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1. Introduction. Let e be a positive integer ≥ 2 and p be a rational
prime ≡ 1 (mod e). Let q = pα and Fq be the finite field of q elements. Write
q = ef + 1. Let γ be a generator of the cyclic group F∗q . Let ξ be a primitive
(complex) eth root of unity. Define a character χ on F∗q by χ(γ) = ξ and put
χ(0) = 0 for convenience. (Note that for any integer i, positive, negative or
zero, χi(0) is to be taken as 0.) For 0 ≤ i, j ≤ e− 1 (or rather for i, j modulo
e) define the e2 cyclotomic numbers Ai,j (also written in the literature as
(i, j)) by

(1) Ai,j = cardinality of Xi,j ,

where

(2) Xi,j = {v ∈ Fq | χ(v) = ξi, χ(v + 1) = ξj}
= {v ∈ Fq − {0,−1} | indγ v ≡ i (mod e), indγ(v + 1) ≡ j (mod e)}.

Also define the e2 Jacobi sums J(i, j) by

(3) J(i, j) =
∑

v∈ q

χi(v)χj(v + 1).

The Jacobi sums J(i, j) and the cyclotomic numbers Ai,j are related by

(4)
∑

i

∑

j

ξ−(ai+bj)J(i, j) = e2Aa,b and
∑

i

∑

j

Ai,jξ
ai+bj = J(a, b).

These relations show that if we want to determine all the Ai,j it is sufficient
to determine all the Jacobi sums J(i, j). Also note that if we change the
generator of F∗q , then the sets Xi,j get interchanged among themselves and
so also the cyclotomic numbers Ai,j and the Jacobi sums J(i, j).

The problem of determining cyclotomic numbers in terms of the solutions
of certain diophantine systems (the so-called cyclotomic problem) has been
treated by different authors since the time of Gauss (1801). The cyclotomic
numbers of prime order l in the finite field Fq, q = pα, p ≡ 1 (mod l) have
been treated by Gauss (l = 3, q = p), Dickson (l = 5, q = p), Leonard and
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Williams (l = 7, 11, q = p), Parnami, Agrawal and Rajwade (l ≤ 19, q = pα)
and Katre and Rajwade (any l, q = pα). See [6] and the references therein.
There was certain ambiguity in the work of Gauss, Dickson etc. which has
been removed by Katre and Rajwade in [6] thereby obtaining a complete
solution of the cyclotomic problem for any prime modulus l. In fact the
removal of the ambiguity has helped in treating the problem in the general
l-case.

A number of authors have considered cyclotomic numbers of small com-
posite orders and their work again involves the classical ambiguity, and the
problem of removal of the ambiguity may also be taken up for composite
moduli. The first general case which may be taken up would be that of mod-
ulus 2l, where l is an odd prime. (For l = 2, i.e. 2l = 4, see [7].) The reason
for this preference is that the cyclotomic numbers of order l as well as 2l
are related to the same cyclotomic field, viz. Q(ζ), ζ = exp(2πi/l), and it
is therefore expected that the system of diophantine equations considered
in the l-case would also be useful in the 2l-case. The cyclotomic numbers of
order e = 2l have earlier been treated by Dickson (e = 6, q = p in detail;
e = 10, 14, q = p sketchy) [3], [4], A. L. Whiteman (e = 10, q = p, treated
in sufficient details) [11], Muskat (e = 14, q = p) [8], N. Buck and K. S.
Williams (e = 14, q = p) [2] and Zee (e = 22, q = p, partially) [12], Berndt
and Evans [1] (e = 6, 10, q = p2), M. Hall (e = 6, q = pα) [5], Storer (e = 6,
q = pα) [10]. The results of these authors involve the classical ambiguity
discussed in [6]. Roughly speaking, the considered diophantine system has
more solutions than required and a unique solution of the system needs to
be chosen which would give the correct formulae for the cyclotomic numbers
corresponding to the given generator of F∗q .

The aim of the present paper is to determine the cyclotomic numbers
of order 2l in terms of the solutions of the diophantine system considered
for the l-case (see equations (i) and (ii) in §6) except that the proper choice
of the solutions for the 2l-case is made by additional conditions (iii), (iv)′,
(v)′, (vi)′ which replace the conditions (iii), (iv), (v), (vi) (see §6) used in
the l-case. These additional conditions determine required unique solutions
thereby also giving arithmetic characterisation of the relevant Jacobi sums
and then the cyclotomic numbers of order 2l are determined unambiguously
by the formulae (23). We have thus also shown how the cyclotomic num-
bers of order l and 2l can be treated simultaneously. (We recall that the
cyclotomic numbers of order 10 were obtained by Whiteman in terms of
the solutions of the same diophantine system which was used by Dickson to
treat the cyclotomic numbers of order 5. Similarly the cyclotomic numbers
of order 14 were obtained by Muskat in terms of the same diophantine sys-
tem which was used earlier by Dickson to treat the cyclotomic numbers of
order 7.)
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We have to mention that a number of calculations of Whiteman [11] and
Muskat [8] were useful in deriving the formulae for cyclotomic numbers of
order 2l (see §5).

As an illustration, in §7 we give an unambiguous evaluation of cyclotomic
numbers of order 6 in Fq in terms of the solutions of the diophantine system
hitherto considered by Gauss, Dickson, M. Hall and Storer.

2. Cyclotomic numbers of order 2l. Let e = 2l, l an odd prime. Let
Ai,j denote cyclotomic numbers of order 2l for any given generator γ of F∗q .
Observe that

2l−1∑

i=0

2l−1∑

j=0

Ai,j = q − 2.

Also,

(5)
2l−1∑

j=0

Ai,j = f − ni,

where ni = 1 if i = 0, f even or if i = l, f odd; and ni = 0 otherwise.
Further,

(6)
2l−1∑

i=0

Ai,j =
{
f − 1 if j = 0,
f otherwise.

Now if f is even then v ∈ Xi,j if and only if −v − 1 ∈ Xj,i if and only if
−v/(v + 1) ∈ Xi−j,2l−j if and only if −(v + 1)/v ∈ Xj−i,2l−i.

Again if f is odd then v ∈ Xi,j if and only if −v − 1 ∈ Xj+l,i+l if and
only if −v/(v + 1) ∈ Xl+i−j,2l−j if and only if −(v + 1)/v ∈ Xj−i+l,l−i.

Thus if f is even we have

(7) Ai,j = Aj,i = Ai−j,−j = Aj−i,−i = A−i,j−i = A−j,i−j ,

and if f is odd we have

(8) Ai,j = Aj+l,i+l = Al+i−j,−j = Al+j−i,l−i = A−i,j−i = Al−j,i−j .

3. Jacobi sums of order 2l and their properties. In this section we
give some elementary properties of Jacobi sums J(i, j) of order 2l.

Let ζ and ξ be primitive lth and 2lth roots of unity in terms of which
the character χ and the Jacobi sums Jl(i, j) and J(i, j) = J2l(i, j) of order
l and 2l (resp.) are defined. Assume moreover that they satisfy ζ = ξ2 (or
equivalently ξ = −ζ(l+1)/2). This assumption is required especially when the
Jacobi sums of order l and 2l are simultaneously considered. (See e.g. (5) of
Proposition 1 below.) This notation will prevail throughout the remaining
part of the paper unless stated otherwise.
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Proposition 1. (1) If a+ b+ c ≡ 0 (mod 2l) then

J(a, b) = J(c, b) = χc(−1)J(c, a) = χa(−1)J(b, c) = χa(−1)J(a, c)

= χc(−1)J(b, a).

In particular , J(1, a) = χ(−1)J(1, 2l − a− 1).

(2) J(0, j) =
{−1 if j 6≡ 0 (mod 2l),
q − 2 if j ≡ 0 (mod 2l)

,

J(i, 0) = −χi(−1) if i 6≡ 0 (mod 2l).
(3) Let a+ b ≡ 0 (mod 2l) but not both zero (mod 2l). Then J(a, b) =

−1.
(4) For (k, 2l) = 1, τkJ(i, j) = J(ik, jk), where τk is the automorphism

ξ 7→ ξk of Q(ζ) over Q. In particular , if for (i, 2l) = 1, i−1 denotes the
inverse of i modulo 2l then τi−1J(i, j) = J(1, ji−1).

(5) J(2r, 2s) = Jl(r, s) where Jl(r, s) are the Jacobi sums of order l.

(6) J(1, n)J(1, n) =
{
q if n 6≡ 0,−1 (mod 2l),
1 if n ≡ 0,−1 (mod 2l).

(7) (Product Rule for Jacobi sums) Let m, n, t be integers such that
m+ n 6≡ 0 (mod 2l) and m+ t 6≡ 0 (mod 2l). Then

J(m,n)J(m+ n, t) = χm(−1)J(m, t)J(n,m+ t).

P r o o f. The proof of properties (1)–(5) follows using the definition of
the Jacobi sum. The proof of (6) is analogous to the proof in the l-case (see
[9]). To prove (7), consider

J(m,n)J(m+ n, t) =
{ ∑

v∈ q

χm(v)χn(v + 1)
}{ ∑

u∈ q

χm+n(u)χt(u+ 1)
}

=
∑

u∈ ∗q

{ ∑

v∈ q

χm(uv)χn(uv + u)
}
χt(u+ 1)

= S1 + S2,

say, where S1 and S2 are defined below.
For every u 6= 0, there is a unique v ∈ Fq such that uv + u + 1 = 0, i.e.

v = −(u+ 1)/u. The total contribution from such pairs (u, v) is S2, where

S2 =
∑

u∈ ∗q ,v=−(u+1)/u

χm(uv)χn(uv + u)χt(u+ 1)

=
∑

u∈ ∗q
χm(−u− 1)χn(−1)χt(u+ 1)

=
∑

u∈ ∗q
χm+n(−1)χm+t(u+ 1) = −χm+n(−1)χm+t(1) = −χm+n(−1),
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as m+ t 6≡ 0 (mod 2l). The remaining part of the above sum is S1, where

S1 =
∑

u∈ ∗q ,v 6=−(u+1)/u

{χm(uv)χn(uv + u)}χt(u+ 1).

Now there is a bijection between the (q−1)2 pairs (u, v) satisfying u 6= 0,
v 6= −(u+1)/u and the (q−1)2 pairs (x, y) satisfying y 6= −1, x 6= −y/(y+1),
the correspondence being given by x = −uv/(uv+u+1) and y = uv+u, with
the inverse transformations u = x+ y+xy and v = −(x+xy)/(x+ y+xy).
Hence

S1 = χm(−1)
∑

y 6=−1

∑

x6=−y/(y+1)

{χm(xy + x)χn(y)}χt((x+ 1)(y + 1))

= χm(−1)
∑

y 6=−1

∑

x6=−y/(y+1)

χm(x)χm+t(y + 1)χn(y)χt(x+ 1).

Now

χm(−1)
∑

y 6=−1,x6=−y/(y+1)

χm(x)χm+t(y + 1)χn(y)χt(x+ 1)

= χm(−1)
∑

y 6=−1

χm(−y/(y + 1))χm+t(y + 1)χn(y)χt(1/(y + 1))

=
∑

y 6=−1

χm+n(y) = −χm+n(−1) (as m+ n 6≡ 0 (mod 2l))

= −χm+n(−1).

Hence

S1 = χm(−1)
∑

y 6=−1

∑
x

χm(x)χm+t(y + 1)χn(y)χt(x+ 1) + χm+n(−1).

Thus

S1 + S2 = χm(−1)
∑

y 6=−1

∑
x

χm(x)χm+t(y + 1)χn(y)χt(x+ 1)

= χm(−1)
∑
x

{χm(x)χt(x+ 1)}
{ ∑

y 6=−1

χn(y)χm+t(y + 1)
}

= χm(−1)J(m, t)J(n,m+ t).

R e m a r k. It follows that all the 4l2 Jacobi sums of order 2l are known
if the Jacobi sums of order l are known and also the Jacobi sums J(1, n),
1 ≤ n ≤ 2l− 3, n odd (or equivalently as somebody else may prefer J(1, n),
1 ≤ n ≤ 2l−2, n even). Now Jacobi sums of order l are known if Jl(1, n) are
known for 1 ≤ n ≤ (l − 3)/2 (J(1, 1) for l = 3), see [9]. It thus follows that
it is sufficient to determine J(1, n) for 1 ≤ n ≤ 2l−3, n odd and Jl(1, n) for
1 ≤ n ≤ (l − 3)/2 (Jl(1, 1) for l = 3).
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4. Technical lemmas. This section deals with prime ideal decompo-
sition of the Jacobi sums of order 2l (see Lemmas 1, 2 and Proposition 2)
and their important congruence property (Proposition 3). These results may
also be derived using Gauss sums, and especially the congruence property
for J(1, n) (Proposition 3) may be obtained using the relation about Gauss
sums considered by Dickson ([3], p. 407 to be considered more generally for
q = pα). However we have given the proofs within the framework of Jacobi
sums only.

As in the previous section, J(i, j) denotes a Jacobi sum of order 2l
whereas Jl(i, j) denotes a Jacobi sum of order l; also ζ, ξ are as before
with ζ = ξ2.

Recall that as p ≡ 1 (mod l), p splits completely in Z[ζ] and is a product
of l − 1 distinct prime ideals in Z[ζ]. If ℘ is any one of these prime ideals,
then (p) =

∏
(k,2l)=1 ℘

τk =
∏

(k,l)=1 ℘
σk , where σk ∈ Gal(Q(ζ)/Q) such that

σk(ζ) = ζk.

Lemma 1. Let p ≡ 1 (mod l), l an odd prime (thus p ≡ 1 (mod 2l)).
Let b = γ(q−1)/l and c = γ(q−1)/2l. Then b, c ∈ Fp. Let b′, c′ be integers
such that b′ = b in Fp and c′ = c in Fp. Let B = NQ(ζ)/Q(b′ − ζ) and
C = NQ(ζ)/Q(c′ − ξ). Then B ≡ 0 (mod p) and C ≡ 0 (mod p). Further
there is a unique prime divisor ℘ of p in Z[ζ] which divides b′− ζ and there
is a unique prime divisor ℘′ of p in Z[ζ] which divides c′ − ξ. Moreover ,
℘ = ℘′.

P r o o f. c2l = γq−1 = 1 and the equation x2l = 1 has exactly 2l roots in
Fp as 2l | (p− 1), so c ∈ Fp. Further,

B = NQ(ζ)/Q(b′ − ζ) = (b′ − ζ)(b′ − ζ3) . . . (b′ − ζ2l−1) = (b′l − 1)/(b′ − 1).

Hence B ≡ 0 (mod p). Also,

C = NQ(ζ)/Q(c′ − ξ) = (c′ − ξ)(c′ − ξ3) . . . (c′ − ξ2l−1) = (c′l + 1)/(c′ + 1).

Hence C ≡ 0 (mod p).
It follows at once that there are prime divisors ℘, ℘′ of p which divide

b′ − ζ and c′ − ξ respectively. If ℘ and ℘1 are different prime divisors of p
which divide b′−ζ then ℘ = ℘σ1 , where σ ∈ Gal(Q(ζ)/Q) . Clearly σ 6= 1 and
we have b′− ζ ≡ 0 (mod ℘) and b′− ζ ≡ 0 (mod ℘1). This gives b′− ζσ ≡ 0
(mod ℘σ1 ), i.e. b′ − ζσ ≡ 0 (mod ℘). Hence ζ − ζσ ≡ 0 (mod ℘). Taking
norms we get l ≡ 0 (mod p), a contradiction. This proves the uniqueness of
℘. Similarly we can prove the uniqueness of ℘′. Also b′ ≡ c′2 (mod p) and
so b′ − ζ ≡ c′2 − ξ2 (mod pZ[ζ]), i.e. b′ − ζ ≡ (c′ − ξ)(c′ + ξ) (mod pZ[ζ]).
Hence ℘′ divides b′ − ζ and so ℘′ = ℘.

Lemma 2. Let ℘ be as in Lemma 1 and τk as in Proposition 1. Let k be
an integer such that 1 ≤ k ≤ 2l − 1, (k, 2l) = 1 and let n be any integer.
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Then J(1, n)τk ≡ 0 (mod ℘) if and only if Λ((n + 1)k) > k, where Λ(r) is
defined as the least non-negative residue of r modulo 2l.

P r o o f. Consider the expression

Sk =
∑

v∈ q

vk(q−1)/2l(v + 1)nk(q−1)/2l.

This is in Fp as each term is in Fp. Clearly Sk = Sk+2l. We claim that Sk = 0
in Fp if and only if Λ((n+ 1)k) > k. This is done as follows:

Sk =
∑

v∈ q

(v − 1)k(q−1)/2lvnk(q−1)/2l

=
∑

v∈ q

k(q−1)/2l∑

j=0

v(k(q−1)/2l)−j(−1)jvnk(q−1)/2l
(
k(q − 1)/2l

j

)

=
∑

v∈ q

k(q−1)/2l∑

j=0

(−1)jv(k(n+1)(q−1)/2l)−j
(
k(q − 1)/2l

j

)
.

Let h = Λ((n+ 1)k). Hence

Sk =
k(q−1)/2l∑

j=0

(−1)j
∑

v∈ q

v(h(q−1)/2l)−j
(
k(q − 1)/2l

j

)
.

Note that ∑

v∈ q

vj =
{

0 if (q − 1) - j,
q − 1 if (q − 1) | j.

Now for 0 ≤ j < q−1, (q−1) | {(h(q−1)/2l)−j} if and only if j = h(q−1)/2l.
Hence Sk = 0 if h > k. Also for h ≤ k,

Sk = −(−1)h(q−1)/2l
(
k(q − 1)/2l
h(q − 1)/2l

)
.

Further, as q = pα, the exact power of p dividing (x(q − 1)/2l)! is

(x(q − 1)/2l(p− 1))− (αx/2l).

Hence for h ≤ k the exact power of p dividing
(
k(q − 1)/2l
h(q − 1)/2l

)

is

(k(q − 1)/2l(p− 1))− (αk/2l)− (h(q − 1)/2l(p− 1)) + (αh/2l)

−((k − h)(q − 1)/2l(p− 1))− (α(k − h)/2l) = 0,

so that Sk 6= 0. Thus Sk = 0 in Fp if and only if Λ((n+ 1)k) > k.
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Let c′ be an integer as in Lemma 1. Let Tk =
∑′
v∈ q

c′k ind v+nk ind(v+1).

(Here
∑′ signifies that the values v = 0,−1 are omitted in the summation.)

Then Tk = Sk in Fp. Now consider

J(1, n)τk − Tk =
∑

v∈ q

χk(v)χnk(v + 1)−
∑′

v∈ q

c′k ind v+nk ind(v+1)

=
∑′

v∈ q

{χk(v)χnk(v + 1)− χk(v)c′nk ind(v+1)}

+
∑′

v∈ q

{χk(v)c′nk ind(v+1) − c′k ind v+nk ind(v+1)}.

Here each term gives out a factor c′−ξ in Z[ζ]. But as Tk = Sk in Fp, Tk ≡ 0
(mod p) if and only if Λ((n + 1)k) > k. So J(1, n)τk ≡ 0 (mod ℘) if and
only if Λ((n+ 1)k) > k.

N o t e 1. Let U = {k | 1 ≤ k ≤ 2l − 1, (k, 2l) = 1}. Then U has l − 1
elements. Let n ≡ 0 (mod 2l). Then for any k in this set, Λ((n+ 1)k) = k.
Thus for any k ∈ U , J(1, n)τk 6≡ 0 (mod ℘). This is in conformity with
the result J(i, 0) = −χi(−1) (see (2) of Proposition 1). Further let n ≡ −1
(mod 2l). Then for any k ∈ U , Λ((n + 1)k) = 0 < k, so that J(1, n)τk 6≡ 0
(mod ℘). This agrees with J(1, 2l − 1) = −1. (See (3) of Proposition 1.)

N o t e 2. Let n 6≡ 0,−1 (mod 2l). Let k ∈ U . As n 6≡ 0 (mod 2l),
Λ((n+ 1)k) 6= k. As n 6≡ −1 (mod 2l), Λ((n+ 1)k) 6= 0, so Λ((n+ 1)k) > k
if and only if Λ((n + 1)(2l − k)) < 2l − k. Hence for n 6≡ 0,−1 (mod 2l),
the subsets of U defined by Un = {k | Λ((n + 1)k) > k} and U ′n = {k |
Λ((n+ 1)k) < k} = {2l− k | Λ((n+ 1)k) > k} each have (l− 1)/2 elements.
Un and U ′n are disjoint and their union is U .

Proposition 2. For n 6≡ 0,−1 (mod 2l),

(9) (J(1, n)) =
∏

Λ((n+1)k)>k

(℘τk−1 )α.

P r o o f. As n 6≡ 0,−1 (mod 2l), by Proposition 1, J(1, n)J(1, n) = q =
pα. Thus the prime divisors of J(1, n) must come from prime divisors of
p. Let U be as in Note 1 above. For k ∈ U , J(1, n)τk ≡ 0 (mod ℘) if and
only if J(1, n) ≡ 0 (mod ℘τk−1 ) and by Lemma 2, this happens if and only if
Λ((n+1)k) > k. Thus by Note 2, there are exactly (l−1)/2 prime divisors of
p which also divide J(1, n). As J(1, n) = J(1, n)τ−1 , J(1, n) also has exactly
(l−1)/2 prime divisors, which moreover divide p. As J(1, n)J(1, n) = q = pα,
and as p has l− 1 distinct prime divisors we see that (J(1, n)) and (J(1, n))
are coprime ideals and so each prime divisor ℘τk−1 of J(1, n) must divide
J(1, n) α times. This gives us (9).
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Lemma 3.

(10) J(i, l) = χi(4)J(i, i).

P r o o f. If u ∈ Fq, the number of v ∈ Fq satisfying v(v + 1) = u is equal
to 1 +χl(1 + 4u). (Note that χl is nothing but the quadratic residue symbol
for Fq.) Thus

J(i, i) =
∑

v∈ q

χi(v(v + 1)) =
∑

u∈ q

χi(u)(1 + χl(1 + 4u))

= χ−i(4)
∑

u∈ q

χi(4u)χl(1 + 4u) = χ−i(4)J(i, l).

Proposition 3. Let n be an odd integer such that 1 ≤ n ≤ 2l − 3 and
let m = indγ 2. Then

(11) J(1, n) ≡ −ζ−m(n+1) (mod (1− ζ)2).

P r o o f. We first prove (11) for n = l. By Lemma 3 we have J(1, 1) =
ζ−mJ(1, l). By (7) of Proposition 1 we get,

J(1, n)J(1 + n, l − 1) = χ(−1)J(1, l − 1)J(n, l).

But by (1) of Proposition 1, χ(−1)J(1, l − 1) = J(1, l) so that we have

J(1, n)J(1 + n, l − 1) = J(1, l)J(n, l).

In particular, for n = 1, we get J(1, l)J(1, l) = J(1, 1)J(2, l − 1). Note that
J(2, l − 1) = Jl(1, (l − 1)/2). Now recall from Lemma 4, §2 of [9] that for
1 ≤ n ≤ l − 2,

(11)′ Jl(1, n) ≡ −1 (mod (1− ζ)2).

This gives J(2, l − 1) = Jl(1, (l − 1)/2) ≡ −1 (mod (1 − ζ)2). Hence using
J(1, 1) = ζ−mJ(1, l), we get J(1, l) ≡ −ζ−m (mod (1 − ζ)2). This proves
(11) for n = l.

Next suppose n 6= l. Thus (n, 2l) = 1. Now as obtained above

J(1, n)J(n+ 1, l − 1) = J(1, l)J(n, l) = J(1, l)τnJ(1, l).

But

J(1 + n, l − 1) = Jl((1 + n)/2, (l − 1)/2) ≡ −1 (mod (1− ζ)2),

using (11)′. Hence using the congruence for J(1, l) we get (11) in this case
also. Thus (11) is valid for all odd n, 1 ≤ n ≤ 2l − 3.

R e m a r k. If n is even, 2 ≤ n ≤ 2l − 2, using J(1, n) = χ(−1)J(1, 2l −
n− 1), we get J(1, n) ≡ −χ(−1)ζmn (mod (1− ζ)2).

Lemma 4. Let α, β ∈ Z[ζ], both prime to 1− ζ, satisfy (i) (α) = (β), (ii)
|α| = |β|, (iii) α ≡ β (mod (1− ζ)2). Then α = β.

P r o o f. See e.g. Lemma 5, §2 of Parnami, Agrawal and Rajwade [9].



60 V. V. Acharya and S. A. Katre

R e m a r k. In view of Lemma 4, Proposition 2, Proposition 1(6) and
Proposition 3 (resp. Remark after Proposition 3) give an algebraic charac-
terization of J(1, n) for 1 ≤ n ≤ 2l − 2, n odd (resp. n even).

5. Dickson–Hurwitz sums, Jacobi sums and the cyclotomic
numbers of order 2l. The evaluation of the cyclotomic numbers of order
l in terms of coefficients of certain Jacobi sums has been done in Lemma 5
of Katre and Rajwade [6]. We state it here for convenience.

Proposition 4 (Katre–Rajwade). Let Jl(1, n) =
∑l−1
i=1 ai(n)ζi. Then

the cyclotomic numbers of order l are given by

l2A(i,j)l = q− 3l+ 1 + ε(i) + ε(j) + ε(i− j) + l

l−2∑
n=1

ain+j(n)−
l−2∑
n=1

l−1∑

k=1

ak(n),

where

a0(n) = 0, ε(i) =
{

0 if l | i,
l otherwise,

and the subscripts in ain+j(n) are considered modulo l.

The aim of this section is the evaluation of the cyclotomic numbers of or-
der 2l in terms of the coefficients of the Jacobi sums Jl(1, n) =

∑l−1
i=1 ai(n)ζi,

1 ≤ n ≤ l − 2, and J2l(1, n) =
∑l−1
i=1 bi(n)ζi, 1 ≤ n ≤ 2l − 1, n odd. (One

may compare if necessary the results of this section with those in [8] and
[11] at places.) To do this we first consider Dickson–Hurwitz sums of order
2l, B2l(j, n) = B(j, n), which are defined for j, n modulo 2l by

(12) B(j, n) =
2l−1∑

i=0

A(i,j−ni)2l
.

They satisfy the following relations:

B(j, n) = B(j, 2l − n− 1),(13)

B(j, 0) =
{
f − 1 if 2l | j,
f if 2l - j,

∑

j even

B(j, n) = (q − 3)/2,

∑

j odd

B(j, n) = (q − 1)/2.(14)

(Cf. eqs. (2.12), (2.13), (5.10) of Whiteman [11] obtained for q = p.) In terms
of B(j, n) we can write J(nm,m) as J(nm,m) =

∑2l−1
j=0 B(j, n)ξmj . (Cf. eq.

(2.8) of [11].) Thus J(n, 1) =
∑2l−1
j=0 B(j, n)ξj . Define the Jacobi differences

D(j, n) = B(j, n) − B(j + l, n). Clearly D(j, n) = D(j, 2l − n − 1). Now
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J(nm,m) =
∑l−1
j=0D(2j, n)ζmj and hence, in particular, we have J(n, 1) =∑l−1

j=0D(2j, n)ζj . If we assume that n is odd, then by Proposition 1(1), we
get J(1, n) = J(n, 1). Thus for n odd,

(15) J(1, n) =
l−1∑

j=0

D(2j, n)ζj .

The Jacobi differences D(j, n) are obtained in terms of bi(n) in the following
proposition.

Proposition 5. Let J2l(1, n) =
∑l−1
i=1 bi(n)ζi. Let n be an odd integer.

Then

(16)
l−1∑

i=1

bi(n) = −(1 + lD(0, n)).

Moreover ,

(17) lD(j, n) = (−1)j
(
lbν(j)(n)− 1−

l−1∑

i=1

bi(n)
)
,

where

ν(j) =
{
Λ(j)/2 if j is even,
Λ(j + l)/2 if j is odd ,

Λ(r) being defined as the least non-negative residue of r modulo 2l.

P r o o f. As n is odd, by (15) we have J2l(1, n) =
∑l−1
i=0D(2i, n)ζi. Com-

paring this with J2l(1, n) =
∑l−1
i=1 bi(n)ζi, we get D(2i, n)−D(0, n) = bi(n).

Summing over i we get
∑l−1
i=1 bi(n) = −(1+lD(0, n)), as

∑l−1
i=0D(2i, n) = −1

by (14). Hence we get

lD(2j, n) =
(
lbj(n)− 1−

∑

i

bi(n)
)
.

As D(j, n) = −D(j + l, n), we get

lD(j, n) = (−1)j
(
lbν(j)(n)− 1−

∑

i

bi(n)
)
.

In the next proposition we obtain B2l(j, n) for n odd, in terms of ai(n)
and bi(n), just for record.

Proposition 5′. For n odd ,

(17)′ 2lB2l(j, n)

= laj(n) + q − 2−
l−1∑

i=1

ai(n) + (−1)j
(
lbν(j)(n)− 1−

l−1∑

i=1

bi(n)
)
.
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P r o o f. Using (12) and the fact that

A(i,j)l = A(i,j)2l +A(i,j+l)2l +A(i+l,j)2l +A(i+l,j+l)2l

we get
Bl(j, n) = B2l(j, n) +B2l(j + l, n).

Now D(j, n) = B(j, n)−B(j + l, n). Also, from Lemma 5 of [6], we have

lBl(j, n) = laj(n) + q − 2−
l−1∑

i=1

ai(n).

Hence using (17) we get (17)′.

We now determine A(i,j)2l in terms of the ai’s and bi’s. Following White-
man [11] we define

s(i, j) = A(i,j)2l −A(i,j+l)2l and t(i, j) = A(i,j)2l −A(i+l,j)2l .

Lemma 5. Let l be an odd prime. Then

4A(i,j)2l = A(i,j)l + s(i, j) + s(i+ l, j) + 2t(i, j).

P r o o f. Since A(i,j)l = A(i,j)2l + A(i,j+l)2l + A(i+l,j)2l + A(i+l,j+l)2l we
get the above result.

R e m a r k.

(18) t(i, j) =
{
s(j, i) if f is even,
s(j + l, i+ l) if f is odd.

As A(i,j)l are known in terms of the coefficients of Jl(1, n) (see Propo-
sition 4), to obtain A(i,j)2l we shall first, in Proposition 6, obtain s(i, j) in
terms of the Jacobi differences D(j, n). As D(j, n) = D(j, 2l−n− 1) and as
D(j, n), n odd, are known in terms of the coefficients of J2l(1, n), n odd (see
(17)), we get A(i,j)2l in terms of the coefficients of Jl(1, n) and in terms of
the coefficients of J2l(1, n), n odd. This has been achieved in Proposition 7.

Proposition 6. Let l be an odd prime. If i and j are arbitrary integers,
then

(19) 2ls(i, j)

= (−1)jD(i, l) + (−1)(i+j)D(−i, l) + (1 + (−1)i)(−1)j +
2l−1∑
v=0

D(j + iv, v).

P r o o f. For the proof in the case q = p, i.e. α = 1 one may refer to
Theorem 3 of Whiteman [11]. The same proof works for q = pα, α ≥ 1.

Corollary 1.

(20) l(s(i, j) + s(i+ l, j))

= (−1)j + (−1)i+jD(−i, l) +
l−1∑
v=0

D(j − 2iv − 2i, 2v + 1).
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P r o o f (cf. Corollary in §5 of [11]). Using Proposition 6, we get

l(s(i, j) + s(i+ l, j)) = (−1)j + (−1)i+jD(−i, l) +
l−1∑
v=0

D(j + 2iv, 2v).

Now
l−1∑
v=0

D(j+ 2iv, 2v) =
l−1∑
v=0

D(j+ 2iv, 2l− 2v− 1) =
l−1∑
v=0

D(j− 2iv− 2i, 2v+ 1).

This proves (20).

Corollary 2.

2lt(i, j) = (−1)iD(j, l) + (−1)i+j+fD(−j, l) + (−1)i+f + (−1)i+j

+ (−1)f
l−1∑
u=0

D(i− 2ju− 2j, 2u+ 1)

+
l−1∑
v=0

D(i+ j(2v + 1), 2v + 1).

P r o o f. By (18) and Proposition 6, we get

2lt(i, j) = (−1)iD(j, l) + (−1)(i+j)D(−j, l) + (1 + (−1)j)(−1)i

+
2l−1∑
v=0

D(i+ jv, v) when f is even,

2lt(i, j) = (−1)i+lD(j+l, l)+(−1)(i+j)D(−j − l, l)+(1+(−1)j+l)(−1)i+l

+
2l−1∑
v=0

D(i+ l + (j + l)v, v) when f is odd.

In the above summations, collect the terms with v even and v odd sep-
arately. Then (combining the cases of f even and f odd) we get

2lt(i, j) = (−1)iD(j, l) + (−1)i+j+fD(−j, l) + (−1)i+f + (−1)i+j

+ (−1)f
l−1∑
v=0

D(i+ 2jv, 2v) +
l−1∑
v=0

D(i+ j(2v + 1), 2v + 1).

Now, as in the proof of Corollary 1, we have

l−1∑
v=0

D(i+ 2jv, 2v) =
l−1∑
u=0

D(i− 2ju− 2j, 2u+ 1).

This gives Corollary 2.
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Using Proposition 2 and Lemma 2 we now evaluate A(i,j)2l in terms of
the coefficients of certain Jacobi sums of order l and certain Jacobi sums of
order 2l.

Proposition 7. Let

J2l(1, n) =
l−1∑

i=1

bi(n)ζi and Jl(1, n) =
l−1∑

i=1

ai(n)ζi.

We have

(21) 4l2A(i,j)2l

= q − 3l + 1 + ε(i) + ε(j) + ε(i− j) + l

l−2∑
n=1

ain+j(n)−
l−2∑
n=1

l−1∑

k=1

ak(n)

− {(−1)j + (−1)i+f + (−1)i+j}
{
l +

l−1∑

k=1

bk(l) +
l−2∑
u=0

l−1∑

k=1

bk(2u+ 1)
}

+ (−1)j l
{
bν(−i)(l) +

l−1∑
u=0

bν(j−2iu−2i)(2u+ 1)
}

+ (−1)i+j l
{
bν(j)(l) +

l−1∑
u=0

bν(i+2ju+j)(2u+ 1)
}

+ (−1)i+f l
{
bν(−j)(l) +

l−1∑
u=0

bν(i−2ju−2j)(2u+ 1)
}
,

where a0(n) = b0(n) = 0,

ν(j) =
{
Λ(j)/2 if j is even,
Λ(j + l)/2 if j is odd ,

Λ(r) being defined as the least non-negative residue of r modulo 2l, and

ε(i) =
{

0 if l | i,
l otherwise.

P r o o f. From Lemma 5 we have

4A(i,j)2l = A(i,j)l + s(i, j) + s(i+ l, j) + 2t(i, j).

Hence, using Corollaries 1 and 2 above, we get

4l2A(i,j)2l = l2A(i,j)l + l(−1)j + l(−1)i+f + l(−1)i+j

+ l(−1)i+jD(−i, l) + l(−1)iD(j, l) + l(−1)i+j+fD(−j, l)

+ l

l−1∑
u=0

{D(j − 2iu− 2i, 2u+1)+(−1)fD(i−2ju−2j, 2u+1)

+D(i+ j(2u+ 1), 2u+ 1)}.
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Now, using (17) we get

4l2A(i,j)2l = l2A(i,j)l + (−1)j
(
lbν(−i)(l)− 1−

l−1∑

k=1

bk(l)
)

+ (−1)i+j
(
lbν(j)(l)− 1−

l−1∑

k=1

bk(l)
)

+ (−1)i+f
(
lbν(−j)(l)− 1−

l−1∑

k=1

bk(l)
)

+ (−1)j
l−1∑
u=0

l
(
bν(j−2iu−2i)(2u+ 1)−

l−1∑

k=1

bk(2u+ 1)
)

+ (−1)i+f
l−1∑
u=0

l
(
bν(i−2ju−2j)(2u+ 1)−

l−1∑

k=1

bk(2u+ 1)
)

+ (−1)i+j
l−1∑
u=0

l
(
bν(i+2ju+j)(2u+ 1)−

l−1∑

k=1

bk(2u+ 1)
)
,

i.e.

4l2A(i,j)2l = l2A(i,j)l

− ((−1)j + (−1)i+f + (−1)i+j)
(

1 +
l−1∑

k=1

bk(l) +
l−1∑
u=0

l−1∑

k=1

bk(2u+ 1)
)

+ (−1)j l
(
bν(−i)(l) +

l−1∑
u=0

bν(j−2iu−2i)(2u+ 1)
)

+ (−1)i+j l
(
bν(j)(l) +

l−1∑
u=0

bν(i+2ju+j)(2u+ 1)
)

+ (−1)i+f l
(
bν(−j)(l) +

l−1∑
u=0

bν(i−2ju−2j)(2u+ 1)
)
.

Substituting the value of A(i,j)l from Proposition 4 and the value of∑l−1
k=1 bk(2l − 1) as l − 1 we get (21).

6. The arithmetic characterization of the Jacobi sums and the
determination of the cyclotomic numbers of order 2l

Theorem 1 (main theorem). Let p and l be odd rational primes, p ≡ 1
(mod l) (thus p ≡ 1 (mod 2l) also), q = pα, α ≥ 1. Let q = 1 + 2lf . Let ζ
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and ξ be fixed primitive (complex ) l-th and 2l-th roots of unity respectively.
Let ζ and ξ be related by ζ = ξ2, i.e. ξ = −ζ(l+1)/2. Let γ be a generator
of F∗q . Let b be a rational integer such that b = γ(q−1)/l in Fp. Let m =
indγ 2. Let Jl(i, j) and J2l(i, j) denote the Jacobi sums in Fq of order l
and 2l (respectively) related to ζ and ξ (respectively). For (k, l) = 1, let σk
denote the automorphism ζ 7→ ζk of Q(ζ). For (k, 2l) = 1, let τk denote the
automorphism ξ 7→ ξk of Q(ζ). Thus if k is odd then σk = τk and if k is even
then σk = τk+l. Let λ(r) and Λ(r) denote the least non-negative residues of
r modulo l and 2l (resp.). Let a0, a1, . . . , al−1 ∈ Z and let H =

∑l−1
i=0 aiζ

i.
Consider the arithmetic conditions (or the diophantine system)

(i) q =
∑l−1
i=0 a

2
i −

∑l−1
i=0 aiai+1,

(ii)
∑l−1
i=0 aiai+1 =

∑l−1
i=0 aiai+2 = . . . =

∑l−1
i=0 aiai+(l−1)/2,

(iii) 1 + a0 + a1 + . . .+ al−1 ≡ 0 (mod l).

Let 1 ≤ n ≤ l − 2. If a0, a1, . . . , al−1 satisfy (i)–(iii) together with the
additional conditions

(iv) a1 + 2a2 + . . .+ (l − 1)al−1 ≡ 0 (mod l),
(v) p -

∏
λ((n+1)k)>kH

σk ,

(vi) p |H∏λ((n+1)k)>k(b− ζσk−1 ), where k−1 is taken (mod l),

then H = Jl(1, n) for this γ and conversely.
Let 1 ≤ n ≤ 2l − 3 be an odd integer. If a0, a1, . . . , al−1 satisfy (i)–(iii)

together with the additional conditions

(iv)′ a1 + 2a2 + . . .+ (l − 1)al−1 ≡ m(n+ 1) (mod l),
(v)′ p -

∏
Λ((n+1)k)>kH

τk ,

(vi)′ p |H∏Λ((n+1)k)>k(b− ζτk−1 ), where k−1 is taken (mod 2l),

then H = J2l(1, n) for this γ and conversely.
(In (v)′ and (vi)′, k varies over only those values which satisfy 1 ≤ k ≤

2l − 1 and (k, 2l) = 1.)
Moreover , for 1 ≤ n ≤ l − 2 if a0, a1, . . . , al−1 satisfy the conditions

(i)–(vi) and if we fix a0 = 0 at the outset and write the ai corresponding to
a given n as ai(n) then we have Jl(1, n) =

∑l−1
i=1 ai(n)ζi and the cyclotomic

numbers of order l are given by :

(22) l2A(i,j)l = q−3l+1+ε(i)+ε(j)+ε(i−j)+l
l−2∑
n=1

ain+j(n)−
l−2∑
n=1

l−1∑

k=1

ak(n)

where

ε(i) =
{

0 if l | i,
l otherwise,

and the subscripts in ain+j(n) are considered modulo l.
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Similarly , for n odd , 1 ≤ n ≤ 2l− 3, if a0, a1, . . . , al−1 satisfy the condi-
tions (i)–(iii) and (iv)′–(vi)′ and if we fix a0 = 0 at the outset and write the
ai corresponding to a given n as bi(n) then we have J2l(1, n) =

∑l−1
i=1 bi(n)ζi

and the 4l2 cyclotomic numbers A(i,j)2l are given by

(23) 4l2A(i,j)2l

= q − 3l + 1 + ε(i) + ε(j) + ε(i− j) + l

l−2∑
n=1

ain+j(n)−
l−2∑
n=1

l−1∑

k=1

ak(n)

− {(−1)j + (−1)i+f + (−1)i+j}
{
l +

l−1∑

k=0

bk(l) +
l−2∑
u=0

l−1∑

k=0

bk(2u+ 1)
}

+ (−1)j l
(
bν(−i)(l) +

l−1∑
u=0

bν(j−2iu−2i)(2u+ 1)
)

+ (−1)i+j l
(
bν(j)(l) +

l−1∑
u=0

bν(i+2ju+j)(2u+ 1)
)

+ (−1)i+f l
(
bν(−j)(l) +

l−1∑
u=0

bν(i−2ju−2j)(2u+ 1)
)

where

(24) ν(j) =
{
Λ(j)/2 if j is even,
Λ(j + l)/2 if j is odd .

P r o o f. The arithmetic characterization of the Jacobi sums Jl(1, n) and
the formulae for A(i,j)l in the statement of the above theorem form the main
theorem of Katre and Rajwade proved in [6], §3. Hence we concentrate on
the part relating to modulus 2l.

If H = J2l(1, n) = J(1, n) then from Proposition 1(6) we get (i) and
(ii). By Proposition 3, J(1, n) ≡ −ζ−m(n+1) (mod (1−ζ)2), we get (iii) and
(iv)′.

We next prove (v)′. Note from Proposition 2 (§4) that

(H) = (J(1, n)) =
∏

Λ((n+1)k)>k

(℘τk−1 )α.

To prove that p -
∏
Λ((n+1)k)>k(J(1, n))τk it suffices to prove that some prime

divisor of p does not divide the right hand side. In fact we shall show that

℘τ−1 -
∏

Λ((n+1)k)>k

(J(1, n))τn .
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If not, then

℘τ−1

∣∣∣
∏

Λ((n+1)k)>k

{ ∏

Λ((n+1)k′)>k′
(℘τk′−1 )α

}τk
.

Hence, there exist k and k′ satisfying 1 ≤ k, k′ ≤ 2l−1, (k, 2l) = 1, (k′, 2l) =
1 such that Λ((n + 1)k) > k, Λ((n + 1)k′) > k′ and k−1k′ ≡ −1 (mod 2l),
i.e. k′ ≡ −k (mod 2l) and so k′ = 2l − k. This gives

Λ((n+ 1)k′) = Λ(−(n+ 1)k) = 2l − Λ((n+ 1)k) < 2l − k = k′,

a contradiction. This proves (v)′.
To prove (vi)′, we note that ℘|(b− ζ), hence

∏

Λ((n+1)k)>k

℘τk−1

∣∣∣
∏

Λ((n+1)k)>k

(b− ζτk−1 ).

Now we have

(H) = (Hτ−1) =
∏

Λ((n+1)k)>k

((℘τk−1 )α)τ−1 =
∏

Λ((n+1)k)>k

((℘τ−k−1 )α).

Thus J(1, n) satisfies (i)–(iii) as well as (iv)′–(vi)′.
Conversely, suppose H satisfies the six conditions (i)–(iii) and (iv)′–(vi)′.

Then (i) and (ii) assure that HH = q. (iii) and (iv)′ assure that H ≡
−ζ−m(n+1) (mod (1−ζ)2). Now by (vi)′, p |H∏Λ((n+1)k)>k(b−ζτk−1 ). Tak-
ing complex conjugates and using Note 1 of §4, we get p |H∏Λ((n+1)k)<k(b−
ζτk−1 ). But by Lemma 1 of §4,

g.c.d.
(

(p),
∏

Λ((n+1)k)<k

(b− ζτk−1 )
)

=
∏

Λ((n+1)k)<k

℘τk−1 .

So,
∏
Λ((n+1)k)>k ℘

τk−1 |H. Let Un and U ′n be as in Note 2 (§4). Now by
(v)′ we have p -

∏
Λ((n+1)k)>kH

τk . Let ℘′ be a prime divisor of p such that
℘′ -

∏
Λ((n+1)k)>kH

τk . Hence for every k ∈ Un, ℘′ -Hτk or equivalently
℘′τk−1 -H. As |Un| = (l − 1)/2, there are at least (l − 1)/2 divisors of p
which do not divide H. Hence H is divisible only by ℘τk−1 for every k ∈ Un.
Then as HH = q = pα, we have (H) =

∏
Λ((n+1)k)>k(℘τk−1 )α. Thus H and

J(1, n) both are in Z[ζ], both are coprime to 1− ζ, and have the same ab-
solute value, the same congruence class (mod (1− ζ)2) and the same ideal
decomposition. Hence by Lemma 4 (§4), H = J(1, n).

The computation of the cyclotomic numbers follows from Proposition 7.
This completes the proof of the main theorem.

7. Illustration. In this section we obtain unambiguous evaluation of
cyclotomic numbers of order 6 for finite fields of q = pα elements, p a
prime, p ≡ 1 (mod 3). We also state (as a part of Theorem 2) the result
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for the cyclotomic numbers of order 3 as obtained by Katre and Rajwade in
Proposition 1, §4 of [6] (a typing mistake in their statement being corrected
here; no change in their proof of the Proposition).

Theorem 2. Let p be a prime ≡ 1 (mod 3) and let q = pα. Let q =
1 + 6f . Let γ be a generator of F∗q . Let m = indγ 2. Then each of the
following diophantine systems has a unique solution:

4q = L2 + 27M2, L ≡ 1 (mod 3), p -L,
(25) (I)

γ(q−1)/3 ≡ (L+ 9M)/(L− 9M) (mod p),

4q = E2 +3F 2, E ≡ 1 (mod 3), F ≡ −m (mod 3), p -E,
(26) (II)

γ(q−1)/3 ≡ (−E + F )/(E + F ) (mod p),

q = A2 + 3B2, A ≡ 1 (mod 3), B ≡ −m (mod 3), p -A,
(27) (III)

γ(q−1)/3 ≡ −(A+B)/(A−B) (mod p).

Let ω be a primitive complex cube root of unity in terms of which the Jacobi
sums of order 3 are defined and let the Jacobi sums of order 6 be defined in
terms of the primitive complex sixth root ξ of unity related to ω by ω = ξ2,
i.e. ξ = −ω2. Then in terms of the unique solution (L,M) we get

(28) J3(1, 1) = (L+ 3M)/2 + 3Mω.

Also, in terms of the unique solutions (E,F ) and (A,B) the Jacobi sums of
order 6 are determined by

2J6(1, 1) = (−E + F )ω − (E + F )ω2,(29)

J6(1, 3) = (A+B)ω + (A−B)ω2.(30)

Moreover , L, M , A, B, E, F , so uniquely determined , satisfy the following :

(a) If m ≡ 0 (mod 3) then

L = E = −2A, F = 2B = 3M.

(31) (b) If m ≡ 1 (mod 3) then

L = A− 3B, E = A+ 3B, 3M = −A−B, F = A−B.
(c) If m ≡ 2 (mod 3) then

L = A+ 3B, E = A− 3B, F = −A−B, 3M = A−B.
Thus if any one of the pairs (L,M), (E,F ), (A,B) is known then the re-
maining can be obtained using (a), (b), (c).

The cyclotomic numbers of order 3 related to γ are determined by

(32)

A0,0 = (q − 8 + L)/9,

A1,1 = A2,0 = A0,2 = (2q − 4− L− 9M)/18,

A0,1 = A1,0 = A2,2 = (2q − 4− L+ 9M)/18,

A1,2 = A2,1 = (q + 1 + L)/9.
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For f even, the cyclotomic numbers of order 6 satisfy

(33)

Ai,j = Aj,i, A0,1 = A5,5, A0,2 = A4,4, A0,3 = A3,3,

A0,4 = A2,2, A0,5 = A1,1, A1,2 = A1,5 = A4,5,

A1,3 = A2,5 = A3,4, A1,4 = A2,3 = A3,5.

In this case (i.e. f even) the 36 cyclotomic numbers of order 6 related to γ
are determined in terms of A and B as in the following table:

Table 1 (f even)

m ≡ 0 (mod 3) m ≡ 1 (mod 3) m ≡ 2 (mod 3)

36A0,0 q − 17− 20A q − 17− 8A+ 6B q − 17− 8A− 6B
36A0,1 q − 5 + 4A+ 18B q − 5 + 4A+ 12B q − 5 + 4A+ 6B
36A0,2 q − 5 + 4A+ 6B q − 5 + 4A− 6B q − 5− 8A
36A0,3 q − 5 + 4A q − 5 + 4A− 6B q − 5 + 4A+ 6B
36A0,4 q − 5 + 4A− 6B q − 5− 8A q − 5 + 4A+ 6B
36A0,5 q − 5 + 4A− 18B q − 5 + 4A− 6B q − 5 + 4A− 12B
36A1,2 q + 1− 2A q + 1− 2A− 6B q + 1− 2A+ 6B
36A1,3 q + 1− 2A q + 1− 2A− 6B q + 1− 2A− 12B
36A1,4 q + 1− 2A q + 1− 2A+ 12B q + 1− 2A+ 6B
36A2,4 q + 1− 2A q + 1 + 10A+ 6B q + 1 + 10A− 6B

For f odd , the cyclotomic numbers of order 6 satisfy

(34)

A0,0 = A3,0 = A3,3, A0,1 = A2,5 = A4,3,

A0,2 = A1,4 = A5,3, A2,1 = A4,5,

A0,4 = A1,3 = A5,2, A0,5 = A2,3 = A4,1,

A1,0 = A2,2 = A3,1 = A3,4 = A4,0 = A5,5,

A1,1 = A2,0 = A3,2 = A3,5 = A4,4 = A5,0,

A1,5 = A1,2 = A2,4 = A4,2 = A5,1 = A5,4.

In this case (i.e. f odd) the cyclotomic numbers of order 6 related to γ are
determined in terms of A and B as in the following table:

Table 2 (f odd)

m ≡ 0 (mod 3) m ≡ 1 (mod 3) m ≡ 2 (mod 3)

36A0,0 q − 11− 8A q − 11− 2A q − 11− 2A
36A0,1 q − 1− 2A+ 12B q + 1 + 4A q + 1− 2A− 12B
36A0,2 q + 1− 2A+ 12B q + 1− 2A+ 12B q + 1− 8A+ 12B
36A0,3 q + 1 + 16A q + 1 + 10A− 12B q + 1 + 10A+ 12B
36A0,4 q + 1− 2A− 12B q + 1− 8A− 12B q + 1− 2A− 12B
36A0,5 q + 1− 2A− 12B q + 1− 2A+ 12B q + 1 + 4A
36A1,0 q − 5 + 4A+ 6B q − 5− 2A+ 6B q − 5 + 4A+ 6B
36A2,0 q − 5 + 4A− 6B q − 5 + 4A− 6B q − 5− 2A− 6B
36A1,2 q + 1− 2A q + 1 + 4A q + 1 + 4A
36A2,1 q + 1− 2A q + 1− 8A− 12B q + 1− 8A+ 12B
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P r o o f. That the diophantine system (25) has a unique solution (L,M)
and for this solution J3(1, 1) and the cyclotomic numbers of order 3 cor-
responding to the given generator γ of F∗q are given by (28) and (32) re-
spectively has already been proved by Katre and Rajwade in §3 of [6]. The
formulae (32)2 and (32)3 given here are in the correct form removing the
typing mistake in §3 of [6], and the proof therein works perfectly.

We now take up the case of cyclotomic numbers of order 6. The relations
among the cyclotomic numbers of order 6 as given in (33) and (34) are the
same as the relations (7) and (8) of §2 proved for the cyclotomic numbers
of order 2l. Now all the cyclotomic numbers and Jacobi sums of order 6
are known if we know J(1, 1) = J6(1, 1) and J(1, 3) = J6(1, 3). Hence we
consider the conditions (i)–(iii) and (iv)′–(vi)′ of the main theorem for l = 3
(2l = 6) and n = 1 and 3.

Let bi ∈ Z and H = b0 + b1ω + b2ω
2 with b0 = 0.

(i) corresponds to q = b21 − b1b2 + b22. (ii): no condition. (iii) corresponds
to b1 + b2 ≡ −1 (mod 3). (iv)′ corresponds to

b1 − b2 ≡
{−m (mod 3) if n = 1,
m (mod 3) if n = 3.

(v)′ of our main theorem corresponds to p -H. Now p -H if and only if
p - b1 and p - b2, i.e. if and only if p - b1 as b21 − b1b2 + b22 = q. (Note also
that as q = (b1 − b2)2 + b1b2 = (b1 + b2)2 − 3b1b2, this is also equivalent to
p - (b1 − b2) and also equivalent to p - (b1 + b2).)

(vi)′ of our main theorem corresponds to p | (b1ω2 + b2ω)(b − ω), i.e.
p | (bb1ω2 +bb2ω−b1−b2ω2), i.e. p | (−bb1−b1 +b2) and p | (−bb1 +bb2 +b2),
i.e. bb1 ≡ (b2−b1) (mod p) and b(b2−b1) ≡ −b2 (mod p), i.e. b ≡ (b2−b1)/b1
(mod p) and b ≡ −b2/(b2− b1) (mod p). (Note that p - b1 and p - (b2− b1) as
seen above). However, using b21−b1b2+b22 = q, we get (b2−b1)/b1 ≡ −b2/(b2−
b1) (mod p); hence the above is equivalent to b ≡ (b2 − b1)/b1 (mod p).
Also (b2 − b1)/b1 ≡ −b1/b2 (mod p); hence the above is also equivalent to
b ≡ −b1/b2 (mod p).

Thus b1 and b2 satisfy the above mentioned diophantine conditions for
n = 1, 3 if and only if H = J(1, 1) or J(1, 3) respectively.

This shows that the diophantine conditions

(IV)





q = b21 − b1b2 + b22,

b1 + b2 ≡ −1 (mod 3),

b1 − b2 ≡
{−m (mod 3) if n = 1,
m (mod 3) if n = 3,

p - (b1 + b2) (or equivalently p - b1 or equivalently
p - b2 or equivalently p - (b1 − b2)),

γ(q−1)/3 ≡ −b1/b2 (mod p)
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have a unique solution (b1, b2) in integers and for this unique solution,
J(1, n) = b1ω + b2ω

2 (n = 1, 3).
For n = 1 put

(35) E = −(b1 + b2) and F = (b1 − b2)

with the inverse transformations

(36) b1 = (−E + F )/2 and b2 = −(E + F )/2.

If b1, b2 are integers so are E and F and the condition q = b21 − b1b2 + b22
becomes E2 + 3F 2 = 4q. Conversely, if E and F are integers such that
E2 + 3F 2 = 4q then E and F are of the same parity and so b1, b2 are
integers; moreover, q = b21 − b1b2 + b22.

The remaining conditions of (IV) (n = 1) correspond to E ≡ 1 (mod 3),
F ≡ −m (mod 3), p -E and

γ(q−1)/3 ≡ (−E + F )/(E + F ) (mod p).

We thus find that b1, b2 are integer solutions of (IV) (n = 1) if and only if
E and F as defined by (35) are integer solutions of (II), hence (II) has a
unique solution (E,F ) and for this solution

2J(1, 1) = (−E + F )ω − (E + F )ω2,

as required in (29).
Next let n = 3. Suppose b1, b2 form an integral solution of (IV) (n = 3).

Then J(1, 3) = b1ω + b2ω
2. Hence by Proposition 5 we get b1 + b2 = −(1 +

3D(0, 3)). Now

D(0, 3) =
5∑

k=0

{Ak,−3k −Ak,3−3k},
i.e.

D(0, 3) = {A0,0 +A1,3 +A2,0 +A3,3 +A4,0 +A5,3}
− {A0,3 +A1,0 +A2,3 +A3,0 +A4,3 +A5,0}.

If f is even then A0,3 = A3,0 = A3,3, A1,3 = A4,3, A2,3 = A5,3. Hence we get

D(0, 3) = {A0,0 +A2,0 +A4,0} − {A0,3 +A1,0 +A5,0},
i.e.

D(0, 3) ≡ {A0,0 +A1,0 +A2,0 +A3,0 +A4,0 +A5,0} (mod 2),

i.e. D(0, 3) ≡ f − 1 (mod 2). Thus for f even, D(0, 3) is odd.
Again if f is odd, we have A0,0 = A3,0, A2,0 = A5,0, A1,0 = A4,0. Hence

we get

D(0, 3) = {A1,3 +A3,3 +A5,3} − {A0,3 +A2,3 +A4,3},
i.e.

D(0, 3) ≡ {A0,3 +A1,3 +A2,3 +A3,3 +A4,3 +A5,3} (mod 2),

i.e. D(0, 3) ≡ f (mod 2). Since f is odd, D(0, 3) is odd.
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Thus for f even as well as f odd D(0, 3) is odd. Hence b1, b2 are of the
same parity. Put

(37) A = (b1 + b2)/2 and B = (b1 − b2)/2

with the inverse transformations

(38) b1 = (A+B) and b2 = (A−B).

Thus A and B are integers as b1, b2 are integers of the same parity. Con-
versely, if A and B are integers then by (38), b1, b2 are also integers.

Now the conditions of (IV) (n = 3) correspond to A2 + 3B2 = q, A ≡ 1
(mod 3), B ≡ −m (mod 3), p -A, and

γ(q−1)/3 ≡ −(A+B)/(A−B) (mod p).

We thus find that b1, b2 are integer solutions of (IV) (n = 3) if and only if
A and B as defined by (37) are integer solutions of (III). Thus (III) has a
unique integer solution (A,B) and for this solution

J6(1, 3) = (A+B)ω + (A−B)ω2,

as required in (30).
We note, from Lemma 3, that J(1, 1) = ω−mJ(1, 3). We also have

J6(2, 2) = J3(1, 1) and J6(1, 3) = ω−mJ6(2, 2) = ω−mJ3(1, 1). Consider-
ing the different cases m ≡ 0, 1, 2 (mod 3) and using (28), (29), (30), we get
(a), (b), (c) of (31).

We note that b1(1) = (−E+F )/2 and b2(1) = −(E+F )/2. Hence using
(31) we get

b1(1) =




A+B if m ≡ 0 (mod 3),
−2B if m ≡ 1 (mod 3),
−A+B if m ≡ 2 (mod 3),

and

b2(1) =




A−B if m ≡ 0 (mod 3),
−A−B if m ≡ 1 (mod 3),
−2B if m ≡ 2 (mod 3).

We also note that b1(3) = A+B, b2(3) = A−B, and b1(5) = b2(5) = 1. More-
over, b0(1) = b0(3) = b0(5) = 0 (by our initial choice). The computation of
the cyclotomic numbers now follows from our main theorem (Theorem 1).
This proves Theorem 2 completely.

Using (31), the cyclotomic numbers of order 6 may also be evaluated in
terms of L,M (used for cyclotomic numbers of order 3 by Gauss, Dickson
etc.) or in terms of E, F .

R e m a r k. It can be shown that the part of the diophantine system in
(III) above, viz.

(39) q = A2 + 3B2, A ≡ 1 (mod 3), p -A,
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has exactly 2 solutions of the type (A,±B) and then the sign of B can be
determined by the additional condition

(40) γ(q−1)/3 ≡ −(A+B)/(A−B) (mod p).

Thus the condition

(41) B ≡ −m (mod 3)

in (III) is redundant. However, the congruence F ≡ −m (mod 3) in (II) is
irredundant as can be seen e.g. by examining the case q = p = 7.
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