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I. KOPOCIŃSKA (Wroc law)

TWO MUTUALLY RAREFIED RENEWAL PROCESSES

Abstract. Let us consider two independent renewal processes generated
by appropriate sequences of life times. We say that a renewal time is ac-
cepted if in the time between a signal and the preceding one, some signal
of the second process occurs. Our purpose is to analyze the sequences of
accepted renewals. For simplicity we consider continuous and discrete time
separately. In the first case we mainly consider the renewal process rarefied
by the Poisson process, in the second we analyze the process generated by
the motion of draughtsmen moved by die tossing.

1. The problem. Let us consider two independent renewal processes

generated by sequences {X
(i)
1 ,X

(i)
2 , . . .}, i = 1, 2, of nonnegative, uniformly

distributed, independent random variables.
Introduce the usual notation for the renewal times, the renewal processes

and the residual time processes:

S
(i)
0 = 0, S(i)

n = S
(i)
n−1 + X(i)

n , n = 1, 2, . . . ,

Ni(t) = max{n ≥ 0 : S(i)
n < t} ,

γi(t) = S
(i)
Ni(t)+1 − t, t ≥ 0, i = 1, 2.

We say that the renewal time S
(1)
n of process 1 is accepted by process 2 if

in the interval (S
(1)
n−1, S

(1)
n ] a renewal in process 2 occurs. Similarly, renewal

times of process 2 are accepted by process 1.
Let Z ′′

0 = 0, Z ′′

1 , Z ′′

2 , . . . denote the accepted times of process 2 and let
Z ′

1, Z
′

2, . . . denote the accepted times of process 1. Notice that Z ′′

0 = 0 <
Z ′

1 ≤ Z ′′

1 ≤ Z ′

2 ≤ . . . , i.e. these times alternate or sometimes coincide (our
notations and the coincidence concept are derived from [1]). Our purpose is
to analyze the probability distribution function of the sequence of random
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variables

(1) Vn = Z ′

n − Z ′′

n−1, Un = Z ′′

n − Z ′

n, n = 1, 2, . . .

The residual time processes, the renewal times and the accepted times
(dotted lines) are shown in Fig. 1.

Fig. 1

Let us introduce the standard notation for the probability distribution
functions of the life times of the renewal processes, the renewal functions
and the probability distribution function of the residual time process:

Fi(x) = P (X
(i)
1 < x) ,

Hi(t) = ENi(t) ,

Gi(t, x) = P (γi(t) < x), x ≥ 0, t ≥ 0, i = 1, 2 .

Recall that

Hi(t) =

∞
∑

n=1

P (S(i)
n < t) ,

Gi(t, x) = Fi(t + x) −
t∫

0

(1 − Fi(t + x − u)) dHi(u) .

By X◦

1 and X◦

2 we denote some probabilistic copies of the random vari-

ables X
(1)
1 and X

(2)
1 , independent of the random variables used before. We

also mark by ◦ probabilistic copies of other random variables and processes.
We deal with the relationship between the above-defined probability distri-
bution functions. The relationships may be simply expressed by using the
random variables and their copies.
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Proposition 1. The random sequence (1) is a Markov chain for which

V1
d
= X◦

1 ,(2)

Un
d
=

{

X◦

2 if Vn = 0,
γ◦

2 (Vn) if Vn > 0,
(3)

Vn+1
d
=

{

X◦

1 if Un = 0,
γ◦

1 (Un) if Un > 0,
n = 1, 2, . . .(4)

The distribution functions are as follows (n = 1, 2, . . .):

P (V1 < x) = F1(x) ,

P (Un < x | Vn = y) =

{

F2(x) if y = 0,
G2(y, x) if y > 0,

P1(x | y) = P (Vn+1 < x | Un = y) =

{

F1(x) if y = 0,
G1(y, x) if y > 0.

Proposition 2. The stationary Markov chain (1) satisfies the system of

equations

U
d
=

{

X◦

2 if V ◦ = 0,
γ◦

2 (V ◦) if V ◦ > 0,

V
d
=

{

X1 if U = 0,
γ◦

1 (U) if U > 0.

The stationary distribution function W (u, v) = P (U < u, V < v) and the

boundary distributions W1(u) = W (u,∞), W2(v) = W (∞, v) satisfy the

system of equations

W (x, y) =

y∫

0

P1(x | u) dW1(u) ,

W2(v) = W1(0+)F1(v) +
∞∫

0+

G1(u, v) dW1(u) ,

W1(u) = W2(0+)F2(u) +
∞∫

0+

G2(v, u) dW2(v) .

Consider the case of two renewal processes with the same generating
distribution function F2 = F1. In this case consider the sequences of random
variables

(5) W2n = Un, W2n−1 = Vn, n = 1, 2, . . . ,

which are the life times for the superposition of accepted times.
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Corollary 1. The sequence of random variables (5) is a homogeneous

Markov chain for which

W1
d
= X1 ,

Wn+1
d
=

{

X◦

1 if Wn = 0,
γ◦

1(Wn) if Wn > 0,
n = 1, 2, . . .(6)

The probability transition functions are as follows:

P (Wn+1 < x | Wn = y) = P1(x | y) .

The stationary sequence of random variables (5) satisfies the equation

W
d
=

{

X1 if W ◦ = 0,
γ◦

1 (W ◦) if W ◦ > 0,

and the stationary probability distribution function satisfies the equation

W (x) = W (0+)F1(x) +
∞∫

0+

G1(u, x) dW (u) .

2. Special case. Assume that process 1 is a Poisson process with pa-
rameter λ. Then F1(x) = 1−exp(−λx) = G1(t, x). This implies that Vn, n =
1, 2, . . . , are independent random variables, exponentially distributed with
parameter λ. Thus Un, n = 1, 2, . . . , are independent and equidistributed.
Consider the distances Zn = Z ′′

n − Z ′′

n−1 = Un + Vn, n = 1, 2, . . . , between
the accepted times in the renewal process 2.

Proposition 3. The random variables Zn, n = 1, 2, . . . , are independent

and equidistributed with probability distribution function

(7) Z
d
=

{

X◦

2 if N1(X
◦

2 ) > 0,
X◦

2 + Z◦ otherwise.

P r o o f. There are two possibilities: in the interval (0,X
(2)
1 ) there occurs

a signal of the Poisson process and then Z = X
(2)
1 , otherwise Z

d
= X

(2)
1 +Z◦.

Equation (7) immediately implies the following corollary (it can also be
derived from (2)–(4) after suitable analytic transformations).

Corollary 1. The Laplace–Stieltjes transform of the distribution func-

tion of the random variable Z has the form

E exp(−sZ) = z∗(s) =
f∗(s) − f∗(s + λ)

1 − f∗(s + λ)
,

where f∗(s) = E exp(−sX◦

2 ),

EZ =
EX◦

2

1 − f∗(λ)
,

provided that the expected value EX◦

2 is finite.
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It is easy to verify that we deal with rarefied renewal processes with
probability of acceptance depending upon the preceding life time.

If λ → 0 then process 2 is rarefied with probability of nonacceptance
which converges to 1. For the distribution function of the random variable
Z we have a limit theorem similar to the theorem of Rényi [2].

Proposition 4. If λ → 0 and EX◦

2 < ∞, then λEZ → 1 and Z/EZ
has an exponential limit distribution function with parameter 1:

lim
λ→0

P

(

Z

EZ
> x

)

→ exp(−x), x > 0 .

P r o o f. Using the Laplace–Stieltjes transform, we get

E exp

(

−sZ

EZ

)

=
1

λ

(

f∗

(

s

EZ

)

− f∗

(

s

EZ
+ λ

))

s

EZ
+ λ

1 − f∗

(

s

EZ
+ λ

)

×

[

s

EX◦

2

1 − f∗(λ)

λ
+ 1

]

−1

−→
λ→0

1

s + 1
.

3. Discrete life time. Equations (3), (4) or equation (6) can be
solved approximately by passing to discrete approximation of probability
distribution functions generating the renewal processes. The approximation
F (x) ∼= F ( 1

h
[hx]), where h > 0 and [x] denotes the integer part of x, leads to

considering our problem in integer random variables. Here we assume that
the support of F (x) is finite. Now we limit our considerations to the case of
renewal processes generated by the same distribution function. Extension
to the asymmetrical case is easy.

Let us introduce the standard notation for the probability distribution
functions, the renewal equation, the residual time and the residual distribu-
tion function:

pn = P (X◦ = n), n = 1, . . . , N,

u0 = 1 ,

un =

n−1
∑

k=(n−N)+

ukpn−k ,

γ(n) = SN(n)+1 − n, n = 1, 2, . . . ,

g(n, j) = P (γ(n) = j) =

{

un if j = 0,
∑n−1

k=(n−N+j)+
ukpn−k+j if j = 1, . . . ,N − 1,

where (x)+ = max(0, x).
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Now we pass to the discrete version of equation (6). Obviously, we ana-
lyze the probability of integer values instead of the probability distribution
functions.

Proposition 5. The probabilities wn(j) = P (Wn = j), j = 0, 1, . . . ,N ,
n = 1, 2, . . . , of the Markov chain (5) satisfy the recursive system of equa-

tions

w1(j) = pj , j = 1, . . . , N ,

wn(j) =

{

wn−1(0)pN if j = N,
∑N

k=1 wn−1(k)g(k, j) + wn−1(0)pj if j = 0, 1, . . . ,N − 1,

n = 2, 3, . . .

The stationary probabilities w(j) = P (W = j), j = 0, 1, . . . ,N , satisfy the

homogeneous system of linear equations

w(j) =

{

w(0)pN if j = N,
∑N

k=1 w(k)g(k, j) + w(0)pj if j = 0, 1, . . . ,N − 1,

with the condition w(0) + . . . + w(N) = 1.

We obtain the probability distribution function of Z from the equation

Z
d
= W + γ◦

1 (W ). Thus

v(z) = P (Z = z) =

min(N,z)
∑

j=(z−N+1)+

w(j)g(j, z − j), z = 1, . . . , 2N − 1 .

4. Example. Let us consider a game of two players moving two
draughtsmen on the real line using die tossing. The first player tosses the die
and places his draughtsman on the resulting position. Each player tosses the
die and moves his draughtsman according to the result as long as he reaches
or exceeds the position of the opponent. The game reminds the process of
camping by emigrants in competition.

The considered game is an example of mutually rarefied renewal pro-
cesses generated by the uniform probability distribution function pn = 1/6,
n = 1, 2, . . . , 6.

The stationary probability distribution function of the random distance
W between the draughtsmen equals

w(0) = 0.1827, w(1) = 0.2081, w(2) = 0.1929, w(3) = 0.1675 ,

w(4) = 0.1320, w(5) = 0.0863, w(6) = 0.0305 ,

with expected value 2.2386. The probability distribution function of the
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distance between the consecutive positions of each player equals

v(1) = 0.0651, v(2) = 0.1027, v(3) = 0.1407, v(4) = 0.1756 ,

v(5) = 0.2022, v(6) = 0.2132, v(7) = 0.0465, v(8) = 0.0296 ,

v(9) = 0.0161, v(10) = 0.0067, v(11) = 0.0016,

with expected value twice as great.
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