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1. Introduction. We follow the usual practice of writing s = σ + it. It
is a well-known theorem of Hardy that the Riemann zeta-function ζ(s) has
an infinity of zeros on the critical line σ = 1/2. In fact, Hardy’s proof gives
that if 1/2 + iγn (γn ≥ 0) is the nth zero of ζ(s) on σ = 1/2 (see [12]), then

(1.1) γn+1 − γn � γ1/4+ε
n .

The result (1.1) was improved by R. Balasubramanian (see [1]), namely

(1.2) γn+1 − γn � γ1/6+ε
n .

In this paper, we consider the zeros of quadratic zeta-functions on the
critical line. We begin by explaining the term quadratic zeta-functions. By
this, we mean either the Epstein zeta-function associated with a positive
definite binary quadratic form or the zeta-function of an ideal class in a
quadratic field. One common feature of these things is that each of them
has a functional equation of certain type (see §2, in particular (2.9)).

The main result of this paper is an analogue of (1.1). If 1/2+iγ∗n (γ∗n ≥ 0)
is the nth zero of any of the quadratic zeta-functions mentioned above, we
prove

(1.3) γ∗n+1 − γ∗n � γ∗1/2
n log(γ∗n + 10).

Some important ground work in this direction has already been built
up by H. S. A. Potter and E. C. Titchmarsh [9], E. Hecke [5], K. Chan-
drasekharan and Raghavan Narasimhan [4], and B. C. Berndt [3]. The
main difference between the earlier papers and the present one is that while
they argue on the line σ = 1 + δ, we argue on the line σ = 1. For precise
results of the earlier authors see (1.8).

[21]
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Let

(1.4) Z(s) =
∞∑

m=−∞

∞∑
n=−∞

1
(am2 + bmn + cn2)s

=
∑ ∑′ 1

(ϕ(m,n))s

in σ > 1. Here a, b and c are real numbers with a > 0, c > 0 and ∆ =
4ac− b2 > 0, so that ϕ(m,n) is a positive definite quadratic form. The dash
indicates that the summation is taken over all values of m and n except
m = n = 0. In what follows we take a, b and c are integers with a > 0, c > 0
and ∆ = 4ac − b2 > 0. If K is a quadratic field and C is an ideal class in
K, then the Dedekind zeta-function of the class C in K is defined by the
Dirichlet series

(1.5) ζK(s, C) =
∑

0 6=A∈C

1
(NA)s

in σ > 1. Here NA means the norm of the ideal A ∈ C. We note that we
can write

(1.6) ζK(s, C) =
∞∑

m=1

am

ms
in σ > 1,

where

(1.7) am =
∑

0 6=A∈C

1
(NA)s

.

In fact, in [9] H. S. A. Potter and E. C. Titchmarsh proved that

(1.8) γ∗n+1 − γ∗n � γ∗1/2+ε
n

for Z(s). In [4], K. Chandrasekharan and Raghavan Narasimhan proved
that there are infinitely many zeros on σ = 1/2 for ζK(s, C). In [3], Bruce
C. Berndt proved (1.8) for ζK(s, C).

R e m a r k. If C1, C2, . . . , Cr are ideal classes in a field K = Q(
√
±d), then

we can prove an analogue of the inequality (1.3) of the same form for the
function

∑r
j=1 djζK(s, Cj) where the coefficients dj are real constants.

2. Notation and preliminaries. C1, C2, . . . , A1, A2, . . . denote posi-
tive constants unless it is specified. We write f(x) � g(x) to mean |f(x)| <
C1g(x) (sometimes, we use the O-notation to mean the same). We write
s = σ + it, s0 = 1 + it and w = u + iv. Let λ = |d| and ∆ = 4ac− b2 > 0.
All the constants C1, C2, . . . , A1, A2, . . . are effective. The implied constants
from � and O also are effective. In any fixed strip α ≤ σ ≤ β, as t → ∞,
we have

(2.1) Γ (σ + it) = tσ+it−1/2e−πt/2−it+(iπ/2)(σ−1/2)
√

2π(1 + O(1/t)).
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Z(s) satisfies the functional equation (see [6] or [11]):

(2.2)
(√

∆

2π

)s

Γ (s)Z(s) =
(√

∆

2π

)1−s

Γ (1− s)Z(1− s),

and ζK(s, C) satisfies the functional equation (see [6])

(2.3)
(√

λ

2π

)s

Γ (s)ζK(s, C) =
(√

λ

2π

)1−s

Γ (1− s)ζK(1− s, C) if d < 0

and

(2.4)
(√

λ

π

)s

Γ 2

(
s

2

)
ζK(s, C)

=
(√

λ

π

)1−s

Γ 2

(
1− s

2

)
ζK(1− s, C) if d > 0.

If we write

(2.5) Z(s) = χ1(s)Z(1− s),
(2.6) ζK(s, C) = χ2(s)ζK(1− s, C) if d < 0,

(2.7) ζK(s, C) = χ3(s)ζK(1− s, C) if d > 0,

from (2.2)–(2.4), we get |χj(1/2+it)| = 1 for j = 1, 2, 3, since χj(s) is real for
real s. Since Γ (s) has no zeros and only real poles, the function {χj(s)}−1

has a square root (χj(s))−1/2 in the simply connected region t ≥ t0 (t0 large
enough). We define

(2.8) Wj(t) = fj(1/2 + it), fj(s) = G(s)/
√

χj(s)

where

G(s) =

 Z(s) if j = 1 (defined by (2.2)),
ζK(s, C); d < 0 if j = 2 (defined by (2.3)),
ζK(s, C); d > 0 if j = 3 (defined by (2.4)).

We note that fj(s) = fj(1 − s) for j = 1, 2, 3 and hence Wj(t) is real for
real t. The zeros of Z(s), ζK(s, C) (with K = Q(

√
d), d < 0), ζK(s, C) (with

K = Q(
√

d), d > 0) on σ = 1/2 respectively correspond to the real zeros of
W1(t), W2(t) and W3(t). From (2.1)–(2.4), it follows that, for 1/2 ≤ σ ≤ 1,
we have

(2.9) (χj(s))−1/2 =
(

Mj

2π

)σ−1/2

tσ−1/2

(
tMj

2πe

)it

e(iπ/2)(σ−1/2)(1 + O(1/t))

for j = 1, 2, 3 where M1 =
√

∆, M2 = M3 =
√

λ.
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Let T ≥ T0 (T0 is a large positive constant) and let T ≤ T ′ ≤ 2T . For
µ > 0, we define

(2.10) J =
T ′∫

T

tµ
(

t

eξ

)it

dt, ξ > 0.

3. Some lemmas

Lemma 3.1. For µ > 0, we have

(3.1.1) J = O(Tµ/ log(T/ξ)) if ξ < T,

(3.1.2) J = O(Tµ/ log(ξ/T ′)) if ξ > T ′,

(3.1.3) J = (2π)1/2ξµ+1/2eiπ/4−ξ + O(Tµ+2/5) + O(Tµ/ log(ξ/T ))
+ O(Tµ/ log(T ′/ξ)) if T < ξ < T ′

and

(3.1.4) J = O(Tµ+1/2) for all ξ > C2.

P r o o f. (3.1.1) and (3.1.2) follow by using the first derivative test.
(3.1.3) follows by the saddle point method and (3.1.4) follows on using the
second derivative test. For example see [9].

R e m a r k. For a more general version of Lemma 3.1, we refer to [4]. The
estimate (3.1.4) with µ > 0 is due to Landau.

Lemma 3.2. If R(x) is the number of lattice points inside or on the
ellipse

a1(u− u0)2 + b1(u− u0)(v − v0) + c1(v − v0)2 = x

where a1, b1, c1, u0, v0 are fixed , then

R(x) = 2π(4a1c1 − b2
1)
−1/2x + O(x1/2).

P r o o f. See for example VII. Teil, Kap. 7 of [7]. It is given for a circle
and it is applicable for the ellipse also.

Lemma 3.3. If l(j) denotes the number of representations of j as j =
am2 + bmn + cn2, then

(i)
∑

j≤x l(j) = C3x + O(x1/2),
(ii)

∑
m≤x am = C4x + O(x1/2),

where am is as defined in (1.7).

P r o o f. (i) and (ii) follow from Lemma 3.2.

Lemma 3.4. For t ≥ C5, we have

(i) Z(1 + it) � log t,
(ii) ζK(1 + it, C) � log t.
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P r o o f. First we note that Z(s) is of finite order (see [8]). Hence

(3.4.1) Z(σ + it) � tC6 ,

where C6 ≥ 5, uniformly for 1/2 ≤ σ ≤ 3. By Mellin’s inverse transform,
we have

(3.4.2)
∑
ϕ

e−ϕ/X1

ϕs0
=

1
2πi

2+i∞∫
2−i∞

Z(s0 + w)Γ (w)Xw
1 dw

=
1

2πi

∫
u=2

|v|≤(log t)2

Z(s0 + w)Γ (w)Xw
1 dw + O(X2

1e−C7(log t)2).

Note that s0 = 1 + it. In the integral of the right hand side of (3.4.2), we
move the line of integration to u = −1/2. The pole w = 0 contributes Z(s0).
The horizontal portions contribute an error which is O(tC6e−C8(log t)2X2

1 ).
We notice that

(3.4.3)
1

2πi

∫
u=−1/2

|v|≤(log t)2

Z(s0 + w)Γ (w)Xw
1 dw = O(tC6X

−1/2
1 ).

Hence, from (3.4.2) we obtain∑
ϕ

e−ϕ/X1

ϕs0
= Z(s0) + O(tC6X

−1/2
1 ) + O(tC6X2

1e−C9(log t)2),(3.4.4)

∑
ϕ

e−ϕ/X1

ϕs0
= O

( ∑
ϕ≤X1

1
ϕ

)
+ O

(
X1

∑
ϕ>X1

1
ϕ2

)
.(3.4.5)

Since ϕ is a positive definite quadratic form, from Lemma 3.3(i) we obtain

(3.4.6)
∑

ϕ≤X1

1
ϕ

=
∑

n≤X1

l(n)
n

� log X1,

where l(n) is the number of representations of n as n = ϕ(x, y). Also,

(3.4.7) X1

∑
ϕ>X1

1
ϕ2

= X1

∑
n>X1

l(n)
n2

� 1.

We choose X1 = t2C6 . Hence (i) follows from (3.4.4)–(3.4.7). The proof of
(ii) follows in a similar way.

Lemma 3.5. For t ≥ 10, we have

(i) Z(σ + it) � t1−σ log t,
(ii) ζK(σ + it, C) � t1−σ log t

uniformly for 0 ≤ σ ≤ 1.
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P r o o f. (i) From Lemma 3.3, we have

(3.5.1) Z(1 + it) � log t.

From the functional equation (2.2), and (3.5.1), we get

(3.5.2) Z(it) � t log t.

We apply the maximum-modulus principle to the function

(3.5.3) F (w) = Z(w)e(w−s)2Xw−s
2

in the rectangle defined by the line segments joining the points i(t−(log t)2),
1 + i(t− (log t)2), 1 + i(t + (log t)2), i(t + (log t)2) and i(t− (log t)2). Now,

(3.5.4) |Z(s)| � V1 + V2 + H1 + H2,

where V1, V2 are the contributions from the vertical lines and H1, H2 are
the contributions from the horizontal lines. We notice that H1 � 1 and
H2 � 1. From (3.5.1)–(3.5.3), we obtain

(3.5.5) |Z(s)| � t(log t)X−σ
2 + (log t)X1−σ

2 + 1.

Choosing X2 = t, we obtain (i). (ii) follows in a similar way.

Lemma 3.6. Let T ≤ t ≤ 2T and X3 =
√

∆T 4. We have

Z(s0) =
∑
ϕ

e−ϕ/X3

ϕs0
+ O(T−3/2(log T )3),

where s0 = 1 + it.

P r o o f. As we did in Lemma 3.4, we obtain∑
ϕ

e−ϕ/X3

ϕs0
=

1
2πi

∫
u=−1/2

|v|≤(log T )2

Z(s0 + w)Γ (w)Xw
3 dw + Z(s0)

+ O(X2
3e−C10(log T )2) + O(T 1/2(log T )5e−C11(log T )2X2

3 )

= Z(s0) + O(T 1/2(log T )3X−1/2
3 ) + O(X2

3e−C10(log T )2)

+ O(T 1/2(log T )5e−C11(log T )2X2
3 ).

From our choice of X3 =
√

∆T 4, the lemma follows.

Lemma 3.7. Let T ≤ t ≤ 2T and X4 =
√

λT 4. We have

ζK(s0, C) =
∞∑

m=1

am

ms0
e−m/X4 + O(T−3/2(log T )3).

P r o o f. This follows in a similar way to Lemma 3.6.
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Lemma 3.8. If α1 is irrational , then
N ′∑

n=N

e2πi(α1n2+β1n) = o(N ′ −N)

as N ′ −N tends to infinity , uniformly with respect to β1 and N .

P r o o f. See for example [8].

Lemma 3.9. For every irrational x and H = H(T ) ≤ T such that H/
√

T
tends to infinity with T we have∑

T≤m≤T+H

ame2πimx = o(H),

where am is as defined in (1.7).

P r o o f. Let

(3.9.1) S(T, T + H) =
∑

T≤m≤T+H

ame2πimx.

For a given ideal class C and a non-zero integral ideal A ∈ C, we choose a
non-zero integral ideal B ∈ C−1 such that AB = (α) for α ∈ B. We note
that (1, ω = (d +

√
d)/2) is a base of the ring of integers of K = Q(

√
d). We

denote by ω′ = (d−
√

d)/2 the conjugate of ω.

C a s e (i): K = Q(
√

d) with d > 0. Let α0 be a generator of (α) and
let α′ be the conjugate of α. We have α = ±α0η

r where η (> 1) is the
fundamental unit and ηη′ = ±1. (η′ is the conjugate of η.) Now, by letting
L = |α0/α′0|, we find that

|α/α′| = Lη2r.

We choose r to be the least integer such that Lη2r ≥ 1. Hence, we get

(3.9.2) 1 ≤ |α/α′| < η2.

We can write α = k + lω with k > 0. We notice that for a given non-zero
integral ideal A ∈ C, there exists one and only one α = k + lω with k > 0
such that AB = (α) and satisfying the condition (3.9.2). For, if there are
two, say α11 = k1 + l1ω and α12 = ±(k2 + l2ω)ηr with r ≥ 1, then

η2 >

∣∣∣∣α11

α′11

∣∣∣∣ =
∣∣∣∣α12

α′12

∣∣∣∣η2r ≥ η2r,

which is a contradiction. If, in (3.9.2), k = 0 for α then α = lω is unique if
we specify that l > 0, for otherwise (l1ω) and (l2ω) are different ideals. Now,

(3.9.3) m = NA = |(k + lω)(k + lω′)|(NB)−1 = |P (k, l)|(NB)−1,

where

(3.9.4) P (k, l) = (k + lω)(k + lω′) = k2 + a2kl + b2l
2



28 A. Sankaranarayanan

with 4b2 − a2
2 < 0. From (3.9.2), we have

(3.9.5) 1 ≤ |k + lω|
|k + lω′|

< η2

and hence,

(3.9.6) |k + lω′|2 ≤ |P (k, l)| < η2|k + lω′|2

and

(3.9.7) |P (k, l)| ≤ |k + lω|2 < η2|P (k, l)|.

From (3.9.3), we obtain

(3.9.8) T (NB) ≤ |P (k, l)| ≤ (T + H)(NB).

From (3.9.6)–(3.9.8), we get

(3.9.9) |k + lω| ≤ η
√

2(NB)T and |k + lω′| ≤
√

2(NB)T .

Subtracting one from the other of (3.9.9), we get first |l| ≤ C12

√
T and using

this we obtain k ≤ C13

√
T . For a given k > 0, from the inequality (3.9.5),

we get two intervals (say) J1 and J2 for l. From (3.9.4) and (3.9.8), we
get

4b2(NB)T ≤ |4b2k
2 + 4b2a2kl + 4b2

2l
2| ≤ 4b2(NB)(T + H),

i.e.,

(3.9.10) C14T ≤ |(2b2l + a2k)2 + (4b2 − a2
2)k

2| ≤ C14(T + H).

The inequality (3.9.10) leads to four intervals (say) J3, J4, J5 and J6 and
we notice that

(3.9.11) length of Jr � H/
√

T for r = 3, 4, 5, 6.

We define the set S(k) for a fixed k ≥ 0 to be

(3.9.12) S(k) =
{

(k, l)
∣∣∣ l ∈

( 6⋃
r=3

Jr

)
∩ (J1 ∪ J2)

}
.

From (3.9.1), we have

S(T, T + H) =
1
2

{∑
k

∑∗

l
P (k,l)≡0 (NB)

e2πi|P (k,l)|x(NB)−1
}

(where ∗ indicates that l runs over S(k) for fixed k ≥ 0)

=
1
2

{ ∑
k

∑∗

l

(
1

NB

NB∑
j=1

e2πi|P (k,l)|(NB)−1j

)
e2πi|P (k,l)|x(NB)−1

}
.
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Therefore

(3.9.13) |S(T, T + H)| ≤ 1
2

max
j

{∑
k

∣∣∣ ∑∗

l

e2πi|P (k,l)|yj

∣∣∣}.

Since j runs over a finite set of positive integers and since x is irrational,
yj is irrational and hence (P (k, l))yj is a quadratic polynomial in l with the
leading coefficient irrational. First, we note that k = 0 trivially gives o(H)

to (3.9.13). So, it is enough to consider k > 0. Let M = (H/
√

T )/
√

H/
√

T .
For fixed k > 0, we see that

(3.9.14)
∑∗∗

l

e2πi|P (k,l)|yj = O(M),

where ∗∗ indicates that l belongs to those intervals whose length is ≤ M .
For fixed k > 0, using Lemma 3.8, we obtain

(3.9.15)
∑∗∗∗

l

e2πi|P (k,l)|yj = o(H/
√

T ),

where ∗∗∗ indicates that l runs over those intervals whose length lies between
M and H/

√
T . Therefore from (3.9.13)–(3.9.15), we get

S(T, T + H) = o(H),

since k �
√

T .

C a s e (ii): K = Q(
√

d) with d < 0. When d = −1 and −3, the class
number of the field K is 1 and hence ζK(s, C) will contain a factor ζ(s). So,
for the purpose of our paper, we can assume d 6= −1 and 6= −3. In this case,
the class number of K is > 1 and there are two units of K. Hence, we get

P (k, l) = k2 + a2kl + b2l
2 with 4b2 − a2

2 > 0

and T (NB) ≤ |P (k, l)| ≤ (T + H)(NB). Trivially, we get 0 ≤ k �
√

T and
now we can argue as we did in the case (i), and obtain the lemma.

Lemma 3.10. If a/
√

∆ or c/
√

∆ is irrational (in particular , if a, b, c
are integers and ∆ is not a square) and H = H(T ) is such that H ≤ T and
H/
√

T tends to infinity with T , then

T+H∫
T

W1(t) dt = o(H) + O(T 1/2 log T ).

P r o o f. Recall s0 = 1 + it. First, we note that from (2.9),

(3.10.1) (χ1(s0))−1/2 = C15t
1/2

(
t
√

∆

2πe

)it

+ O(t−1/2),
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where C15 = eiπ/4(
√

∆/(2π))1/2. Now, we have

T+H∫
T

W1(t) dt = −i

1/2+i(T+H)∫
1/2+iT

f1(s) ds(3.10.2)

= −i
{ 1+iT∫

1/2+iT

+
1+i(T+H)∫
1+iT

+
1/2+i(T+H)∫
1+i(T+H)

}
f1(s) ds

= L1 + L2 + L3 (say).

From Lemma 3.5(i) and (2.9), we obtain

(3.10.3) L1 �
1∫

1/2

T (1−σ)+σ−1/2(log T ) dσ � T 1/2 log T.

Similarly, we obtain

(3.10.4) L3 � T 1/2 log T.

From Lemma 3.6 and (3.10.1), we have

L2 =
T+H∫
T

f1(1 + it) dt(3.10.5)

=
T+H∫
T

{
C15t

1/2

(
t
√

∆

2πe

)it

+ O(t−1/2)
}

×
{ ∑

ϕ

e−ϕ/X3

ϕs0
+ O(T−3/2(log T )3)

}
dt

= C15

∑
ϕ

e−ϕ/X3

ϕ

T+H∫
T

t1/2

(
t
√

∆

2πeϕ

)it

dt + O((log T )5)

+ O

(
T 1/2

∑
ϕ

e−ϕ/X3

ϕ

)
+ O(T−1(log T )5).

We have ∑
ϕ

e−ϕ/X3

ϕ
≤

∑
ϕ≤X3

1
ϕ

+
∑

ϕ>X3

e−ϕ/X3

ϕ
(3.10.6)

=
∑

j≤X3

l(j)
j

+
∑

j>X3

l(j)e−j/X3

j

� log X3 +
∞∫

1

e−vv−1 dv � log T
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since X3 =
√

∆T 4. Hence, we obtain
(3.10.7)

L2 = C15

∑
ϕ

e−ϕ/X3

ϕ

T+H∫
T

t1/2

(
t
√

∆

2πeϕ

)it

dt + o(H) + O(T 1/2 log T ).

To estimate the first term of (3.10.7), we divide the range of ϕ as follows,
where K1 =

√
∆/(2π):

[0,K1(
√

T − 1)2), [K1(
√

T − 1)2,K1(
√

T + 1)2),

[K1(
√

T + 1)2,K1(
√

T + H − 1)2),
[K1(

√
T + H − 1)2,K1(

√
T + H + 1)2),

[K1(
√

T + H + 1)2, X2
3 ), [X2

3 ,∞).

Let
∑

1,
∑

2, . . . ,
∑

6 be the corresponding parts of the above sum. Now,

∑
1

= C15

∑
ϕ≤K1(

√
T−1)2

e−ϕ/X3

ϕ

T+H∫
T

t1/2

(
K1t

eϕ

)it

dt

= C15

∑
r≤
√

K1(
√

T−1)

∑
(r−1)2≤ϕ<r2

e−ϕ/X3

ϕ

T+H∫
T

t1/2

(
K1t

eϕ

)it

dt

= O

( ∑
r≤
√

K1(
√

T−1)

1
r
· T 1/2

|log(K1T/ϕ)|

)
.

(We have used (3.1.1) with µ = 1/2 and the number of terms in the inner
sum is O(r).) Since

(3.10.8)
∣∣∣∣log

m

n

∣∣∣∣ ≥ |m− n|
m + n

for any two positive numbers m,n, we have

(3.10.9)
∑

1
= O

(
T 1/2

∑
r≤
√

K1(
√

T−1)

1
r
· r +

√
K1T

|r −
√

K1T |

)

= O

(
T 1/2

∑
r≤
√

K1(
√

T−1)

{
1

|r −
√

K1T |
+

√
K1T

r|r −
√

K1T |

})

= O(T 1/2 log T )

since ∑
r≤
√

K1(
√

T−1)

1
|r −

√
K1T |

= O(log T ),
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and ∑
r≤
√

K1(
√

T−1)

√
K1T

r|r −
√

K1T |
=

∑
r≤
√

K1T/2

√
K1T

r|r −
√

K1T |

+
∑

√
K1T/2<r≤

√
K1(

√
T−1)

√
K1T

r|r −
√

K1T |

= O(log T ).

Now, using (3.1.4) with µ = 1/2, we obtain

(3.10.10)
∑

2
=

∑
K1(

√
T−1)2≤ϕ≤K1(

√
T+1)2

e−ϕ/X3

ϕ

T+H∫
T

t1/2

(
K1t

eϕ

)it

dt

= O

(
1
T
· T (K1(

√
T + 1)2 −K1(

√
T − 1)2)

)
= O(T 1/2)

and similarly, we get

(3.10.11)
∑

4
= O(T 1/2).

We note that we can use (3.1.2) to estimate
∑

5 and
∑

6. Now,

(3.10.12)
∑

5
=

∑
K1(

√
T+H+1)2≤ϕ<X2

3

e−ϕ/X3

ϕ

T+H∫
T

t1/2

(
K1t

eϕ

)it

dt

�
∑

√
K1(

√
T+H+1)≤r<X3

∑
(r−1)2≤ϕ<r2

1
ϕ
· T 1/2

log
(

ϕ
K1(T+H)

)
� T 1/2

∑
√

K1(
√

T+H+1)≤r<X3

1
r
· 1
log

(
r2

K1(T+H)

)
� T 1/2 log T.

Now, ∑
6
�

∑
ϕ≥X2

3

e−ϕ/X3

ϕ
· T 1/2

log
(

ϕ
K1(T+H)

)(3.10.13)

� T 1/2e−X3/2X3
1

X2
3

� T−10.

It remains only to estimate
∑

3. Now,

(3.10.14)
∑

3
= C15

∑
K1(

√
T+1)2≤ϕ<K1(

√
T+H−1)2

e−ϕ/X3

ϕ

T+H∫
T

t1/2

(
K1t

eϕ

)it

dt.
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Note that K1 =
√

∆/(2π). With ϕ in the range as in (3.10.14), using (3.1.3)
with µ = 1/2 and ξ = ϕ/K1, we obtain

(3.10.15)
∑

3
=
√

2πC15e
iπ/4K−1

1

∑
ϕ

e−ϕ/X3e−2πiϕ/
√

∆

+ O

(
T 9/10

∑
ϕ

e−ϕ/X3

ϕ

)
+ O

(
T 1/2

∑
ϕ

e−ϕ/X3

ϕ log
(

ϕ
K1T

))

+ O

(
T 1/2

∑
ϕ

e−ϕ/X3

ϕ log
(K1(T+H)

ϕ

))
= L4 + L5 + L6 + L7, say.

Since K1(
√

T + 1)2 ≤ ϕ < K1(
√

T + H − 1)2 and X3 = K1(
√

T − 1)8, we
note that

(3.10.16) e−ϕ/X3 = 1 + O(ϕ/X3) = 1 + O(T−2),

and we use (3.10.7). Also, note that the number of integers in [K1(
√

T +1)2,
K1(

√
T + H − 1)2) is

(3.10.17) C16K1H + O(
√

T ) = O(H).

From (3.10.17), we get

L5 � T 9/10
∑

K1(
√

T+1)2≤j<K1(
√

T+H−1)2

l(j)
j

e−j/X3(3.10.18)

� T 9/10−1H = o(H).

Using (3.10.7), we obtain,

(3.10.19) L6 � T 1/2
∑

K1(
√

T+1)2≤j<K1(
√

T+H−1)2

l(j)
j

e−j/X3
j + K1T

|j −K1T |

� T 1/2
∑

K1(
√

T+1)2≤j<K1(
√

T+H−1)2

l(j)
|j −K1T |

� T 1/2 log T

and

L7 � T 1/2(3.10.20)

×
∑

K1(
√

T+1)2≤j<K1(
√

T+H−1)2

l(j)
j

e−j/X3
j + K1(T + H)
|j −K1(T + H)|
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� T 1/2
∑

K1(
√

T+1)2≤j<K1(
√

T+H−1)2

l(j)
|j −K1(T + H)|

+
T 1/2K1(T + H)

K1T

∑
···

l(j)
|j −K1(T + H)|

� T 1/2 log T.

Now,

L4 =
√

2πC15e
iπ/4K−1

1(3.10.21)

×
∑

K1(
√

T+1)2≤ϕ<K1(
√

T+H−1)2

e−ϕ/X3e−2πiϕ/
√

∆

=
√

2πC15e
iπ/4K−1

1

∑
···

e−2πiϕ/
√

∆ + O
( ∑

···
ϕ/X3

)
=
√

2πC15e
iπ/4K−1

1

∑
K1(

√
T+1)2≤ϕ<K1(

√
T+H−1)2

e−2πiϕ/∆

+ O(T 1+εH/X3)

=
√

2πC15e
iπ/4K−1

1

×
∑

K1(
√

T+1)2≤ϕ<K1(
√

T+H−1)2

e−2πiϕ/
√

∆ + o(1)

since X3 � T 4. Now, suppose that c/
√

∆ is irrational. Then∣∣∣ ∑
e−2πiϕ/

√
∆

∣∣∣ =
∣∣∣ ∑

m

∑
n

e−2πi(am2+bmn+cn2)/
√

∆
∣∣∣

≤
∑
m

∣∣∣ ∑
n

e−2πi(am2+bmn+cn2)/
√

∆
∣∣∣.

Since H/
√

T tends to infinity with T , the range of values of n consists of
one or two intervals, the length of each of which tends to infinity. Hence by
Lemma 3.8, we get∑

n

e−2πi(am2+bmn+cn2)/
√

∆ = o
( ∑

n

1
)

and therefore from Lemma 3.2 we obtain

(3.10.22)
∑
m

∑
n

e−2πi(am2+bmn+cn2)/
√

∆

= o
( ∑

m

∑
n

1
)

= o(R(T + H)−R(T )) = o(H) + o(
√

T ).

If a/
√

∆ is irrational, a similar argument holds with m and n interchanged.
This proves the lemma.
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Lemma 3.11. Let H = H(T ) be such that H ≤ T and H/
√

T tends to
infinity with T . If λ is not a perfect square, then

(i)
T+H∫
T

W2(t) dt = o(H) + O(T 1/2 log T ),

(ii)
T+H∫
T

W3(t) dt = o(H) + O(T 1/2 log T ).

P r o o f. We note that λ = |d| is not a perfect square so that
√

λ is
irrational. Again, we notice that from (2.9),

(χj(s0))−1/2 = C16 t1/2

(
t
√

λ

2πe

)it

+ O(t−1/2) for j = 2, 3,

where C16 = eiπ/4(
√

λ/(2π))1/2. Instead of K1 in the proof of Lemma 3.10,
we take K2 =

√
λ/(2π). Now, the proof for (i) and (ii) is the same as for

Lemma 3.10.

Lemma 3.12 (see Theorem 1 of [10]). Let C17 ≥ 1 and 1 = λ1 < λ2 < . . .
be such that 1/C17 ≤ λn+1 − λn ≤ C17. Let 1 = a1, a2, . . . be a sequence of
complex numbers with |an| ≤ (nH)C17 where (log T )10 ≤ H ≤ T . Suppose
F (s) =

∑∞
n=1 anλ−s

n is analytically continuable in an infinite system of rect-
angles defined by {σ ≥ 1/2, T ≤ t ≤ T + H} and there max |F (s)| < TC17 .
Then

T+H∫
T

|F (1/2 + it)| dt � H,

where the implied constant is effective.

P r o o f. First, we choose C18 large enough such that

(3.12.1) 1 � F (σ + it) � 1 for σ ≥ 1/2 + C18.

Consider the rectangle R1 defined by the line segments joining the points
1/2 + iT , 1/2 + 2C18 + iT , 1/2 + 2C18 + i(T + H), 1/2 + i(T + H) and
1/2 + iT . Let s1 = 1/2 + C18 + it1, where T + H/10 ≤ t1 ≤ T + H −H/10.
By the residue theorem, for X > 0 we have

F (s1) =
1

2πi

∫
R1

F (s)Xs−s1e(s−s1)
2

s− s1
ds(3.12.2)

= H11 + H12 + V11 + V12 (say)

where H11, H12 are the horizontal lines contributions and V11, V12 are the
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vertical lines contributions. We note that

(3.12.3) H11�
1/2+2C18∫

1/2

i
|F (σ + iT )|Xσ−1/2−C18e(σ−1/2−C18)

2−(T−t1)
2

|σ − 1/2− C18 + i(T − t1)|
dσ

� TC17(XC18 + X−C18)e−C19H2

and similarly,

(3.12.4) H12 � TC17(XC18 + X−C18)e−C19H2
.

Now, from (3.12.1),

(3.12.5) V12 =
1
2π

T+H∫
T

F (1/2 + 2C18 + it)XC18+i(t−t1)eC2
18−(t−t1)

2+i( )

C18 + i(t− t1)
dt

� XC18

T+H∫
T

e−(t−t1)
2
dt.

Also, we have

V11 =
1
2π

T+H∫
T

F (1/2 + it)X−C18+i(t−t1)eC2
18−(t−t1)

2+i( )

−C18 + i(t− t1)
dt(3.12.6)

� X−C18

T+H∫
T

|F (1/2 + it)|e−(t−t1)
2

|−C18 + i(t− t1)|
dt.

From (3.12.1)–(3.12.6), we obtain,

(3.12.7) H �
T+H−H/10∫
T+H/10

|F (s1)| dt1

� XC18H + X−C18

T+9H/10∫
T+H/10

dt1

T+H∫
T

|F (1/2 + it)|e−(t−t1)
2

|−C18 + i(t− t1)|
dt

� XC18H + X−C18

( T+H∫
T

|F (1/2 + it)| dt
)
.

We choose X such that

(3.12.8) XC18H = X−C18

(√
H +

T+H∫
T

|F (1/2 + it)| dt
)
.

From (3.12.8), it clearly follows that 1/TC19 � X � TC20 . First choose
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X = H−ε to get
T+H∫
T

|F (1/2 + it)| dt � H1−C18ε;

then choose

X = H−1
( T+H∫

T

|F (1/2 + it)| dt
)1/2C18

to get
T+H∫
T

|F (1/2 + it)| dt � H,

which proves the lemma.

R e m a r k. For a more precise and general version of Lemma 3.12, we
refer to [2].

4. Proof of the inequality (1.3). It is enough to prove (1.3) in the
case of Z(s). Others follow in the similar way. If W1(t) is of constant sign
over the interval [T, T + H], then we have

(4.1)
∣∣∣ T+H∫

T

W1(t) dt
∣∣∣ =

T+H∫
T

|W1(t)| dt.

By Lemmas 3.10 and 3.12, it follows that

(4.2) o(H) + O(T 1/2 log T ) =
∣∣∣ T+H∫

T

W1(t) dt
∣∣∣ =

T+H∫
T

|W1(t)| dt > C21H.

Since all the constants are effective, if we choose H = C22T
1/2 log T where

C22 is a large effective positive constant, the inequality (4.2) is contradicted
and hence W1(t) has a zero in every interval (T, T + C22T

1/2 log T ) with T
large enough. Now (1.3) follows.
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