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Ideal norms and trigonometric orthonormal systems
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JTORG WENZEL (Jena)

Abstract. We characterize the UMD-property of a Banach space X by sequences of
idenl norms associated with trigonometric orthonormal gystems, The asymptotic behavior
of those mumerical parameters can be used to decide whether X is a TUMD-space. Moreover,
if this iy not the case, we obtain a measure that shows how far X is from being a UMD-
space. The main result is that all described sequences are not only simultanecusly bounded
but are also asymptotically equivalent.

1. Introduction. The study of sequences of ideal norms can be used to
quantify certain properties of linear operators. In most cases the bounded-
ness of a sequence of ideal norms for a given operator T describes a well-
known property, whereas, in the non-bounded case, the growth rate of the
sequence describes how much the operator T' deviates from this property.

One particularly interesting case is if two sequences of ideal norms are
uniformly equivalent. Then the properties given by these sequences are also
guantitatively equivalent.

We introduce several sequences of ideal norms related to the trigono-
metric orthonormal systems, The boundedness of these sequences for the
identity map of a Bauach space X is equivalent to X being UMD.

All of these sequences turn out to be uniformly equivalent. As a corollary
we deduce that a Banach space X i a UMD-space if and only if there exists
a condtant ¢ = 0 sueh that, for all 2y,..., ¢, € X, we have

| " " g 1/% T 7 2 1/2
(ﬂ_ f L”’"‘* Hinlﬂt' d&) h((;;f ZMCQSMH dt)
wrr ke k=l

-y
or, what turns out to bhe equivalent,

(TR 2 i 1 Tt 5 1/2
(;‘r“ [HL:M: c:askt’ (il:) gc(; f z-’ﬂkﬁiﬂkt‘ d‘b) .
s kel e lemal
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2. Ideal norms. Let X and Y be Banach spaces. Since we deal with
the exponential system {exp(it),. .., exp(int)), most of the results only malke
sense in the complex setting. However, they remain frue if the exponential
system is replaced by its real analogue

(1, V2cost,...,vV2cosnt, V2sint, ..., \/isinm’;).

Let £ denote the ideal of all bounded linear operators.

For the theory of ideal norms and opesrator ideals we refer to the mono-
graphs of Pletsch, [5] and [6]. For a more general treatment of ideal norms
associated with orthonormal systems, we refer to [7].

DEFINITION, An ideal norm o is a function which assigns to every op-
erator T' between arbitrary Banach spaces a non-negative number of7")
such that

' a(S+T) < alS) + o)

a(BTA) < || B «(T) [|A]
forall A € £{X, X),T € £(X,Y), B € £(Y,Y}),
a(T)=0 implies T =0.

We write ce( X'} instead of a(Ix), where I'x denotes the identity map of
the Banach space X.

If we additionally assume that «(K) > 1, where K is the scalar field
of real numbers R or complex numbers C, then a(T) > 7| for all oper-
ators T' € L£. This assumption is in particular satisfied by all ideal norms
considered in this article.

If o is an ideal norm then its dual ideal norm a' is defined by o/ (T) =
a(T").

The ideal norm « is said to be injective if a(JT) = a(T) for all 1" €
L(X,Y) and any metric injection J € (¥, Yp). A metric injection J is a
linear map such that ||Jy|| = ||y|| for all y € ¥.

Let e be an ideal norm and let ¢ > 0 be a constant. We write o < ¢ if
a(X) < ¢ for all Banach spaces X. It then follows that for all T € £,

(T} < T a(X) < eliT|.
Given ideal norms a, B8 and v, we write & < Bo~ if
a(ST) < B(S)y(T) forall T € £(X,Y)and § € LY, Z).

The following concept is essential for the further considerations.

for all S,T € £(X,Y},

DEFINITION. Two sequences of ideal norms (e,) and (8,) are said to
be uniformly equivalent if there exists a constant ¢ > 0 such that

1
_ 5 (1) < Bu(T) < can(T)
forall T € L. '
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3. Orthmmmna} systems. (ziven any Banach space X and a measure
gpace (M, ), let L (M, 1) denote the Banach gpace of all p-measurable

functions [ : M - X for which

- , 1/2
IMMWm(fwmem)
. M
Is linite.
I the following, lot
Ao (g, a) and B, (Bryoooyby)

be erthonormal gystems in some Hilbort spaces Ly (M, w) and Ly(N, v), re-
spectively.

For every arthonorinal systew A,,, we also congider the complex conju-
gate orthonormal systens A, which consists of the fmetions Ty, .. .,0, €
Lo (M, 1),

For wy,..., ¢, & X, we write

(1) )l = (3 aonts)
M hezuz |

This expression yields o norm on the nth Cartesian power of X.

PROPOSITION 3L [ ] < |[(eg) A ] for alt h=1,... n.

2 d,u(s)) 1/2.

Prooll, By the Pardeval formula, we have for all ' € X/,

o . N 2
D7 b = [ s a'ban(s)] dts)
Joe ] M Rl

, i b
< J I Z wk”’f\:(s)H d:“(s) !la"f”g'
M ket _
Hence ||y, = SUDYjr [ 1 [, ) < [H(wg) [ Ay |- m

DuriNemon. For T' e £0X, Y) aud » & N the ideal norm o(T|B,,, Ay) is
defined as the sinallest constant ¢ > 0 snch that
(2) ||(T‘J'A¢)|1&q, “ 5“-. & “(:Ek)lﬂ,,«“
whonever @i, ..o, G X,

The eal noru SCOB,, ALY s defined as the smallest constant ¢ > 0
guely that
) LBl < e 171
whenever [ ¢ L (M, ). Lere

M
denotes the kil Fowrier coefficient of f with respect to Ay
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PROPOSITION 3.2. For any three orthonormal systems Ay, By, end T,
we have

(4) 2(Bn, Arn) < 8(Bn,An),
(5) S(an-An) < Q(Bﬂa T’n) (:an n)a
(6) Q(‘Bmﬂn) < Q(Bm Fﬂ.) o Q(Hiquw‘)

Proof. The first inequality follows by taking f = Y .y @xap i (3). The
other inequalities are trivial. w

The next fact is obvious as well.

PROPOSITION 3.3. The ideal norms 6(B,, Ayn) are injective.
The ideal norms #(B,, A,) enjoy the following duality property.
PROPOSITION 3.4. (B, Ay) = 8 (An, B

Proof For T € &(X,Y) and g € LY (N,v), we let

n , )2 1/2 , -
= ([T bmls)]| du) = I g, ) Aull
M k=1
Given £ > 0, by 4, p. 232] there exists f € L (M, u) such that

o= [ {10603 T"(0,0)ar0a]) s
k=1

M
and
1Ll € 1 +e.
‘We now obtain |
= [ [ 34T 1), o) antoIoa(e) dists) v
M N k=l
= f <ZT<f,ﬁk>bk( ) g t)>dy(t
N k=1
< (J | rtamo] aw)" ([ o)
N k=1 .

< (146 8(T| By, Av) |lg| Lz}

Letting e tend to 0 yields ||(T{g, bx))|Au| < 67| By, An) gLzl This
proves that

(T An, Br) < 8(T| By, An).
Note that T"Kyx = KyT, where Kx and Ky denote the canonical
embeddings of X in X and of ¥ in Y, respectively. Using the injectivity
of 6(B,A) and [|[Kx|| <1, we finally conclude that

Ideal norms and orthonormal systems 63

6(Tiﬁm'/‘ln) e 6(]{?’11"'3'11‘:‘%[‘:1'.) = 6(T”I{X 'Bm‘An)
S 8T |Bu, Ay) < 8T 1K, By) < 8(TB,, Ay). m

From the duality property of the ideal norms 6(B,,, An) and (5), we get
the following result.

PROPOSITION 3.5, Lel Ay, and By, as well as ¥, and §,, be orthonormal
systems. Then
(‘)(15”, /L”') = Q('B’”’ cJT-‘) 0 6( Juajrr) @ Q’('Z[ﬂrg:n)

We denote by A, ¢ B, the orthonoermal system in Ly(M x N, u x 1/)
consisbing of the funetions ay, 0 by, 1 (s,8) ar{8)be(t) with k = 1,.
Note that .

(7) “ & |“ﬁ[7f- ) r-B'ir,” e :.!‘}. ]Bw [+ AHH
172
o ( H Z»PMA ()b ( t)H du(s) du(t )) _
MN kel

The following fact turns out to he very useful to formulate various proofs.

PROPOSICION 3.6. Let &y == (f1,.. ., f1.) be another orthonormal system
in La( R, 0). Then :

Q(%n = U"'u-: Ay, :J?u) < Q(TB’IH‘A’H)'
Proof. Sahstituting (s fy(r)) with » € R in (2), we obtain

f”}__{l.u‘b,\ (1) Sl H du(t)
N
o018 A [ || 3 svan ()50 )

M k=l
Integration over r ¢ I and taking square roots yields

(T'wp )| By Tl £ o(T1By, Ay) (@) | An & Fnlf,
which proves the desired result, w

4. Trigovomotric orthonormal systems. We write
elt) e exp('ils"') for k & Z,
¥ s V2 cos ki, au(d =/ 2sinkt for k & N.
Note that
En = (e, 0n), Oy (e, tn) and 8, = (81,000, 8)
are orthonormal systems in Lg(wﬂ' 7} equipped with the sealar product

(f ) = = ff(é)q
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n

Moreover, we have
9 7 9 1/2
fewtent= (2 [ | S ancos]"ar)
0 k=l
9 1/2
dt) .

2 w 1 ' ‘
lolsl = (2 f |3 avsinie
k=1
7 9 172
kaexp(iki}u d‘:ﬂ') .
k=1

o]
Note that

1 w
lasdieal = (55 f
—T
Hence the substitution ¢t — —t yields
(8) (k) [Enll = ll(@i)[Enll.

5. Main result. We are now ready to state the main result.

THECREM. The following sequences of ideal normas are uniformly equiv-
alent:

6(8’.'11 gn); 6(Sﬂ.:eﬂ)7 6(8?’“ STL)) Q(Sﬂ.a eﬂ.)'f Q(emsn)-

DerINITION. A Banach space X hag the UMD-property if there exists a
constant ¢ > 0 such that

[ Seca 1] <e| Som 1
k=0 k=0

for all martingales (My, My, ...} with valuesin X, alln € N and all sequences
of signs (£1,...,€,) € {£1}"; see [1].

It is knewn (see [1]-[3]) that a Banach space X is a UMD-space if the
sequence of ideal norms &(&,,&,) is bounded. Hence we get the following
corollary,

CoRroLLARY. Let X be a Banach space. The following conditions are
equivalent:

(1) X is a UMD-space.
(2) There exists a constant ¢ = 0 such that, for all f & LE (=, 7,

(a0 £ Iomemn]'a) " <e(5; frsoa)”

(3) There exists a constant ¢ > 0 such that, for all z1,...,z, & X,

ki3 [
”Zx;@sinkt’Lg” < cHkacoskt|L2H. _
k=1 k=1
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(4) There exists a constant ¢ > 0 such that, for all =q,...,2,, & X ,

if_‘\ T
” 2 oy cos kit < H Z x) sin kbt
k==

Aoz 1

Ly

LQH.

6. Proof of the main result
LivMA 6.1, (8,8, 00 €,) < 3.
Proof It follows from
sink(d - 9) = osinktcos ka — cos bt sin ks
aud the translation invariance of the Lebesgne measire that forall s & R

and @y, ..., X,

O S 2
()8l = = f ”Za’!;‘,ﬁﬂll\‘:(i~.‘;)” at
—r iz |

bz

7a%

2 " T 3 2 T n )
ot @y in Kk coy ks” dt + — H o1 cos bt sin k H N
po { ; + - J{ Ew; cosktsinks| dt

Integrating this incquality over s € (-, 7], we get
[[(ea) 80l = (20185 & €01 4 [[(r){Cn & 8ufl*.
This proves the assertion since [[(zg)[8, 60 €, || = |(z4)|C), & 8y,[|. m
LEMMA 6.2, Fors ¢ R and wy,..., 2, € X, we have
Call  IwEull i sinks)(Sal < (as)lCal,
(e cos k) i8ull < [[(en)8nll,  |(zs siv ks)|Cull < N|(21)|Snl].

Proof T follows From

(g, com ks)

2 cos b cos bt == cos k(s +t) + cos ks — 1)

and the translation invariance of the Lobesgue measure that

o i 2 1/2
(g com ka) €] = (W-J HLmk2(:():4A1.9c:cmk:t|’ d!:)
s kel

3 " ; /2
« (%r /ﬂ ka cos k{E + s)“zrﬂ)

- oz |
o (',1_' :{r ] dt)
= | (w1)|Cau |-

This proves the liest, inequality. The others can be proved in the same way, w

p:

K
Z 2 conh(l — )
ke |
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LEMMA 6.3. 9(8n ® 8,, Cr) < V2.
Proof. Squaring the inequality
(za sin ks)[Snll < [I(z&)[Cnll
from Lemma 6.2 and integrating over s € [, 7| yields
(k) 180 ® 8l < 2 (ws)Cult*. w
We are now ready to prove our first result.
PROPOSITION 6.1. 9(8,C0) < 20(Cy, 8,.).

Proof. By Lemmas 6.1 and 6.3 as well as Proposition 3.6, we get

Q(Sm en) < Q(Sm Sn @ en) o Q(Sn @ Cp, 8, ® 8':?,) o Q(S'n ® 8y, Qn)
< \/’QQ(GTHS“) V2.

To prove the converse of Proposition 6.1 we show the following lemma.

TEMMA 6.4. Let mq,...,2, € X and sel T_q = &g = Byl = Bz = 0.
Then for t € R, we have

[ 7kl

2sint Z Ty sinkt = Z(mkH — Ty ) cos ki,
k=1 k=0
Tu 41

Dsint Z zy, cos kit = Z(mk_l — Tp4r1) sinkt.
k=1 k=1

Proof. The equations above follow from
2sintsin kt = cos(k — 1)¢ — cos(k -+ 1),
2sintcoskt = sin(k + 1)t — sin(k — 1)t
by rearranging the summation. m
LEMMA 6.5. For zg, ..., Znp1 € X, we hove

2 T n 9 T el 1/2
(; f H ka cos kt dt) (ﬂ_ f Z:rk coskt” df)
0 k=l 0

k=)

+ V3lizol| + |znall,
2 % ntl - /2 27
| (W [f Hkas kt“ dt) < <770f

n

2 1/2
Z Th sin kt” d’t) -+ Hwﬂ--l-l H

k=1
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Proof We have

y L . 1/2
(_% f _\;.,cosk:'l.’HZdt;)
Ty M
T -l P 1/2 9 1/2
( [ ‘choskt df) + (-TF f\mu|2dt)
0

) 1/
" ('E f [|qr cos(re ++ 1|4 dt‘)

0

a o ekl
( f Zr,‘(m;” df) +\/§Hm0||+||a:”+1|].

0 kel
The second inegualily can Lie proved in the same way. =

LEMMA 6.6, Lot Ay == [n/3,21/3). Then for ©1,...,2, € X and T €
B(X,Y), we have ‘

9

(-4

A

Proof. If t € Aqg, then sin{n/3) < sint. Moreover, by Proposition 3.1

we have [[e]] & |[(x)|84] and [z, < 18, Applying Lemmas 6.4
and 6.5, we obtain

T gy 172
[ P con m]r) < 40(T154, C)li(@)ISnll
Rzt

2 1/2
25111?75(“] Z’l":m;cmkt” )
' An 3]
9 7 9 1/2
< <~ [ 2:-4111‘!.25!’:::;,: Gosﬁ:t“
ﬂ-ﬂn fry|
9 wo el oy 1/2
= S Plrp ot = P H.'nki‘”
(w f Z Dy g = ) b
i} ket |
9 I T.L.,\ Py :l/2
“ (7} “f }i‘}jff'(-‘ffh-~ 1= Mgy Hin MH ) 4 || T |

r/y n L 9 172
i Q(’IWI‘SM, (:3'”-) ‘(ﬂ_ &f Zﬂ;(mkw-[ - .’kal»;LJ Ol k!‘:“ d'[l) + 1| :|

Q(T|5m en
PR

X [(i f Z(u - L] coskb” dt) v

0 LS

2|
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o(T|8x,C) { ( f“sthwksmMH dl;) + V22

< (T8, C)2){@)[8nlf + f||m1ﬂ + 2}z ]
< (44 v2)a(T |8n, Cn)l| ()80l
This yields the asgertion, since

4+v2

T
2sin 5

: 2f|mn|]

=31268... <4 w

ProrosiTion 6.2. (C,,8,) < 90(8,,C,).
Proof. Obviously,

) lrsien= (2 J
0
where
9 n 2 1/2
I, = (i f HZTQ:;C coskt” dt) and A, = [%W, %w) + %(MT.
A k=1

We know from Lemma 6.6 that
(10) ' To < 40(T|8x, Cp)l[(zx)[8nl}-
In order to estimate [, with & = &1, we substitute s := ¢ 7/3. Then

2 N 1/2
‘ ds)

1/
Z Ty, cosk’t” dt) = (12, I8+ 19)/2,

I, = ( HZTm cosk’rcosksq:bmk sin ks)
g k=1

1/2
( f HZT mkcosk” cosic.s” ds)
()

k=1

+ (.2. f “ ZT(SBJC sinkZ) sinksnzds)w.
T ag k=1

We now estimate the first summand by Lemma 6.6 and tle second suitmad
by applymg the defining inequality (2) of o(7|8,,, @ ). This vields

< (T8, Cr) (4| (s coskT)|8 H zysinkl) ’Gﬂ“)
Hence, in view of Lemma 6.2, we arrive at
(1) T <5 (T80, €0)/[(24) 1341
Combining (9), (10) and (11) yields :
[(T2x)|Call < (25 + 16 + 25)1/20(T[S,,, €,)]|(z03) |8 |-
In view of v/66 = 8.1240 ... < 9, this completes the proof. m

'H;
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Rewmark, By using the exact value of 31258 . . for the constant appear-

ing i Lemna 6.6, we can even olitain a value of 6 6194 ... for the constant
in the previous proposition,

We now deal with the ideal norms §(&.,, En).
LuMMA 6.7, Foram,n e W with u < m, we have

5(“1-”:«{- X £, Eas! n) = é( 1Ly ‘Sm) o 6(8m ’gn)-
Prool, We have

T ) ey || ICECS D En |+ 112 o)) €0
(TUHA ‘Em” i H T ff ~-¢rr:U.>)I8n”
o(re s €y ”f””” o+ & _-mlL2”

é(’] Ié THA m '| 6([1

m n )H“LZH
Similarly,

H("’</!‘}»>

7()’!”) "c-'nl” + ” (T, & ek} Eall
""" H (TS, 8 ]|+ I f(ff’mm-m:f—-k))ieu”
< 7 i&m» i HfILz“ + ‘5(-7‘|8w.= 8”) Hf("--m-l-'ulL2“
GO s &)+ (T[E,, EVIF) Lyl
In Lhe iollowing, we weite
pa, 1) o max{ @(1'C,, 8,.), 0(T80, C) )

LumMa 6.8, Fora oo, e, € X, we have
T g N\ I/2
(E / x’l‘:n,g.wq.)('éki.)” zi(:)
T (N T |
..... L, (T (" cexp(ikt) ” d.‘)
71" |F|*»n,

Prool, Work - 1.0, we let
Mg bdty b g aleh g g e g,
[ follows Dot w1 g = Sy aied Kndor's forntala that
A oxp{ibkd) ,",(u.;‘. o8 Rl - g o8 RD A dug sin R - oy, sin k),

Hence
Fid

I e 2 1/2
1T El] = (271“ f HL’IW uxp(-ﬁkl:)” (i{.)
s ke
L RS, s
ﬁ{(ﬁw { 2:]:{,; c‘ml\,i“ dt,)
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1 7 n 5 1/2
-|—(2—— f ZTvkcoskt’ dt)
71'__71_ k=1
1 = ™ 2 1/2
+(2— f ZTu;csinkt’ dt)
w—w k=1
1 = n 2 1/2
—}-(5— f Z‘.’l"’uksinktr d‘ﬁ) }
d k=1

= %{lT”(%_T gukcosktl’zdt)l/g |
o(T|Cn, 8,) (%; f H ivk Sinv’ﬂt’rdt)l/z
_7; 1/2
+9(Trsn,en)(§1%_f dt)
-
+HTH( fuzvkbmktu dt)l/z}
17 1/2
SM?L(T)KEE f EukCOSktH d—[;)
A R
+ (5%7; j: ” ivk sinkt”?dt)l/z]_
o

By the obvious fact that

bl Joll < S0+ ivff + ju~ivl]) for v € X,

we obtain
1/2

||(ka)|an”g%(z*){(-2—1; f Hi(ukcoskt~|—iv;.h.sinkf;)H2drt)
e -

n

1 s 9 1/2
+(2—7T-f Z(ukcoskt-ivksinkt)u dt) }

g k=1

Substituting —¢ for ¢ in the last term on the right-hand side yields

I(Tz) Enll < 2%@)( H Z (us cos it + iwy sin m)”2 dt)m

icm
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Finally, we conclude from

L g oxp(ikt) - mg == Z(ugﬂ cos kit + vy, sin kt)

Vel m ezl

anel Proposition 3.1 that

A 2 \1/2
(Z-W ] L('u.;,: cos Rl b oy win k'l:)” d‘t)
B kel
172
(2# j‘H }: FAOXPTAf'{CH) ‘+”$U”
Y

k]

= z(z% { ” E x, exp(ikt) ” clt)ug.

[R| %m

This proves the desized result. w
The basic trick in the following proof is due to M., Junge.
PROPOSITION 6.3, 8(8,,,€,.) < 96 g4,
Proof, The mth de la Vallée Poussin kernel V,,, is defined as

Vinll) 5= == 37 Dule),

o=,

where (1) LHI - xp(ilE) i the Ath Dirichlet kernel. It is known that

w

. L

(12) Vi W) = - [ Vi (Ber(®) dt

[ for |k| < m,
= ¢ (2m - |k])/m for m < |k < 2m,

{) for tkl = 2m,

anl
I

(13) A0 RS

-
see o, Zygined [R],
Ou L (- myr) wo consider the mth de la Vallée Ponssin operator

‘Vm.: ” ‘ = Tm"" fT/ﬂb f(t

Sdlfflﬂz :

It follows frow (13) that ||V, f|L

p]
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For f € L& (—m, ), we let

oy = Vo, Ba) = (Vo B ).

Z e (50157”).

|| & 2rn~—1
The triangle inequality implies that

Hence, by (12),
V;n.f =

w m 5 172
H(T<f,ak>)iem||=(—~ J I35t @) <1en
where
1 T 2m-1 ) 2 1/2
Iy = (%:{ Z Tai™e() dt) :
T 2'!?1, 1 1/2
I = (— f Z T.’I:]\m ey, (¢} “ df) .
-7 h=mel

Lemma 6.8 Implies that

I £4pg, (T (5"1"7}' f H Z

|k|<2m—1
= 4”2m-1(T)Hme|L2H <12 Du'Q'rn—-l(T)”ijﬂl'
To estimate the second term, we recall that m,(:”‘) =
2m—1

I = (—* f Mo TEl™ exp(ikt)“zdt) 7

—m  k=m]

= (%—f H 321 Tmmzn exp(z'kt)”zd,t> o

J' r 'H’b 2 1/2
S 41 (T)| 5= o f ” T, cxp(:k!)“ rﬁ;)
- Ile\<3m—-’l

:4u3m_1(T)( f“ Z

2 N1/
2™ cxp(?lki‘)” di;)
=7 |k Z2m—1

= 4 g (D[ Vou f] L] < 12 phyg o1 (TY]| f1L2].

Qombining the preceding estimates and taking into account the monotonic-
ity of g1, (7"}, we arrive at

5(T|£'m: 8m) <24 H3m] (T)

(rm) , 2 172
zy, - exp(ikt) H dl)

erefore

icm
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To complcrl ¢ the proof, for given n e € N, we choose m such that 3m — 1 <
n < g - 1 Then it follows from Lc*mma 6.7 that
B Exmets Eam1) € 26(Emn, €1) + 6(E i, Em-1)
(L €uarn) < 36(Ep, &)
6(‘(' edrnb1s E'imnlﬂ-l) < 2 5(8'% Sm) + ’5(£m+1: 8'm+1)
LA L.
Honce 8(8,,, & ') AHEm, Ean) < 96 g, |
The nexic proposition s a special caso of (4 ( )
PROPOSITION G4, p(8,,,C,) < 8(8,,C.,) and g(C,,$ n) < 6(Cy, 8,).

To estimate the ideal norms §(8,,€,,) and 8(C,,8,) by 8(&,,&,), we
need one more lemma,

LiMMA 6.9, @(Cn, &) < V2 and 0(8,,, &) < V2.
Proof. By Fuler’s formula, we have ¢, = —;%-z((’;,‘ + €x). Hence by (8),

é( Es & 'u.) s

<06, w

\/ () [Eall) = VE || (2w)[En .

This proves the lefi-hand ineguality, The right-hand inequality can be ob-
tained in Lhe same way.,

li ()| Cnl] <

([[(p)[En

The next praposition follows inumediately from Proposition 3.5 and Lem-
ma, 6.9,

PROPOSTION 6.5, 8(8,, ) < 26(E,,€,) and 6(Cy, 8,,) < 26(En, En)-

We new combine Propositions 6.1 through 6.5 to complete the proof of
the theorenn,

Prool of the theorem. Proposition 6.3 states that 6(&,, E,) lies
below (8, €,) and (. 8,).

Proposition 6.4 implics that the sequences
spectively, Hie boelow 8(8,, ¢,) and 6, 8,,).
Finally, '1|. follows from Propoesttion 6.5

below 8(&,,, £,).
This proves the aniform equivalence of all five sequonces of ideal norms
and thus completes the proof of the theerem, w

Q(Sar,aew) and @(Cy,8y),

re-

that 8(8,,C,) and §(C,, 8,,) lie
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On unbounded hyponormal operators I1I
by
JoOTANAS (Kraldw)

Abstenet, The paper deals mostly with spectral properties of unbounded hyponormal
upevalors, Sone nontrivial examples of such operators are given,

L Introduction. In this work we continue our previous study of un-
hounded hyponormal operators, [1], [2]. We concentrate on some of their
hasic spectral properties, and on their polar factors. We also find when the
square of a hypouormal operator is the generator of a holomorphic semi-
group. The paper ends up with two examples of new classes of unbounded
hyponornial operators,

Let I he a complex Hilbert space and let 7' be a densely defined linear
operstor in H with damnasin 2T,

We say that 'I" is hyponormal if D(T) ¢ D(T*) and |T*f| < |TF|,
&€ D(T). We refer o [1] for basic facts concerning unbounded hyponor-
mal operators. Throughout the paper o(T), W(T) and R{)\,T) denote the
spectri, the numerical range and the resolvent of T, respectively. For a set
A < C its closure is denoted by ¢l A, A stands for {X: )\ e A}, and conv A
denotes the closed convex hull of A.

IT. A few spectral relations. Though some clementary facts about
wthounded hyponormal operators were proved in our earlier works [1], {2},
the following lemimas seem to be uselul, and were not stated there,

LiumaMA 2.1 Lel T b a closed hyponormal operator in H. Then W{(T) ¢
cony o (17,

Proof. There wee two possibilitios.

1) comv er(7") == €, Then the inclusion iy trivial.

2) conv (1) ¢ C. Since o'+ 1 is hyponormal for any o, g & C, we may
asstine without loss of generality that conve(T) ¢ Cr = {A: ReA = 0}. It
remaing to prove that W(T) ¢ C*.

AL A,
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