand we have

s |30
sup{(Df(v:;)P) (Tlotwo) ™

foe A |fl <1, gl <1} <1

W =11 32 vfu|| = n.

llulles

foe A Il <1, ol <1}

A

Let I be a Hilbert space. We write e;; for the operator z — (z,¢e;)e;
where ey, es,... is some {(finite or infinite) orthonormal system in H, and
re H.

It is well known that

(%) ” i Ai€i1
=1

for any complex numbers A;.

= ()
g=1 ]

Remark. Suppose that H is infinite-dimensional. Define v; to be e
where {e;}{2, is an infinite orthonormal system in H. It is obvious that
v; € K(H). Since e} ei1 = €11, the system vy, ..., v, satisfles condition (A)
of Proposition 1 for all n. Condition (B) holds by (). Hence Ry sy = n for
all n, and K(H) is not strict.
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PROPOSITION 2. Let m be an irreducible representation of o C*-algebra
A such that dimm 2> n. Then there exist v1,...,0, n A which satisfy the
assurnptions of Proposition 1.

The proof, which is the main part of our arguments, is postponed until
the end of the paper. Now we shall prove the main theorem, taking this
proof for granted,

Prooft of the Theorem. Sufficiency. (It was independently ob-
tained by A, Belotskil.) Roceall that a repr(_taeutation of a finite dimensdion n
i a homowmorphism 7+ A -+ M,,. Hence, if & = ,_ﬂl a;®bh; € A, 4, then
z:‘, wlai) wr (b} € My, 9w M. The operator Ry, 0 M, ®, M, — M,, is
bounded, Lo, there exists €, such that

H ]"'Mt,!. (U}” < c’rw,HUHw for all yE My, @, M,,.

Suppose there exists NV such that dimsw < N for all irreducible represen-
tations 7. Then there exists ¢ such that ¢, < C for all n. Denote by A the
set of all irreducible representations of 4. Then

ki
:>_ {Jw

k

(1) HZ?‘HL1 (b;)

o]

| '( (’n

52

W'ﬂ'bz

for all # € A, where n == dim .
It iy casy to see that |jof| = sup_c s [lw(e)| is & C*-norm in A. The
uniguencss of the norn in a C™-algebra implies that for all ¢ € 4 we have

lelt = llel, i.c.
2)

el] = sup [l .
nEA

We conelude from (1) and (2) that

=P HL () (b)) H

TEA

(3) ” }E‘ wib;
il

k
< Hup ' Z
red

(i) s (by)

w

Let f,g € MY. Then the functionals Fe i ars flm(a) and G : a —

glm(a)), where 7 19 some representation, belong to A* and we have | f,ri| <
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£l and [|Fx] < llgll- Therefore

| iﬁ(ai) 2 (bi)

i=1

= sup {| 22 slatatrte)| £ M3, 1A S, ol 51}

i=1

sup { \ Zk: f'las)g' (b:)
=]
[Swen,
=1

Using inequality (3}, we thus have

|2 <] 2om

Any element of A®,, A has the form E
< Ollz]jw for all z € A®,, A. R

Necessity. Assume, on the contrary, that for any n there exists 7 € A
with dimm > n. Then Propositions 1 and 2 yield ||R4| 2 n for all ». This
means that R4 is not bounded and A is not strict. =

IA

FLg e IS o'l S 1

a; ®b;. This implies that [|Ra(x)|

qam]

Now we start to prove Proposition 2. First, we reduce it to another
statement.

PROPOSITION 3. Let w be a representation of a C*-algebra A in o Hilbert
space H such that dimn > n. Let {e1,...,e,} be an orthonormal system in
H and v1,...,v, be elements of A such that

(i) vivg =0 fori# 7,

{ii) gr{vi)g=m(vi)g=¢ey (i=1,...,n),

(iif) [Jvel| = 1,
where q is the orthogonal projection onto the linear span of {ey,...,en} (in
other words, g = %1 | e;). Then the assumptions of Proposition 1 hold.

Proof. Suppose A is faithfully represented in a Hilbert space K. Then

H ZA,-W = sup (Z)\J)\ (viviz m))l/g

_ I
1/2
= 2p (Dftms)” s (i)™
x| <1
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On the other hand, () implies

IS ]2 ()] 2 fr (S0
= Z)\Mw (w; q‘ “Zz\cu‘—(ZF’\i)

Therefore || 55 Mz || = (37 |A]*)Y/2, and condition (A} holds. Further,
H Zw,’;"'u,,: = Z‘:‘T v ()| = H qu(v;")w(vi)q“
qu, ,|| ney | = n,

and coudition {B3) holds, w

Thus, to prove Proposition 2 it iy sufficient to show the following: if =
s irreducible and dima 2 n, then there exist v1,...,v, in A satisfying
conditions (i) (iii) of Proposition 3. This will be done in four steps.

1. We construct ar,...,0, € A such that qq-r(ak)q_f = wlay)y = py,

0, flag]l = 1, where py = 2% ey, and for all k, | with k < 1 we

g =
have

(**) GO = Gl = (.

2. We cumim(l biyooo by € A such that gr(bp)g =
b == by, ||Byl = L and by, b, == () when k 2 1.

3. We (.hl)t.)H(? Wy oy € A such that gr(wy)g = m{wi)g = ep1, and
g || ==

4. We pul vy == bpaog, ko= 1,..
of Proposition 3 hold for v,,...,v,.

w(be)g = €np,

.y, and prove that conditions (i)-(iii)

First, we prove two technical lemunas.

LEMMA 1, Lel bt R C be a continuous function such that |h(£)] < 1
and B(0) = 0, 7 be a representalion of a C*-algebra A, v be o selfodjoint
element of A, and q be on orthoprojection such that gz (r)g = 7 (r)q. Suppose
that w(r)y is wn ovthoprofection. Then w(h(r))q = 7 (r)q, and ||A(r){ = 1.

Proof. Sinee A0) = 0, we have h(r) € 4 [3; Ch. 4, 7.21]. Obviously,
(ACr)|| == L. Buppose f i a polynomial with f(0) == 0 and f{1) = L. Then
(S () = fln(r)g = J(r(r)q) = f(Dw(r)g == w(r}g. The funetion h can
be approximated by sueh polynomials in the norm of |||, [|r|]]. Therefore
w(h(r))g = w(r)q. m

LEMMA 2. Lot o R -+ C be a continuous funclion such that h(t) = 0
fort < 1/2, and o and y be selfadjoint commuting elements of a C*-algebra
A such that ||2|| = |ly|| = 1. Then hiz —y)h{y) = 0.
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Proof. Let s,f € R. The inequality h(s — £)h(t) 5 0 obviously implies
that s — ¢ > 1/2 and ¢ > 1/2; hence, ¢t > 1. This means that A(s,1) :=
h(s—t)A(t) = 0 for all 5, € [—1, 1]. Since the continuous functional caleulus
is a homomorphism, 2(z, ¥) = h{z —y)A(y). Thus, h(z —y)h{y) = 0 becanse
the continuous functional caleulus is isometric. =

Proof of Proposition 2. Let f and g be positive continuous func-
tions on R such that fg = f, g satisfies the assumptions of Lemma 1,
and f satisfies the assumptions of Lemmas 1 and 2. For example, we coald
take

0, t < 1/2, 0, t50,
Fly=1926-1, 1/2<t<1, glt):=1¢ 2% 0L1S1/2
1, t> 1, 1, t21/2

If 7 : A — B(H) is irreducible, @1, ..., ¢n € H, and b is a bounded oper-
ator on H, then there exists a € A such that m{a)p; = bp; and [[7r(a)|| = [|b]];
moreover, if b* = b we can suppose that a is selfadjoint. (This is Kadison’s
transitivity theorem [4].)

1. Let 7 be an irreducible representation with dimx > n and {e1,..., €.}
be an orthonormal system in H. By Kadison’s transitivity theorem, we can.
choose selfadjoint ry,...,7, such that w(ry)e; = pre; for j,k = 1,...,n
where py = fo:l ey Put ¢ = 3.0, ey Then gn(ry)g = m(re)g = pi-
Replacing ry by |rix|, we can suppose that rp > 0. Lel

o glrn), thoy = flra)ra—1f(re), Thi=rp forl<k<n-2

By Lemma 1, 73'(7".,’,1 g = "'T'(g('rn)Q') = I, W(T.f?,_l)q = PrnPr—1Pn = Pn-1
and ||rL]| = |l7%—:|l = 1. Furthermore, since fg = f, we have r,r),_y
= g(rn)f(Tn)Tn——lf(Tn) f(Tn)Tn—lf{Tn.) = T-ir,—1> and Silnila’rly r.;,._l'rfm
= 7! _1. Thus, property (s} holds for rj, and rj whenever n — 1 < k £/
<N

Suppose now that ry,...,7, are such that #(ri)g = pg, ||re!l = | and
property (#x) holds for 7, and 7; whenever m < k <1 < n {m > 1). Define
...,k by

*®

1
¢

Thy E<m—1,

rho=={ erge, k=mo—- 1,

g(m), k>m—1,
where ¢ = [, f(r;). It follows from 74 > 0 and g > 0 that r} > 0 for
k #m — 1. Since ¢* = ¢ we have rl,_, = crp_1¢ 2 0 ([ 1.6.8] or [3; Ch. 4,

7.78]). Thus, ry, 2 0for k=1,...,n.

Lemma 1 implies that 7(r})g = px and ||rg|| = 1. Since functions of
commuting elements commute, property (*+) holds for v}, and r] whenever

icm
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m-—1<k <1< n After replacing rp by 7}, we can continue this pro-
cedure. The system of clements obtained after n — 1 steps will be denoted
by G150 I35 easy to see that apey = qpay = ap for 1 < kB < I < n,

wlar)y = pr, o = 0 and |log|| =1, k=1,...,n.
2. Put
k=1
b= flay), by == H flag —a)), k=2,...,n
e |

Let T4 be the unit v a ™ -unitization of A. Since ay > 0, we have
[La = apll < [l = U ([3; Cho 4, 7.73], [1; 1.6.28]). By property (#x),

g = aell = oy = appanl] < Japesl Lo~ axl] € 1
for 4 <n — k. At the same {ime,

lasrs = arll 2 7 lapgy — o)l = lpray ~ pall = 1.
Therefore [[ag.; — x|l = 1, and the clements = ap ~ a; and y = a; —
satisly the assumptions of Lemma 2 whenever 4 < [ < k. Hence,
Flag —a) flar — a) = [{(ag - 2:) ~ (@ = ) fla — a;)
=[x = y)f(y) =0.
Put @ = ap and y = a1, We have flag — e)f{a;) = 0 (k > 1). This
means that byby = 0 provided k s I By Lemma 1, |[h| = 1, b} = by, and
w(f(en = 04))g = i~ ps for & > 4. Finally, we have w(by)g = ex.

3. The existence of wy, ..., wy, such that gr{wg)g = m(we)g = ey and
gl = 1 follows immediately from Kadison’s transitivity theorem.

4. Put vy == b, It is obvious that gr{vg)g = w(vg) = ernerr = en.
Further, viu = wibpbpe = 0 (k 5 1) and |vg]| < 1. At the same time,
o]l = New |l = 1. Heuce, o]l = 1. Thus, the system vy,..., v, satisfies
corditions (A) and (13) of Proposition 1. The proof is complete. m
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Ideal norms and trigonometric orthonormal systems
by

JTORG WENZEL (Jena)

Abstract. We characterize the UMD-property of a Banach space X by sequences of
idenl norms associated with trigonometric orthonormal gystems, The asymptotic behavior
of those mumerical parameters can be used to decide whether X is a TUMD-space. Moreover,
if this iy not the case, we obtain a measure that shows how far X is from being a UMD-
space. The main result is that all described sequences are not only simultanecusly bounded
but are also asymptotically equivalent.

1. Introduction. The study of sequences of ideal norms can be used to
quantify certain properties of linear operators. In most cases the bounded-
ness of a sequence of ideal norms for a given operator T describes a well-
known property, whereas, in the non-bounded case, the growth rate of the
sequence describes how much the operator T' deviates from this property.

One particularly interesting case is if two sequences of ideal norms are
uniformly equivalent. Then the properties given by these sequences are also
guantitatively equivalent.

We introduce several sequences of ideal norms related to the trigono-
metric orthonormal systems, The boundedness of these sequences for the
identity map of a Bauach space X is equivalent to X being UMD.

All of these sequences turn out to be uniformly equivalent. As a corollary
we deduce that a Banach space X i a UMD-space if and only if there exists
a condtant ¢ = 0 sueh that, for all 2y,..., ¢, € X, we have

| " " g 1/% T 7 2 1/2
(ﬂ_ f L”’"‘* Hinlﬂt' d&) h((;;f ZMCQSMH dt)
wrr ke k=l

-y
or, what turns out to bhe equivalent,

(TR 2 i 1 Tt 5 1/2
(;‘r“ [HL:M: c:askt’ (il:) gc(; f z-’ﬂkﬁiﬂkt‘ d‘b) .
s kel e lemal
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