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CONJUGATE PRIORS FOR EXPONENTIAL-TYPE
PROCESSES WITH RANDOM INITIAL CONDITIONS

Abstract. The family of proper conjugate priors is characterized in a
general exponential model for stochastic processes which may start from a
random state and/or time.

1. Introduction and preliminaries. The notion of conjugate pri-
ors plays a fundamental role in modern Bayesian statistics. Diaconis and
Ylvisaker (1979) characterized proper priors in the exponential families Pθ,
θ ∈ Θ, of distributions determined by

dPθ

dµ
= exp

[ n∑
i=1

θixi − Φ(θ)
]
,

where µ is a σ-finite measure on Rn. Let X be the interior of the convex
hull of the support set of the measure µ and let Θ be a nonempty open
set in Rn. Let π(θ;n0, x0), n0 ∈ R, x0 ∈ Rn, be a prior on Θ defined
by dπ(θ;n0, x0) = exp[n0(x0θ − Φ(θ))]dθ. Assuming that X is a nonempty
open set in Rn, Diaconis and Ylvisaker (1979) proved the following two
theorems:

Theorem 1. If n0 > 0 and x0 ∈ X , then π(Θ;n0, x0) < ∞. Conversely ,
if π(Θ;n0, x0) < ∞ and Θ = Rn, then n0 > 0; while if π(Θ;n0, x0) < ∞
with n0 > 0, then x0 ∈ X .

Theorem 2. Suppose that Θ is open in Rn. If θ has the distribution
π(θ;n0, x0), n0 > 0 and x0 ∈ X , then the expected value of ∇Φ(θ) is x0.

In this paper the following general exponential model for stochastic pro-
cesses is considered. Let X(t), t ∈ T , be a stochastic process defined on a
probability space (Ω,F , Pθ) with values in (Rk,BRk), where T = [0,∞) or
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T = {0, 1, 2, . . .} and θ is a parameter with values in an open set Θ ⊂ Rn.
Let Pθ,t denote the restriction of Pθ to the σ-algebra Ft = σ{X(s) : s ≤ t}.
Suppose that the family Pθ,t, θ ∈ Θ, is dominated by a measure µt which
is the restriction of a probability measure µ to Ft. Moreover, assume that
the density functions (likelihood functions) have the following exponential
form:

(1)
dPθ,t

dµt
= exp

[ n∑
i=1

θiZi(t)− Φ(θ)S(t)− Ψ(θ)
]
,

where both Φ(θ) and Ψ(θ), θ ∈ Θ, are real and strictly convex functions,
and (Z(t), S(t)), t ∈ T , is a stochastic process adapted to the filtration Ft,
t ∈ T . Clearly, (Z(t), S(t)) is a sufficient statistic for θ relative to Ft, t ∈ T .

The process (Z(t), S(t)), t ∈ T , is assumed to satisfy the following condi-
tions: Z(t) is right continuous as a function of t, Pθ-a.s., and S(t), t ∈ T , are
nonnegative random variables (S(t) may be nonrandom as well) such that
S(t) is strictly increasing and continuous as a function of t and S(t) → ∞
as t →∞, Pθ-a.s.

Upon admissible interchanges of differentiation and integration, differ-
entiating the identity

∫
dPθ,t = 1 in θ yields

EθZ(t) = ∇Φ(θ)EθS(t) +∇Ψ(θ)

=
(

∂Φ(θ)
∂θ1

, . . . ,
∂Φ(θ)
∂θn

)∗

EθS(t) +
(

∂Ψ(θ)
∂θ1

, . . . ,
∂Ψ(θ)
∂θn

)∗

=
(

∂Φ(θ)
∂θ1

EθS(t) +
∂Ψ(θ)
∂θ1

, . . . ,
∂Φ(θ)
∂θn

EθS(t) +
∂Ψ(θ)
∂θn

)∗

and

Eθ[Z(t)−∇Φ(θ)S(t)−∇Ψ(θ)][Z(t)−∇Φ(θ)S(t)−∇Ψ(θ)]∗

= Φ′′(θ)EθS(t) + Ψ ′′(θ) =
(

∂2Φ(θ)
∂θi∂θj

)n

i,j=1

EθS(t) +
(

∂2Ψ(θ)
∂θi∂θj

)n

i,j=1

=
(

∂2Φ(θ)
∂θi∂θj

EθS(t) +
∂2Ψ(θ)
∂θi∂θj

)n

i,j=1

.

Here the star denotes transposition.
This class of processes includes many counting, branching, diffusion-

type etc. processes and the family of exponential-type processes which may
start from a random state and/or time, comprising also some models for
stationary Gaussian processes. In solving problems of Bayes and minimax
estimation for this model there arises the question of characterizing the fam-
ily of proper priors on Θ which should be conjugate to the family of (1). In
the paper of Magiera and Wilczyński (1991) the model corresponding to (1)
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with Ψ(θ) ≡ 0, Z(0) = 0 and S(0) = 0 was considered. The conjugate prior
distributions associated with that model include most well-known distribu-
tions; in contrast, the general model considered in this paper supplies new
families of priors.

In the terminology of Barndorff-Nielsen (1980), the exponential family
given by (1) is in general an (n+1, n)-curved exponential family ((n+1, n)-
c.e.f.), while that considered by Diaconis and Ylvisaker (1979) is a non-c.e.f.
A sequential version of (1) also becomes an (n + 1, n)-c.e.f. even in the case
when S(t) ≡ t. Generalizing the results of Diaconis and Ylvisaker (1979),
in this paper the family of proper priors on Θ which are conjugate to the
c.e.f.’s defined by (1) is characterized. It is also shown that for this family
of priors and for any stopping time τ with respect to Ft, t ∈ T , the posterior
expectations of ∇Φ(θ) and ∇Ψ(θ) given Fτ satisfy

n0s + S(τ)
n0 + 1

E[∇Φ(θ) | Fτ ] + E[∇Ψ(θ) | Fτ ] =
n0z + Z(τ)

n0 + 1
,

where n0, z, s are hyperparameters of the prior distribution. Some special
models of (1) are also considered. Examining properties of the new families
of priors, one olso obtains some recurrent relations for parabolic cylinder
functions.

2. Conjugate priors for exponential-type processes. The statis-
tical model for stochastic processes, defined by (1), is essentially more gen-
eral than that considered in Magiera and Wilczyński (1991) (it also contains
some models for stationary Gaussian processes and for other processes start-
ing from a random state and/or time) and it is much more general than the
one corresponding to non-c.e.f’s. Just as in Magiera and Wilczyński (1991),
to take the full force of Diaconis and Ylvisaker’s results which hold for the
latter model, the idea of transforming the curved exponential family into a
non-c.e.f. by using a stopping time will be applied.

Let τ be a Markov stopping time with respect to Ft, t ∈ T , such that
Pθ(τ < ∞) = 1 for each θ ∈ Θ. Then, by a modification of a lemma of
Sudakov (cf. Döhler (1981)), a sequential version of the likelihood function
(1) is

(2)
dPθ,τ

dµτ
= exp

[ n∑
i=1

θiZi(τ)− Φ(θ)S(τ)− Ψ(θ)
]
,

Clearly, the exponential family of (2) is in general an (n + 1, n)-c.e.f.
Denote by S the set of all possible values of the process S(t), t ∈ T . For

each s in S define the following stopping time:

τs = inf{t ∈ T : S(t) = s}.
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It follows from the assumptions imposed on S(t) that

Pθ(τs < ∞) = 1, θ ∈ Θ, s ∈ S,

which, by (2), implies that

(3)
dPθ,τs

dµτs

= exp
[ n∑

i=1

θiZi(τs)− Φ(θ)s− Ψ(θ)
]
.

Obviously, the likelihood function (3) is a non-c.e.f.
For each s ∈ S, let

Zs = int(conv supp µτs).

As in Diaconis and Ylvisaker (1979), it will be assumed that Zs is a non-
empty open set in Rn. Further, for all s ∈ S, let

Xs = {(z, s) : z ∈ Zs} and X = conv
( ⋃

s∈S
Xs

)
.

Define a family π(θ;n0, z, s), n0 ∈ R, (z, s) ∈ Rn+1, of measures on Θ
with density (with respect to the Lebesgue measure) given by

(4) f(θ;n0, z, s) = exp[n0(zθ −M(θ; s))],

where M(θ; s) = Φ(θ)s + Ψ(θ). The following theorem generalizes the result
of Diaconis and Ylvisaker (1979).

Theorem 3. If n0 > 0 and (z, s) ∈ X , then∫
Θ

f(θ;n0, z, s) dθ < ∞,(i) ∫
Θ

(∇M(θ; s))f(θ;n0, z, s) dθ = z.(ii)

Taking into account the facts given above, this theorem can be proven
by the methods used by Diaconis and Ylvisaker (1979) in their proofs of
Theorems 1 and 2.

Define Mi(θ; s) = (∂/∂θi)M(θ; s) and Mij(θ; s) = (∂2/∂θi∂θj)M(θ; s),
i, j = 1, . . . , n. The following lemma can be useful in deriving posterior
risks when a quadratic loss function is used.

Lemma. Suppose that EMij(θ; s) < ∞ and∫
Θ

∂

∂θj
{[zi −Mi(θ; s)] exp[n0(zθ −M(θ; s))]} dθ = 0, i, j = 1, . . . , n,

for some n0 > 0 and (z, s) ∈ X . Then

(5) E[z −∇M(θ; s)][z −∇M(θ; s)]∗ =
1
n0

EM ′′(θ; s).
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P r o o f. Note that
∇f(θ;n0, z, s) = n0[z −∇M(θ; s)]f(θ;n0, z, s),

f ′′(θ;n0, z, s) = {n2
0[z −∇M(θ; s)][z −∇M(θ; s)]∗

− n0M
′′(θ; s)}f(θ;n0, z, s).

In view of the assumptions of the lemma, integrating the latter equality over
Θ yields formula (5).

Let (X(1)(t), . . . , X(N)(t)) be a random sample of size N from Pθ. Define

Z(t) =
1
N

N∑
i=1

Z(i)(t), S(t) =
1
N

N∑
i=1

S(i)(t).

The following theorem is an immediate consequence of Theorem 3 and the
sequential version of likelihood functions given by (2).

Theorem 4. Let τ be any finite stopping time with respect to Ft =
σ{X(1)(s),. . . , X(N)(s) : s ≤ t}, t ≥ 0. If π(θ;n0, z, s) is the prior distribu-
tion of θ, then the posterior distribution of θ given Fτ is π(θ;n0+N, rτ , ατ ),
where

rτ =
n0z + NZ(τ)

n0 + N
, ατ =

n0s + NS(τ)
n0 + N

.

Moreover ,
E(∇M(θ;ατ ) | Fτ ) = rτ .

Let us note that all the above results remain true when X is replaced
by the interior Y of the convex hull of the set of all possible values of the
process (Z(t), S(t)), t ∈ T (because Y ⊆ X ).

3. Some special models. Consider now some particular cases of the
general model considered. The models of Examples 1–3 below were con-
sidered by Magiera and Stefanov (1989) in efficient sequential estimation.
In this section, considering these models in the context of Bayesian analy-
sis, certain new families of priors will be exhibited. As a by-product, one
obtains in Example 1 certain recurrent relations for parabolic cylinder func-
tions.

Example 1 (the Ornstein–Uhlenbeck velocity process). Let X(t), t ∈
T = [0,∞), be a stochastic process satisfying the stochastic differential
equation

dX(t) = −θX(t)dt + dW (t),
where W (t), t ∈ T , denotes the standard Wiener process and X(0) is nor-
mally distributed with zero mean and variance (2θ)−1, θ ∈ Θ = (0,∞).
The process X(t), t ∈ T , is a stationary Gaussian Markov process with
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EθX(t) = 0 and covariance function B(s, t) = (2θ)−1 exp(−θ|t − s|). The
likelihood function for this process is

dPθ,t

dµt
= θ1/2 exp

{
− 1

2θ
[
X2(0) + X2(t)− t + θ

t∫
0

X2(s) ds
]}

.

Thus the process belongs to the family defined by (1) with Z(t) = 1
2 [t −

X2(t)−X2(0)], S(t) =
∫ t

0
X2(s) ds, Φ(θ) = θ2/2 and Ψ(θ) = − 1

2 log θ.
The prior distribution π(θ;n0, z, s) of the parameter θ has the density

f(θ;n0, z, s) = K(n0, z, s)θn0/2 exp
[
n0

(
zθ − s

θ2

2

)]
,

n0 > 0, (z, s) ∈ Y = (−∞,∞)× (0,∞). By using formula 3.462.1 of Grad-
shtĕın and Ryzhik (1971) the norming constant K(n0, z, s) can be expressed
by

[K(n0, z, s)]−1

= (n0s)−(n0+2)/4Γ

(
n0 + 2

2

)
exp

(
n0z

2

4s

)
D−(n0+2)/2

(
−

(
n0

s

)1/2

z

)
,

where Dν(κ) denotes the parabolic cylinder function

Dν(κ) =
exp(−κ2/4)

Γ (−ν)

∞∫
0

θ−ν−1 exp(−κθ − θ2/2) dθ, ν < 0.

In particular, for z = 0,

[K(n0, 0, s)]−1 =
1
2

(
2

n0s

)(n0+2)/4

Γ

(
n0 + 2

4

)
.

By Theorem 3(ii),

E

(
sθ − 1

2θ

)
= z.

For the process considered, the conditions of the Lemma are satisfied for
all n0 > 2 and (z, s) ∈ Y. Thus, by (5),

D[sθ − (2θ)−1] = E[z − sθ + (2θ)−1]2 =
1
n0

(s + 1
2Eθ−2),

or equivalently,

(6) 4n0s
2Eθ2 + (n0 − 2)Eθ−2 = 4[n0(z2 + s) + s],

n0 > 2, (z, s) ∈ Y. Equality (6) leads to the following relation:

(n0 + 2)(n0 + 4)sD−n0/2−3(κ) + 4sD−n0/2+1(κ)

= 4[n0(z2 + s) + s]D−n0/2−1(κ),
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n0 > 2, s > 0, where κ is related to n0 through κ = −(n0/s)1/2z. Putting
p = −(n0+2)/2 yields the following recurrent formula for parabolic cylinder
functions:

Dp+2(κ) + (2p− κ2 + 1)Dp(κ) + p(p− 1)Dp−2(κ) = 0,

p < −2.

Example 2. Consider the two-dimensional stationary zero-mean Gaus-
sian Markov process X(t) = (X1(t), X2(t)), t ∈ T = [0,∞), satisfying the
following system of stochastic differential equations:

(7)
dX1(t) = −[θ1X1(t) + θ2X2(t)]dt + dW1(t),
dX2(t) = [θ2X1(t)− θ1X2(t)]dt + dW2(t),

where (W1(t),W2(t)), t ∈ T , is a Wiener process with independent compo-
nents and independent of X(0), and θ1, θ2 are parameters such that θ1 > 0,
−∞ < θ2 < ∞.

By Lemma 17.5 of Liptser and Shiryaev (1978), for every t ∈ T the
components of the vector (X1(t), X2(t)) are independent and have identi-
cal variances equal to (2θ1)−1. Thus the vector (X1(0), X2(0)) has density
(θ1/π) exp[−θ1(x2

1 + x2
2)]. The likelihood function for this process is given

by

dPθ,t

dµt
= θ1 exp

{
− θ1

[
X2

1 (0) + X2
2 (t) +

t∫
0

(X1(s) dX1(s) + X2(s) dX2(s))
]

+ θ2

t∫
0

[X1(s) dX2(s)−X2(s) dX1(s)]

− 1
2 (θ2

1 + θ2
2)

t∫
0

[X2
1 (s) + X2

2 (s)] ds
}

(see Magiera and Stefanov (1989)). Thus the process belongs to the family
defined by (1) with

Z1(t) = −X2
1 (0)−X2

2 (t)−
t∫

0

(X1(s) dX1(s) + X2(s) dX2(s)),

Z2(t) =
t∫

0

[X1(s) dX2(s)−X2(s) dX1(s)],

S(t) =
t∫

0

[X2
1 (s) + X2

2 (s)] ds,

Φ(θ) = 1
2 (θ2

1 + θ2
2) and Ψ(θ) = − log θ1.
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By Ito’s formula, Z1(t) can be expressed by

Z1(t) = − 1
2 [X2

1 (0) + X2
2 (0) + X2

1 (t) + X2
2 (t)− 2t].

The model for processes defined by the system of stochastic differential
equations (7) has often appeared in the literature devoted to problems of ef-
ficient and maximum likelihood estimation (Arato (1978), Taraskin (1974),
Basawa and Prakasa Rao (1980, Chapter 9, Section 5), Magiera and Ste-
fanov (1989)).

The conjugate prior density of the parameter θ = (θ1, θ2) takes the
form

f(θ;n0, z1, z2, s) = K(n0, z1, z2, s)θn0
1 exp[n0(z1θ1 + z2θ2 − 1

2s(θ2
1 + θ2

2))],

n0 > 0, (z1, z2, s) ∈ Y = (−∞,∞)2 × (0,∞). The norming constant is
determined by

[K(n0, z1, z2, s)]−1

=
∞∫
0

∞∫
−∞

θn0
1 exp[n0(z1θ1 + z2θ2 − 1

2s(θ2
1 + θ2

2))] dθ1 dθ2

=
∞∫
0

θn0
1 exp[n0(z1θ1 − 1

2sθ2
1)] dθ1

∞∫
−∞

exp[n0(z2θ2 − 1
2sθ2

2)] dθ2

= (n0s)−(n0+1)/2Γ (n0 + 1) exp
(

n0z
2
1

4s

)
D−n0−1

(
−

(
n0

s

)1/2

z1

)

×
(

2π

n0s

)1/2

exp
(

n0z
2
2

2s

)
= (2π)1/2(n0s)−(n0+3)/2Γ (n0 + 1) exp

[
n0

4s
(z2

1 + 2z2
2)

]

×D−n0−1

(
−

(
n0

s

)1/2

z1

)
.

In particular, for z1 = 0 the prior distribution has the norming constant
determined by

[K(n0, 0, z2, s)]−1 = 2n0/2π1/2(n0s)−(n0+2)/2Γ

(
n0 + 1

2

)
exp

(
n0z

2
2

2s

)
.

According to Theorem 3(ii), E(sθ1 − 1/θ1) = z1 and Eθ2 = z2/s.
In this case, the assumptions of the Lemma are satisfied for all n0 > 1

and (z, s) ∈ Y. Thus, (5) yields the following formulae:

D(sθ1 − θ−1
1 ) = E(z1 − sθ1 + θ−1

1 )2 =
1
n0

(s + Eθ−2
1 ),
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E(z1 − sθ1 + θ−1
1 )(z2 − sθ2) = 0,

D(sθ2) = E(z2 − sθ2)2 = s/n0,

which are valid for all n0 > 1 and (z, s) ∈ Y.

Example 3. Let X(t), t ≥ 0, be a Poisson process with a parame-
ter λ, starting at a fixed moment t0. The likelihood function is given as
follows:

dPλ,t

dµt
= exp[X(t + t0) log λ− λt− λt0].

This process satisfies (1) with Z(t) = X(t + t0), S(t) ≡ t, θ = log λ,
Φ(θ) = exp θ and Ψ(θ) = t0 exp θ.

The conjugate prior π(θ;n0, z, s) of the parameter θ has the density

f(θ;n0, z, s) = K(n0, z, s) exp[n0(zθ − (s + t0)eθ)],

n0 > 0, (z, s) ∈ Y = (0,∞)2, with

K(n0, z, s) =
[n0(s + t0)]n0z

Γ (n0z)
.

By Theorem 3(ii), E(exp θ) = z/(s + t0).
The conditions of the Lemma are satisfied for every n0 > 0 and (z, s) ∈

Y. Thus the Lemma implies

E[z − (s + t0) exp θ]2 = (s + t0)n−1
0 E(exp θ) = z/n0.

Hence, D(exp θ) = z/n0(s + t0)2.
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