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EXTREME ORDER STATISTICS IN AN EQUALLY
CORRELATED GAUSSIAN ARRAY

Abstract. This paper contains the results concerning the weak conver-
gence of d-dimensional extreme order statistics in a Gaussian, equally cor-
related array. Three types of limit distributions are found and sufficient
conditions for the existence of these distributions are given.

1. Notation and definitions. Let {X,(Cn) cke{l,...,n}, n e N} be
a triangular array of d-dimensional random vectors whose mean values and
variances satisfy

" EX" = (EX™ =0:ie{1,...,d}),
VX" = (VXM =1:ie{l,...,d}).
We assume that

(ii)  the rows of the considered array are Gaussian equally correlated se-
quences.

This means that
cov(X, X() = o)), cov(X(, X[1V) = off
for all 4,7 € {1,...,d}, k,l € {1,...,n}, k # 1, n € N. We denote the

matrices of covariance coefficients by

A = (o Micijea, A = (01 <
We additionally assume that
(iii) o™ €(0,1) forie{l,....d}, neN.
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We also define, for each t € (0,00)? and v € (0,1)¢,
20 (1—v)¥2 .. 0
At)=1 . |, Blv)= : :
0 ... t? 0 o (1 —wg)/?
We denote by M) (for k € {1,...,n}) the d-dimensional vector of the
kth extreme order statistics in the sequence
(x"™.1e{1,...,n}}.

Thus we have

M <D < <MY forie{1,...,d}, neN.

We want to find the limit distributions of the vectors of extreme order
statistics normalized by means of sequences of vectors a,, = (an,...,a,)
and b, = (bp,...,b,), where b, = (2lnn)~'/? and a,, = bt — %bn(lnlnn
+ In4r). (Notice that all algebraic operations are meant componentwise.)

In 1962 S. M. Berman found the limit distribution of the first extreme
order statistics built on the base of a one-dimensional equally correlated
Gaussian sequence (see Berman [1]). Mittal’s, Ylvisaker’s and Pickands’s
papers (see [4], [5]) give a generalization of this result in the stationary
case. In the following section the limit distributions of the kth extreme
order statistics built on the base of a multidimensional equally correlated
Gaussian array are found.

2. Main results

PROPOSITION 1. Assume that the array {X,gn) cke{l,...,n}, n e N}
satisfies conditions (i)—(iii). Then the rows of the array can be represented
by means of sums of independent vectors in the following way:

x{, . x)
(Y AG) + YVB(n), . Y Ar(n) + YVB(r(n),

where r(n) = (ngb), cee ngl)), and {Y,(Cn) : k € {0} UNY} ds an independent
Gaussian sequence with covariance matrices

) o™
1) ov(¥§) = (o)
’ (Qgi)ng))l/z 1<i,j<d
o _ (n)
(2) cov(Y{") = ( 0y 0 ) |
[(1—0;")(1 = 072 ) 1<ij<a

and with vectors of mean values

EY{" =EY" =0
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(see the one-dimensional case in Berman [1], Galambos [2], Section 3.8,

Pickands [5]).
Proof. Fix n € N. We denote by {X,(Cn) : k € N} a d-dimensional,
Gaussian, equally correlated sequence with
A0 Al)
A A0

and with EX,(:”) =0 for k € N. (Thus {X,i") : k € N} contains the nth row of
the considered array.) For i € {1,...,d} the Gaussian sequences of random

COV(X;n), Xy = [ ] for k #m,

variables {X ,g?) k € N} are equally correlated with parameters g( ") Hence
they have the following representation (see Berman [1], Galambos [2]):

XM = v @)V 4 v - oiMY? forie {1,...,d}, kEN,

where the sequences {Yk(ln ) ke {0} UN} consist of independent random

Gaussian variables with mean 0 and variance 1. The random variables Yo(i")
can be obtained from the ergodic theorem in the following way:

(B Ye = (o) Lim ZX%” for i € {1,...,d}.
Because the random vector Z,(g n = 5 2521 X§n)A_1(r(n)) is normal and

EZECn) = 0 its characteristic function W,gn) is
W,in) (w) = exp(—%w@é")w') for w € R,
where @Eﬂn) = (ol(cn) (P, q))1<p,g<a- It is easy to see that
n 1 n n n
(4) ot (p.q) = [k@,(g%) + <1 k)@,(,q)] (ol o)~/
Notice that if Y = (Y, ..., ¥,(")) then
P2y = Y§"|| > &) = Pmax{| 2} = Y5+ i € {1,....d}} > ¢)
d d (n) 2
< ZP(‘Zlgi) — YV > e) < Zka—g

i=1 =1
From (3) we obtain P(HZ,(;L) - Y((J")H > ¢) — 0 for all ¢ > 0. Hence for
each w € R? we have W,gn) (W) — Wén) (w), where &Pé”) is the characteristic
function of Y. From (4) it results that
75" (w) = exp(~5wOyVw'),  where  Of" = (o} (el )P r<ii<a-

We have shown that Y(()") is normally distributed with covariance matrix (1).
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Define the random Gaussian sequence
Yy = (XY = Y A (n))|B(r(n) "
From (3) it follows (Rudin [6], Theorem 4.6) that

n n n — . 1 - n n n n —
(5)  EX[YG = ()77 im — ST EXX = ol (o).
p=1

m—0o0

Hence we obtain (for k € N)
cov(¥V Y )
=@ = o) = SNTPERGY - () PYNXG — (o)) Y]
= [(1= o) (1 = 2Ly — (&30l (of) 72
— (05200 (05712 + (650) 2 (65) 20l (o5 03) 7]
= (o)) = o1 = o)1 = o2
In other words, Y,(Cn) has the covariance matrix (2).

The independence of the vectors of the sequence {Y,(C") : k€ {0} UN}
results from (5) in the following way:

cov (Vs V1)
= (1= )72l (0) 712 — (&) 20l (6 0 T2 = 0
and
cov (YY)
= [(1 = o{M)(1 = o120l — (o\7)1 /205 (o)) 712
— ()20l (6572 + (6502 (650) 20 (0l 01 T2 = 0

and so the proof is complete.

THEOREM 1. Suppose the array {X,(C") cke{l,...,n}, n €N} satisfies
conditions (i)—(iii), and additionally the following conditions hold:

(iv) Qg?) Inn — 7; € (0,00)  forie{l,...,d},
n—oo

(v) o (00— iy forinj € (L. d}.

Then

P(M® —a,)/b, <x) — (AFx®¢)(x) forkeN, x e R?,

n—oo
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where t = (T11, ..., Tdd), * denotes convolution,
d kel (e=oi)s
M= Hxr, A =[S
s!
=1 s=

By (x) = D(27/2xALH(t)),

and @ is the distribution function of a Gaussian vector Y, with cov(Yy)
= (0ij)1<i,j<d and EY, = 0.

Proof. We denote the kth extreme order statistics in the sequence
{Yl(n) :led{l,...,n}} by M (see Proposition 1). Observe that

M®) —a /b, =1, +IF)
where
L, = (2lnn)2YVA(x(n),  IP = [MP —a,B " (r(n))|B(x(n))/b, .

Since the vectors I,, and Jslk) are independent, to complete the proof it is
enough to show that for all x € R?,

(6) P(L, < %) — $u(x),
) PEIY <x) — M)

Condition (v) implies that the distribution functions of the vectors Y(()n)
(see Proposition 1) converge pointwise to the distribution function of Y;
moreover, from (iv) it follows that

(2Inn)Y2A(xr(n)) . 2/2A(t).

Hence we obtain (6).

Corollary 2 of Wisniewski [7] shows that the independence of the compo-
nents of the limit maximum vector M) is equivalent to the independence
of the components of the limit vectors of the order statistics M(*®) for k € N.
From Example 5.3.1 of Galambos [2] it follows that M) has independent
components ]\7&1).

Additionally, Theorems 2.2.2 and 1.5.3 of Leadbetter, Lindgren and
Rootzén [3] imply that

k—1

POTY <oy = e 3L
S

Hence, we get
P(MP —a,)/b, <x) — A¥(x).

n—oo

‘We note that
PP <x)=P(M - A,)/B, <x)
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where

A, =2a,B ' (r(n)), B,=b,B !(r(n)).
From a multidimensional version of Khinchin’s theorem it follows that to
complete the proof of (7) we must show that

Ani — Un
®) Rt
and
Bni
(9) — 1.

bn n— o0

(n)

Now, (9) follows from g;;” — 0 (see (iv)). Since

(1= o) V2 =14 300 +0((e)?) s i} —0,
we have
B0 (107 + (el N2+ o)) — 7
and this completes the proof.
THEOREM 2. If the array {X,in) cke{l,...,n}, n € N} satisfies condi-
tions (i)—(iii) and
(iv)’ Qz(z)lnnn:;oo forie{l,...,d},
then
P(M® —a,)/b, <x) — A¥(x) forkeN, xeR?.

n—oo

Proof. Notice that (see the proof of Theorem 1)

d
P(max{|Ini| :i € {1,...,d}} > &) <Y P(|Lnl > ¢)

i=1

= 22 (n)E Y(n) Inn.

Hence the condition
P(|I,|| >¢) — 0 foralle >0
follows from (iv)’. Now, the proof is similar to that of (2).

THEOREM 3. If the array {X,gn) :ke{l,...,n}, n € N} satisfies condi-
tions (i)—(iii), (v) and

(iv)” ng)lnn—> oo forie{l,...,d},
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then
P(IM® —a,B(r(n))]JA"(r(n) < x) — &(x) for keN, x e R?.

Proof. We notice that
M — 2, B(e(n)]A~ (x(n)) = Y5 + NI,
where (see the proof of Theorem 1)
N = (MY — a,)B(r(n)A™ (r(n)).
To complete the proof it is enough to show that

(10) P(IN® || >e) — 0 foralle >0, ke N.
n—oo

It is easy to see that

d
(11)  Pmax{|N|:i€{1,....d}} >¢) < Z PN > o)

i (\ M(k‘)

Since the limit distributions of the sequences {(M gz) —ay) /by 1 n € N} exist
for i € {1,...,d}, k € N (see for example Galambos [2]), the condition (10)
follows from (iv)” and (11).

> (204" 1nn)1/2> :

We emphasize that in the situation considered in Theorem 3 all extreme
order statistics have identical limit distributions.

Finally, we formulate a result which is easy to obtain by the method of
proof of Proposition 1 and Theorem 3.

THEOREM 4. If a d-dimensional, normalized, Gaussian sequence {X,,
n € N} is equally correlated with covariance matric

A0 A1)
cov(Xm, Xy) = (A(n A(O)) (for n # m)

and Q( ) €(0,1) forie{1,...,d}, then
P(IM®) —a,B(r(n))]A" (x(n)) < x) —_ ®y(x) forkeN, xR,

where @1 is the distribution function of a Gaussian vector Y with

(1

cov(Y) = (( D0

— U and EY =0.
0ii 05 )1/2>1§i,j§d
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