W. POPIŃSKI (Warszawa)

ON FOURIER COEFFICIENT ESTIMATORS CONSISTENT IN THE MEAN-SQUARE SENSE

Abstract. The properties of two recursive estimators of the Fourier coefficients of a regression function $f \in L^{2}[a, b]$ with respect to a complete orthonormal system of bounded functions $\left(e_{k}\right), k=1,2, \ldots$, are considered in the case of the observation model $y_{i}=f\left(x_{i}\right)+\eta_{i}, i=1, \ldots, n$, where η_{i} are independent random variables with zero mean and finite variance, $x_{i} \in[a, b] \subset \mathbb{R}^{1}, i=1, \ldots, n$, form a random sample from a distribution with density $\varrho=1 /(b-a)$ (uniform distribution) and are independent of the errors $\eta_{i}, i=1, \ldots, n$. Unbiasedness and mean-square consistency of the examined estimators are proved and their mean-square errors are compared.

1. Introduction. Let $y_{i}, i=1, \ldots, n$, be observations at points $x_{i} \in$ $[a, b] \subset \mathbb{R}^{1}$, according to the model $y_{i}=f\left(x_{i}\right)+\eta_{i}$, where $f:[a, b] \rightarrow \mathbb{R}^{1}$ is an unknown square integrable function $\left(f \in L^{2}[a, b]\right)$ and $\eta_{i}, i=1, \ldots, n$, are independent identically distributed random variables with zero mean and finite variance $\sigma_{\eta}^{2}>0$. Let furthermore the points $x_{i}, i=1, \ldots, n$, form a random sample from a distribution with density $\varrho=1 /(b-a)$ (uniform distribution), independent of the observation errors $\eta_{i}, i=1, \ldots, n$.

We assume that the functions $\left(e_{k}\right), k=1,2, \ldots$, constitute a complete orthonormal system in $L^{2}[a, b]$, and that they are bounded and normalized so that

$$
\frac{1}{b-a} \int_{a}^{b} e_{k}^{2}(x) d x=1, \quad k=1,2, \ldots
$$

Then f has the representation

$$
f=\sum_{k=1}^{\infty} c_{k} e_{k}, \quad \text { where } c_{k}=\frac{1}{b-a} \int_{a}^{b} f(x) e_{k}(x) d x, \quad k=1,2, \ldots
$$

The first estimator of the Fourier coefficients we shall deal with is wellknown and has a simple form

$$
\begin{equation*}
\widetilde{c}_{k}=\frac{1}{n} \sum_{i=1}^{n} y_{i} e_{k}\left(x_{i}\right), \quad k=1,2, \ldots, \tag{1.1}
\end{equation*}
$$

so that we easily obtain the following formulae:

$$
\begin{align*}
& E \widetilde{c}_{k}=E_{x} E_{\eta} c_{k}=c_{k} \\
& E\left(\widetilde{c}_{k}-c_{k}\right)^{2}=\frac{1}{n(b-a)} \int_{a}^{b}\left(f(x) e_{k}(x)-c_{k}\right)^{2} d x+\frac{1}{n} \sigma_{\eta}^{2} \tag{1.2}
\end{align*}
$$

The estimators $\widetilde{c}_{k}, k=1,2, \ldots$, are thus unbiased and consistent in the mean-square sense. If we estimate the Fourier coefficients c_{1}, \ldots, c_{N}, the number N being fixed, we can write formula (1.1) in the vector form

$$
\widetilde{c}(n, N)=\frac{1}{n} \sum_{i=1}^{n} y_{i} e^{N}\left(x_{i}\right)
$$

where $\widetilde{c}(n, N)=\left(\widetilde{c}_{1}, \ldots, \widetilde{c}_{N}\right)^{T}, e^{N}(x)=\left(e_{1}(x), \ldots, e_{N}(x)\right)^{T}$, which can be rewritten in the recursive form

$$
\widetilde{c}(n, N)=\frac{n-1}{n} \widetilde{c}(n-1, N)+\frac{1}{n} y_{n} e^{N}\left(x_{n}\right), \quad \widetilde{c}(0, N)=(0, \ldots, 0)^{T}
$$

In view of (1.2) we also have

$$
\begin{align*}
E \widetilde{c}(n, N) & =\left(c_{1}, \ldots, c_{N}\right)^{T}=c^{N} \\
E \| \widetilde{c}(n, N) & -c^{N} \|^{2} \tag{1.3}\\
& =\frac{1}{n}\left(\frac{1}{b-a} \int_{a}^{b} f^{2}(x)\left\|e^{N}(x)\right\|^{2} d x-\left\|c^{N}\right\|^{2}\right)+\frac{1}{n} N \sigma_{\eta}^{2} .
\end{align*}
$$

The second estimator of the Fourier coefficients is constructed similarly to the estimators occurring in stochastic approximation methods [1], [2]; namely, it is defined by the recursive formula

$$
\begin{equation*}
\widehat{c}(n, N)=\widehat{c}(n-1, N)+\frac{1}{n} \delta_{n} e^{N}\left(x_{n}\right) \tag{1.4}
\end{equation*}
$$

where $\delta_{n}=y_{n}-\left\langle\widehat{c}(n-1, N), e^{N}\left(x_{n}\right)\right\rangle, \widehat{c}(0, N)=(0, \ldots, 0)^{T}$.

In the sequel we shall use the notation $\Delta_{n}=\widehat{c}(n, N)-c^{N}, \Delta_{0}=-c^{N}$.
By (1.4) we can write

$$
\begin{aligned}
\Delta_{n} & =\widehat{c}(n, N)-c^{N} \\
& =\widehat{c}(n-1, N)-c^{N}+\frac{1}{n}\left(f\left(x_{n}\right)+\eta_{n}-\left\langle\widehat{c}(n-1, N), e^{N}\left(x_{n}\right)\right\rangle\right) e^{N}\left(x_{n}\right)
\end{aligned}
$$

and, since $f(x)=\sum_{k=1}^{N} c_{k} e_{k}(x)+r_{N}(x)$, where $r_{N}=\sum_{k=N+1}^{\infty} c_{k} e_{k}$, we obtain

$$
\begin{equation*}
\Delta_{n}=\Delta_{n-1}-\frac{1}{n}\left\langle\Delta_{n-1}, e^{N}\left(x_{n}\right)\right\rangle e^{N}\left(x_{n}\right)+\frac{1}{n}\left(\eta_{n}+r_{N}\left(x_{n}\right)\right) e^{N}\left(x_{n}\right) \tag{1.5}
\end{equation*}
$$

2. Unbiasedness and mean-square consistency of the estimators. We have already remarked that the estimator $\widetilde{c}(n, N)$ is unbiased and consistent in the mean-square sense (see formulae (1.3)). Now we will prove the same for $\widehat{c}(n, N)$. First we prove by induction that $E \Delta_{n}=0$ for $n=1,2, \ldots$ By (1.5) for $n=1$, we have

$$
\begin{aligned}
E \Delta_{1} & =E_{x} E_{\eta} \Delta_{1}=\Delta_{0}-E_{x} e^{N}\left(x_{1}\right) e^{N}\left(x_{1}\right)^{T} \Delta_{0}+E_{x} r_{N}\left(x_{1}\right) e^{N}\left(x_{1}\right) \\
& =\Delta_{0}-I \Delta_{0}=0
\end{aligned}
$$

since $E_{\eta} \eta_{1}=0, E_{x} e^{N}\left(x_{1}\right) e^{N}\left(x_{1}\right)^{T}=I$ and $E_{x} r_{N}\left(x_{1}\right) e^{N}\left(x_{1}\right)=0$.
Assume now that $E \Delta_{n-1}=0$. Then, by (1.5),

$$
E \Delta_{n}=E \Delta_{n-1}-\frac{1}{n} E e^{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)^{T} \Delta_{n-1}
$$

since $E_{\eta} \eta_{n}=0$ and $E_{x} r_{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)=0$. Since Δ_{n-1} does not depend on x_{n} we finally obtain

$$
E \Delta_{n}=E \Delta_{n-1}-\frac{1}{n} E_{x} e^{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)^{T} E \Delta_{n-1}=\left(1-\frac{1}{n}\right) E \Delta_{n-1}=0
$$

The unbiasedness of $\widehat{c}(n, N)$ is thus proved. To prove the mean-square consistency of this estimator we need the following two lemmas.

Lemma 2.1. The random variables $\Delta_{n}, n=1,2, \ldots$, satisfy the recursive inequality

$$
\begin{align*}
E\left\|\Delta_{n}\right\|^{2} \leq & \left(1-\frac{2}{n}+\frac{1}{n^{2}} N^{2} M_{N}\right) E\left\|\Delta_{n-1}\right\|^{2} \tag{2.1}\\
& +\frac{1}{n^{2}}\left(p_{N} M_{N}+N \sigma_{\eta}^{2}\right)
\end{align*}
$$

where $p_{N}=\sum_{k=N+1}^{\infty} c_{k}^{2}, M_{N}=\sup _{a \leq x \leq b}\left\|e^{N}(x)\right\|^{2}$.
Proof. Taking into account (1.5) and remembering that $E\left\|\Delta_{n}\right\|^{2}$ can be computed here as $E_{x_{1}, \ldots, x_{n-1}, \eta_{1}, \ldots, \eta_{n-1}} E_{x_{n}} E_{\eta_{n}}\left\|\Delta_{n}\right\|^{2}$, we can write

$$
\begin{aligned}
E\left\|\Delta_{n}\right\|^{2}= & E_{x} E_{\eta} \| \Delta_{n-1}-\frac{1}{n} e^{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)^{T} \Delta_{n-1} \\
& \quad+\frac{1}{n}\left(r_{N}\left(x_{n}\right)+\eta_{n}\right) e^{N}\left(x_{n}\right) \|^{2} \\
= & E\left\|\left(I-\frac{1}{n} e^{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)^{T}\right) \Delta_{n-1}+\frac{1}{n} r_{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)\right\|^{2} \\
& +\frac{1}{n^{2}} \sigma_{\eta}^{2} E_{x}\left\|e^{N}\left(x_{n}\right)\right\|^{2} .
\end{aligned}
$$

Since Δ_{n-1} does not depend on x_{n} and $E \Delta_{n-1}=0$ we obtain

$$
\begin{aligned}
E\left\|\Delta_{n}\right\|^{2}= & E\left\|\left(I-\frac{1}{n} e^{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)^{T}\right) \Delta_{n-1}\right\|^{2} \\
& +\frac{1}{n^{2}} E_{x}\left\|r_{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)\right\|^{2}+\frac{1}{n^{2}} \sigma_{\eta}^{2} E_{x}\left\|e^{N}\left(x_{n}\right)\right\|^{2} .
\end{aligned}
$$

Furthermore, $E_{x}\left\|e^{N}\left(x_{n}\right)\right\|^{2}=E_{x} \sum_{k=1}^{N} e_{k}^{2}\left(x_{n}\right)=N$, since $E_{x} e_{k}^{2}\left(x_{n}\right)=1$ for $k=1,2, \ldots$, and finally,

$$
\begin{aligned}
E\left\|\Delta_{n}\right\|^{2}= & E\left\|\left(I-\frac{1}{n} e^{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)^{T}\right) \Delta_{n-1}\right\|^{2} \\
& +\frac{1}{n^{2}} E_{x}\left\|r_{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)\right\|^{2}+\frac{1}{n^{2}} N \sigma_{\eta}^{2} .
\end{aligned}
$$

For the first term on the right hand side we obtain

$$
\begin{aligned}
& E\left\|\left(I-\frac{1}{n} e^{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)^{T}\right) \Delta_{n-1}\right\|^{2} \\
= & E \operatorname{tr}\left[\left(I-\frac{1}{n} e^{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)^{T}\right) \Delta_{n-1} \Delta_{n-1}^{T}\left(I-\frac{1}{n} e^{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)^{T}\right)\right] \\
= & E \operatorname{tr}\left[\left(I-\frac{1}{n} e^{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)^{T}\right)^{2} \Delta_{n-1} \Delta_{n-1}^{T}\right] \\
= & \operatorname{tr}\left[E_{x}\left(I-\frac{1}{n} e^{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)^{T}\right)^{2} E \Delta_{n-1} \Delta_{n-1}^{T}\right] \\
= & \operatorname{tr}\left[\left(I-\frac{2}{n} I+\frac{1}{n^{2}} E_{x} e^{N}\left(x_{n}\right)\left\|e^{N}\left(x_{n}\right)\right\|^{2} e^{N}\left(x_{n}\right)^{T}\right) E \Delta_{n-1} \Delta_{n-1}^{T}\right] \\
= & \left(1-\frac{2}{n}\right) \operatorname{tr} E \Delta_{n-1} \Delta_{n-1}^{T} \\
& +\frac{1}{n^{2}} \operatorname{tr}\left[E_{x}\left\|e^{N}\left(x_{n}\right)\right\|^{2} e^{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)^{T} E \Delta_{n-1} \Delta_{n-1}^{T}\right] \\
= & \left(1-\frac{2}{n}\right) E\left\|\Delta_{n-1}\right\|^{2}+\frac{1}{n^{2}} \operatorname{tr}\left[E_{x}\left\|e^{N}\left(x_{n}\right)\right\|^{2} e^{N}\left(x_{n}\right) e^{N}\left(x_{n}\right)^{T} E \Delta_{n-1} \Delta_{n-1}^{T}\right] .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\mid E_{x}\left\|e^{N}\left(x_{n}\right)\right\|^{2} & e_{i}\left(x_{n}\right) e_{j}\left(x_{n}\right) \mid \\
& \leq \sup _{a \leq x \leq b}\left\|e^{N}(x)\right\|^{2} E_{x}\left|e_{i}\left(x_{n}\right) e_{j}\left(x_{n}\right)\right| \\
& \leq \sup _{a \leq x \leq b}\left\|e^{N}(x)\right\|^{2}\left(E_{x} e_{i}^{2}\left(x_{n}\right)\right)^{1 / 2}\left(E_{x} e_{j}^{2}\left(x_{n}\right)\right)^{1 / 2} \equiv M_{N}
\end{aligned}
$$

for $i, j=1, \ldots, N$. On the other hand, for $\Delta_{n-1}=\left(\Delta_{n-1,1}, \Delta_{n-1,2}, \ldots\right.$, $\left.\Delta_{n-1, N}\right)^{T}$, we also have

$$
\left|E\left(\Delta_{n-1, i} \Delta_{n-1, j}\right)\right| \leq E\left\|\Delta_{n-1}\right\|^{2} \quad \text { for } i, j=1, \ldots, N
$$

These estimates yield

$$
\begin{aligned}
E\left\|\Delta_{n-1}\right\|^{2} \leq & \left(1-\frac{2}{n}\right) E\left\|\Delta_{n-1}\right\|^{2}+\frac{1}{n^{2}} N^{2} M_{N} E\left\|\Delta_{n-1}\right\|^{2} \\
& +\frac{1}{n^{2}} E_{x} r_{N}^{2}\left(x_{n}\right)\left\|e^{N}\left(x_{n}\right)\right\|^{2}+\frac{1}{n^{2}} N \sigma_{\eta}^{2},
\end{aligned}
$$

and since

$$
\begin{aligned}
E_{x} r_{N}^{2}\left(x_{n}\right)\left\|e^{N}\left(x_{n}\right)\right\|^{2} & \leq \sup _{a \leq x \leq b}\left\|e^{N}(x)\right\|^{2} E_{x} r_{N}^{2}\left(x_{n}\right) \\
& =M_{N} \sum_{k=N+1}^{\infty} c_{k}^{2}=M_{N} p_{N}
\end{aligned}
$$

we finally obtain the estimate

$$
E\left\|\Delta_{n}\right\|^{2} \leq\left(1-\frac{2}{n}+\frac{1}{n^{2}} N^{2} M_{N}\right) E\left\|\Delta_{n-1}\right\|^{2}+\frac{1}{n^{2}} p_{N} M_{N}+\frac{1}{n^{2}} N \sigma_{\eta}^{2}
$$

LEMMA 2.2. If nonnegative real numbers $v_{n}, n=0,1,2, \ldots$, satisfy the recursive inequality

$$
v_{n} \leq\left(1-\frac{2}{n}+\frac{d}{n^{2}}\right) v_{n-1}+\frac{b}{n^{2}}, \quad b>0, d>1, n=1,2, \ldots,
$$

then

$$
v_{n} \leq \frac{d-1}{n^{2}}\left(v_{0}+b+b \ln (n-1)\right) \exp \left(\pi^{2}(d-1) / 6\right)+\frac{b}{n}, \quad n=1,2, \ldots
$$

Proof. From the assumptions it follows immediately that

$$
\begin{aligned}
v_{n} \leq & \left(1-\frac{2}{n}+\frac{d}{n^{2}}\right)\left(1-\frac{2}{n-1}+\frac{d}{(n-1)^{2}}\right) \ldots\left(1-\frac{2}{1}+\frac{d}{1^{2}}\right) v_{0} \\
& +b\left(1-\frac{2}{n}+\frac{d}{n^{2}}\right)\left(1-\frac{2}{n-1}+\frac{d}{(n-1)^{2}}\right) \ldots\left(1-\frac{2}{2}+\frac{d}{2^{2}}\right) \frac{1}{1^{2}} \\
& +\ldots+b\left(1-\frac{2}{n}+\frac{d}{n^{2}}\right) \frac{1}{(n-1)^{2}}+b \frac{1}{n^{2}}
\end{aligned}
$$

Taking into account the identity

$$
1-\frac{2}{k}+\frac{d}{k^{2}}=\frac{k^{2}-2 k+d}{k^{2}}=\frac{(k-1)^{2}+d-1}{k^{2}}
$$

we obtain

$$
\begin{aligned}
v_{n} \leq & \frac{(n-1)^{2}+d-1}{n^{2}} \cdot \frac{(n-2)^{2}+d-1}{(n-1)^{2}} \ldots \frac{(1-1)^{2}+d-1}{1^{2}} v_{0} \\
& +b \frac{(n-1)^{2}+d-1}{n^{2}} \cdot \frac{(n-2)^{2}+d-1}{(n-1)^{2}} \ldots \frac{(2-1)^{2}+d-1}{2^{2}} \cdot \frac{1}{1^{2}} \\
& +\ldots+b \frac{(n-1)^{2}+d-1}{n^{2}} \cdot \frac{1}{(n-1)^{2}}+b \frac{1}{n^{2}}
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
v_{n} \leq & \frac{1}{n^{2}}\left(1+\frac{d-1}{(n-1)^{2}}\right)\left(1+\frac{d-1}{(n-2)^{2}}\right) \ldots\left(1+\frac{d-1}{1^{2}}\right)(d-1) v_{0} \\
& +b \frac{1}{n^{2}}\left(1+\frac{d-1}{(n-1)^{2}}\right)\left(1+\frac{d-1}{(n-2)^{2}}\right) \ldots\left(1+\frac{d-1}{1^{2}}\right) \\
& +\ldots+b \frac{1}{n^{2}}\left(1+\frac{d-1}{(n-1)^{2}}\right)+b \frac{1}{n^{2}}
\end{aligned}
$$

Since $\exp (x)>1+x$ for $x>0$, we have

$$
\begin{aligned}
v_{n} \leq & \frac{1}{n^{2}}(d-1) v_{0} \exp \left((d-1) \sum_{k=1}^{n-1} \frac{1}{k^{2}}\right) \\
& +\frac{1}{n^{2}} b\left[\exp \left((d-1) \sum_{k=1}^{n-1} \frac{1}{k^{2}}\right)+\ldots+\exp \left((d-1) \frac{1}{(n-1)^{2}}\right)+1\right]
\end{aligned}
$$

Since $\sum_{k=1}^{\infty} 1 / k^{2}$ is known to be equal to $\pi^{2} / 6$, and clearly

$$
\exp (x) \leq 1+M x, \quad M=\exp \left(\pi^{2}(d-1) / 6\right), \quad \text { for } x \in\left[0, \pi^{2}(d-1) / 6\right]
$$

we have

$$
\begin{aligned}
v_{n} \leq & \frac{1}{n^{2}}(d-1) v_{0} M \\
& +\frac{1}{n^{2}} b\left[1+(d-1) M \sum_{k=1}^{n-1} \frac{1}{k^{2}}+1+(d-1) M \sum_{k=2}^{n-1} \frac{1}{k^{2}}\right. \\
& \left.+\ldots+1+(d-1) M \frac{1}{(n-1)^{2}}+1\right] \\
\leq & \frac{(d-1) M}{n^{2}}\left(v_{0}+b\left[\sum_{k=1}^{n-1} \frac{1}{k^{2}}+\sum_{k=2}^{n-1} \frac{1}{k^{2}}+\ldots+\frac{1}{(n-1)^{2}}\right]\right)+\frac{b}{n}
\end{aligned}
$$

Summing the terms in square brackets we get

$$
\begin{aligned}
v_{n} & \leq \frac{(d-1) M}{n^{2}}\left(v_{0}+b\left[\frac{n-1}{(n-1)^{2}}+\frac{n-2}{(n-2)^{2}}+\ldots+\frac{1}{1^{2}}\right]\right)+\frac{b}{n} \\
& =\frac{(d-1) M}{n^{2}}\left(v_{0}+b \sum_{k=1}^{n-1} \frac{1}{k}\right)+\frac{b}{n}
\end{aligned}
$$

Since $\ln (1+x) \geq x /(1+x)$ for $x>0$, putting $x=1 / k$ we obtain

$$
\ln \left(\frac{k+1}{k}\right) \geq \frac{1}{k+1} \quad \text { for } k=1,2, \ldots
$$

and consequently

$$
\sum_{k=1}^{n-1} \frac{1}{k} \leq 1+\sum_{k=1}^{n-2} \ln \left(\frac{k+1}{k}\right)=1+\sum_{k=1}^{n-2}(\ln (k+1)-\ln (k))=1+\ln (n-1)
$$

which completes the proof.
Inequality (2.1) assures that the sequence $v_{n}=E\left\|\Delta_{n}\right\|^{2}, n=0,1,2, \ldots$, satisfies the assumptions of Lemma $2.2\left(\sup _{a \leq x \leq b}\left\|e^{N}(x)\right\|^{2}>1\right.$ for $N>1$ since $\left.E\left\|e^{N}(x)\right\|^{2}=N\right)$ so that we have the estimate

$$
\begin{aligned}
E\left\|\Delta_{n}\right\|^{2} \leq & \frac{1}{n^{2}}\left(N^{2} M_{N}-1\right) \exp \left(\pi^{2}\left(N^{2} M_{N}-1\right) / 6\right) \\
& \times\left[E\left\|\Delta_{0}\right\|^{2}+\left(p_{N} M_{N}+N \sigma_{\eta}^{2}\right)(1+\ln (n-1))\right] \\
& +\frac{1}{n}\left(p_{N} M_{N}+N \sigma_{\eta}^{2}\right)
\end{aligned}
$$

and putting $C=\exp \left(-\pi^{2} / 6\right)$ we can write

$$
\begin{align*}
E\left\|\Delta_{n}\right\|^{2} \leq & \frac{1}{n^{2}} C N^{2} M_{N} \exp \left(\pi^{2} N^{2} M_{N} / 6\right) \tag{2.2}\\
& \times\left[\left\|c^{N}\right\|^{2}+\left(p_{N} M_{N}+N \sigma_{\eta}^{2}\right)(1+\ln n)\right] \\
& +\frac{1}{n}\left(p_{N} M_{N}+N \sigma_{\eta}^{2}\right)
\end{align*}
$$

This implies that, for fixed N, the estimator $\widehat{c}(n, N)$ is consistent in the mean-square sense.

Now we shall compare the mean-square errors of $\widehat{c}(n, N)$ and $\widetilde{c}(n, N)$ in the case when $f \in L^{2}(0,2 \pi)$. The system

$$
\begin{gathered}
e_{1}(x)=1, \quad e_{2 m}(x)=\sqrt{2} \sin (m x) \\
e_{2 m+1}(x)=\sqrt{2} \cos (m x), \quad m=1,2, \ldots
\end{gathered}
$$

is a complete orthogonal system in $L^{2}(0,2 \pi)$ and $(2 \pi)^{-1} \int_{0}^{2 \pi} e_{k}^{2}(x) d x=1$,
$k=1,2, \ldots$ For this system we also have

$$
\left\|e^{N}(x)\right\|^{2}=\sum_{k=1}^{2 m+1} e_{k}^{2}(x)=2 m+1=N \quad \text { for } N=2 m+1, m \geq 0
$$

so that the estimates for the mean-square errors considered (see (1.3) and (2.2)) take the form

$$
\begin{align*}
& E\left\|\widetilde{c}(n, N)-c^{N}\right\|^{2}=\frac{1}{n} N\left(p_{N}+\sigma_{\eta}^{2}\right)+\frac{1}{n}(N-1)\left\|c^{N}\right\|^{2} \tag{2.3}\\
& E\left\|\widehat{c}(n, N)-c^{N}\right\|^{2} \\
& \leq \\
& \quad \frac{1}{n^{2}} C N^{3} \exp \left(\pi^{2} N^{3} / 6\right)\left[\left\|c^{N}\right\|^{2}+N\left(p_{N}+\sigma_{\eta}^{2}\right)(1+\ln n)\right] \\
& \quad+\frac{1}{n} N\left(p_{N}+\sigma_{\eta}^{2}\right)
\end{align*}
$$

where $N=2 m+1, m>0$ and $C=\exp \left(-\pi^{2} / 6\right)$.
From (2.3) we see that for $N>1$ and $\left\|c^{N}\right\|^{2}>0$ we have

$$
\begin{equation*}
E\left\|\widehat{c}(n, N)-c^{N}\right\|^{2}<E\left\|\widetilde{c}(n, N)-c^{N}\right\|^{2} \tag{2.4}
\end{equation*}
$$

for sufficiently large n, so that $\widehat{c}(n, N)$, although more complicated in form, has a smaller mean-square error for large values of n than $\widetilde{c}(n, N)$.
3. Conclusions. We now assume that $f \in L^{2}(0,2 \pi)$. Having determined the estimators $\bar{c}^{N}=\left(\bar{c}_{1}, \ldots, \bar{c}_{N}\right)^{T}$ of Fourier coefficients we can form an estimator of the regression function f, called a projection type estimator [3]:

$$
\begin{equation*}
\bar{f}_{N}(x)=\sum_{k=1}^{N} \bar{c}_{k} e_{k}(x)=\left\langle\bar{c}^{N}, e^{N}(x)\right\rangle \tag{3.1}
\end{equation*}
$$

$N=2 m+1, m>0, e^{N}(x)=(1, \sqrt{2} \sin (x), \sqrt{2} \cos (x), \ldots, \sqrt{2} \sin (m x)$, $\sqrt{2} \cos (m x))^{T}$.

In case $\bar{c}^{N}=\widetilde{c}(n, N)$ this estimator is also a kernel type estimator [3], since then formula (3.1) takes the form

$$
\bar{f}_{N}(x)=\frac{1}{n} \sum_{i=1}^{n} y_{i} \sum_{k=1}^{N} e_{k}\left(x_{i}\right) e_{k}(x)
$$

For such an estimator the following formula for the integrated mean-square error is valid:

$$
\begin{align*}
E \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(f(x)-\bar{f}_{N}(x)\right)^{2} d x & =E\left\|c^{N}-\bar{c}^{N}\right\|^{2}+\sum_{k=N+1}^{\infty} c_{k}^{2} \tag{3.2}\\
& =E\left\|\bar{c}^{N}-c^{N}\right\|^{2}+p_{N}
\end{align*}
$$

In view of the inequality

$$
\left\|c^{N}\right\|^{2}=\sum_{k=1}^{N} c_{k}^{2} \leq \sum_{k=1}^{\infty} c_{k}^{2}=\frac{1}{2 \pi}\|f\|^{2}
$$

and (2.3) we can obtain the following estimates for the mean-square errors:

$$
\begin{align*}
& E\left\|\widetilde{c}(n, N)-c^{N}\right\|^{2} \leq \frac{1}{n} N\left(p_{N}+\sigma_{\eta}^{2}\right)+\frac{1}{n} \frac{N}{2 \pi}\|f\|^{2} \tag{3.3}\\
& E\left\|\widehat{c}(n, N)-c^{N}\right\|^{2} \\
& \quad \leq \frac{1}{n^{2}} C N^{3} \exp \left(\pi^{2} N^{3} / 6\right)\left[\frac{1}{2 \pi}\|f\|^{2}+N\left(p_{N}+\sigma_{\eta}^{2}\right)(1+\ln n)\right] \\
& \quad+\frac{1}{n} N\left(p_{N}+\sigma_{\eta}^{2}\right)
\end{align*}
$$

where $N=2 m+1, m>0$ and $C=\exp \left(-\pi^{2} / 6\right)$.
Formula (3.2) and the estimates in (3.3) imply that if we put $N(n)=$ $2 m(n)+1, \bar{c}^{N(n)}=\widehat{c}(n, N(n))$ and if

$$
\lim _{n \rightarrow \infty} N(n)=\infty, \quad \limsup _{n \rightarrow \infty} N(n) /(\ln n)^{1 / 3}<\left(12 / \pi^{2}\right)^{1 / 3}
$$

then $\lim _{n \rightarrow \infty} E\left\|f-\bar{f}_{N(n)}\right\|^{2}=0$. The same is true if we put $\bar{c}^{N(n)}=$ $\widetilde{c}(n, N(n))$ with $\lim _{n \rightarrow \infty} N(n)=\infty$ and $\lim _{n \rightarrow \infty} N(n) / n=0$.

In this way we have obtained sufficient conditions for convergence to zero of the integrated mean-square error of the estimator \bar{f}_{N}.

If the estimator \bar{c}^{N} is unbiased then

$$
\begin{aligned}
E\left(f(x)-\bar{f}_{N}(x)\right)^{2}= & E\left\langle c^{N}-\bar{c}^{N}, e^{N}(x)\right\rangle^{2} \\
& +2 r_{N}(x) E\left\langle c^{N}-\bar{c}^{N}, e^{N}(x)\right\rangle+\operatorname{Er}_{N}^{2}(x) \\
= & E\left\langle c^{N}-\bar{c}^{N}, e^{N}(x)\right\rangle^{2}+r_{N}^{2}(x),
\end{aligned}
$$

where $r_{N}=\sum_{k=N+1}^{\infty} c_{k} e_{k}$. From the Cauchy-Schwarz inequality it follows that

$$
E\left(f(x)-\bar{f}_{N}(x)\right)^{2} \leq E\left\|\bar{c}^{N}-c^{N}\right\|^{2}\left\|e^{N}(x)\right\|^{2}+r_{N}^{2}(x)
$$

and since $\left\|e^{N}(x)\right\|^{2}=N$ for $N=2 m+1, m \geq 0$, we finally have

$$
\begin{equation*}
E\left(f(x)-\bar{f}_{N}(x)\right)^{2} \leq N E\left\|\bar{c}^{N}-c^{N}\right\|^{2}+r_{N}^{2}(x) \tag{3.4}
\end{equation*}
$$

If the Fourier series of f converges at a point $x \in[0,2 \pi]$ to $f(x)$ then, of course, $\lim _{n \rightarrow \infty} r_{N(n)}(x)=0$ if $\lim _{n \rightarrow \infty} N(n)=\infty$. The estimates in (3.3) and (3.4) imply that if we put $N(n)=2 m(n)+1, \bar{c}^{N(n)}=\widehat{c}(n, N(n))$ and if

$$
\lim _{n \rightarrow \infty} N(n)=\infty, \quad \limsup _{n \rightarrow \infty} N(n) /(\ln n)^{1 / 3}<\left(12 / \pi^{2}\right)^{1 / 3}
$$

then $\lim _{n \rightarrow \infty} E\left(f(x)-\bar{f}_{N(n)}(x)\right)^{2}=0$. The same is true if we put $\bar{c}^{N(n)}=$
$\widetilde{c}(n, N(n))$ and

$$
\lim _{n \rightarrow \infty} N(n)=\infty, \quad \lim _{n \rightarrow \infty} N(n)^{2} / n=0
$$

Sufficient conditions for the point convergence of the Fourier series are described in [4], [5] and together with the conditions for the sequence $N(n)$ given above they are sufficient for the point convergence in the mean-square sense of the regression function estimator \bar{f}_{N}.

The theory presented above can be extended to the case of functions $f \in L^{2}(A, \mu)$ defined on subsets $A \subset \mathbb{R}^{m}, m>1$, satisfying the conditions $0<\mu(A)<\infty$, and inequality (2.4) is then also true for certain orthogonal systems of functions (for example, spherical harmonics), if n is large enough.

References

1] A. E. Albert and L. A. Gardner, Stochastic Approximation and Nonlinear Regression, Cambridge Univ. Press, 1967.
2] J. Koronacki, Stochastic Approximation-Optimization Methods under Random Conditions, WNT, Warszawa, 1989 (in Polish)
[3] E. A. Nadaraya, Nonparametric Estimation of Probability Densities and Regression Curves, Kluwer Acad. Publ., Dordrecht, 1989.
[4] G. Sansone, Orthogonal Functions, Interscience, New York, 1959.
[5] A. Zygmund, Trigonometrical Series, Dover, 1955

WALDEMAR POPIŃSKI
RESEARCH AND DEVELOPMENT CENTER OF STATISTICS
AL. NIEPODLEGłOŚCI 208
00-925 WARSZAWA, POLAND

