A note on perfect powers of the form $x^{m-1} + \ldots + x + 1$

by

MAOHUA LE (Zhanjiang)

1. Introduction. Let \mathbb{Z} , \mathbb{N} , \mathbb{Q} be the sets of integers, positive integers and rational numbers respectively. Let $x, m, n \in \mathbb{N}$ be such that x > 1 and n > 1, and let $u_m(x) = (x^m - 1)/(x - 1)$. In [10], Shorey proved that if $m > 1, m \equiv 1 \pmod{n}$ and $u_m(x)$ is an *n*th power, then $\max(x, m, n) < C$, where *C* is an effectively computable absolute constant. In [11], he further proved that if both $u_{m_1}(x)$ and $u_{m_2}(x)$ are *n*th powers with $m_1 < m_2$ and $m_1 \equiv m_2 \pmod{n}$, then $\max(x, m_2, n) < C$. Recently, the author [7] showed that if both $u_{m_1}(x)$ and $u_{m_2}(x)$ are *n*th powers with $m_1 < m_2$ and $m_1 \equiv m_2 \pmod{n}$, then $m_1 = 1$. For $m_1 = 1$, the problem is still open. In this note we prove a general result as follows.

THEOREM. The equation

(1)
$$\frac{x^m - 1}{x - 1} = y^n$$
, $x, y, m, n \in \mathbb{N}, x > 1, y > 1, m > 2, n > 1$,

has no solution (x, y, m, n) satisfying $gcd(x\varphi(x), n) = 1$, where $\varphi(x)$ is Euler's function of x.

By the above theorem, we can obtain the following result.

COROLLARY. If m > 1, $m \equiv 1 \pmod{n}$ and $u_m(x)$ is an n-th power, then (x, m, n) = (3, 5, 2).

Thus it can be seen that the above theorem contributes to solving many problems concerning the equation (1).

2. Preliminaries. Let p be an odd prime, and let $a \in \mathbb{N}$ be such that a > 1, $p \nmid a$ and $\theta = a^{1/p} \notin \mathbb{Q}$. Then $K = \mathbb{Q}(\theta)$ is an algebraic number field of degree p. Further let $a = p_1^{k_1} \dots p_s^{k_s}$, where $k_1, \dots, k_s \in \mathbb{N}$, p_1, \dots, p_s are distinct primes, and let $S = \{\pm p^{r_0} p_1^{r_1} \dots p_s^{r_s} \mid r_0, r_1, \dots, r_s \text{ are nonnegative integers}\}$. Then K has an integral base of the form $\{\theta^i/I_i \mid i = 0, 1, \dots, p-1\}$, where $I_i \in S$ for $i = 0, 1, \dots, p-1$.

Supported by the National Natural Science Foundation of China.

^[91]

Let O_K be the algebraic integer ring of K. Then we have $\mathbb{Z}[\theta] \subseteq O_K$. For $\alpha_1, \ldots, \alpha_r \in O_K$, let $[\alpha_1, \ldots, \alpha_r]$ be the ideal of K generated by $\alpha_1, \ldots, \alpha_r$, and let $\langle [\alpha_1, \ldots, \alpha_r] \rangle$ denote the residue class degree of $[\alpha_1, \ldots, \alpha_r]$ if $[\alpha_1, \ldots, \alpha_r]$ is a prime ideal.

LEMMA 1. Let q be a prime. If $q \nmid ap$, $q \not\equiv 1 \pmod{p}$ and the congruence (2) $z^p \equiv a \pmod{q}$

is solvable, then (2) has exactly one solution $z \equiv z_0 \pmod{q}$. Moreover,

$$[q] = \mathfrak{p}_1 \mathfrak{p}_2^{e_2} \dots \mathfrak{p}_q^{e_g}, \quad e_2, \dots, e_g \in \mathbb{N},$$

where $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_g$ are distinct prime ideals of K such that $\mathfrak{p}_1 = [q, \theta - z_0]$, $\langle \mathfrak{p}_1 \rangle = 1$ and $\langle \mathfrak{p}_j \rangle > 1$ for $j = 2, \ldots, g$.

Proof. By [5, Theorem 3.7.2], if $q \nmid a$ and (2) is solvable, then the number of solutions of (2) is gcd(p, q - 1). Hence, if $q \not\equiv 1 \pmod{p}$, then (2) has exactly one solution, say $z \equiv z_0 \pmod{q}$. Furthermore, since $q \nmid p$, the solution is simple. This implies that

(3)
$$z^p - a \equiv (z - z_0)(h_2(z))^{e_2} \dots (h_g(z))^{e_g} \pmod{q}, \quad e_2, \dots, e_g \in \mathbb{N},$$

where $h_2(z), \ldots, h_g(z) \in \mathbb{Z}[z]$ are distinct monic irreducible polynomials mod q of degrees greater than one. Notice that the discriminant $\Delta(1, \theta, \ldots, \theta^{p-1}) = (-1)^{(p-1)/2} a^{p-1} p^p$. Since $q \nmid ap$, by [6, Chapter 1], we deduce from (3) that

$$[q] = [q, \theta - z_0][q, h_2(\theta)]^{e_2} \dots [q, h_g(\theta)]^{e_g}$$

where $[q, \theta - z_0], [q, h_2(\theta)], \ldots, [q, h_g(\theta)]$ are distinct prime ideals which satisfy $\langle [q, \theta - z_0] \rangle = 1$ and $\langle [q, h_j(\theta)] \rangle > 1$ for $j = 2, \ldots, g$. The lemma is proved.

Let $\zeta = e^{2\pi\sqrt{-1}/p}$. Then $L = K(\zeta) = \mathbb{Q}(\theta, \zeta)$ is the normal extension of K/\mathbb{Q} . Notice that $\{\theta^i \mid i = 0, 1, \dots, p-1\}$ and $\{\zeta^j \mid j = 0, 1, \dots, p-2\}$ are bases of K and $\mathbb{Q}(\zeta)$ respectively. We have

LEMMA 2 ([3]). $\{\theta^i \zeta^j \mid i = 0, 1, \dots, p-1, j = 0, 1, \dots, p-2\}$ is a base of L.

Let U_L , W_L be the groups of units and cyclotomic units of L respectively. Then $W_L = \{\pm \zeta^l \mid l = 0, 1, \dots, p-1\}.$

LEMMA 3. If $\varepsilon \in U_L$, then $\varepsilon = \zeta^l \eta$, where $l \in \mathbb{Z}$ with $0 \leq l \leq p-1$, and η is a real unit of L.

Proof. Let $\tau_i : L \to L$ be the field homomorphism defined by $\tau_i(\zeta) = \zeta$ and $\tau_i(\theta) = \theta \zeta^i$ for i = 0, ..., p-1 and $\sigma_j : L \to L$ the field homomorphism induced by $\sigma_j(\zeta) = \zeta^j$ and $\sigma_j(\theta) = \theta$ for j = 1, ..., p-1. Further, for any $\alpha \in L$, let $\tau_i \sigma_j : \tau_i \sigma_j(\alpha) = \tau_i(\sigma_j(\alpha))$. Then $\tau_i \sigma_j$ (i = 0, ..., p-1, j = 1, ..., p-1) are distinct p(p-1) distinct embeddings of L into \mathbb{C} , where \mathbb{C} is the set of complex numbers. Since L is a normal extension of K/\mathbb{Q} , $\operatorname{Gal}(L/\mathbb{Q}) = \{\tau_i \sigma_j \mid i = 0, 1, \dots, p-1, j = 1, \dots, p-1\}$ is the Galois group of L/\mathbb{Q} .

Let $\varrho' = \tau_0 \sigma_{p-1}$. Then $\varrho'(\alpha) = \overline{\alpha}$ for any $\alpha \in L$. Hence, $\varrho(\overline{\alpha}) = \varrho(\varrho'(\alpha)) = \varrho'(\varrho(\alpha)) = \overline{\varrho(\alpha)}$ for any $\alpha \in L$ and any $\varrho \in \operatorname{Gal}(L/\mathbb{Q})$. If $\varepsilon \in U_L$, then $\overline{\varepsilon} = \varrho'(\varepsilon) \in U_L$ and

$$\left|\varrho\left(\frac{\varepsilon}{\overline{\varepsilon}}\right)\right| = \left|\frac{\varrho(\varepsilon)}{\varrho(\overline{\varepsilon})}\right| = \left|\frac{\varrho(\varepsilon)}{\overline{\varrho(\varepsilon)}}\right| = 1, \quad \varrho \in \operatorname{Gal}(L/\mathbb{Q}).$$

This implies that $\varepsilon/\overline{\varepsilon} \in W_L$. Since $W_L = \{\pm \zeta^{2l} \mid l = 0, 1, \dots, p-1\}$, we get $\varepsilon = \pm \zeta^{2l}\overline{\varepsilon}$, where $l \in \mathbb{Z}$. Let $\eta = \zeta^{-l}\varepsilon$. If $\varepsilon = -\zeta^{2l}\overline{\varepsilon}$, then

(4)
$$\eta = \zeta^{-l}\varepsilon = -\zeta^{l}\overline{\varepsilon} = -\overline{\zeta}^{-l}\varepsilon = -\overline{\eta}.$$

Since $\zeta \equiv \zeta^{-1} \equiv 1 \pmod{1-\zeta}$, by Lemma 2, $\alpha \equiv \overline{\alpha} \pmod{1-\zeta}$ for any $\alpha \in L$. From (4), we get $2\eta \equiv 0 \pmod{1-\zeta}$. Notice that $\eta \in U_L$, $p \mid N_{L/\mathbb{Q}}(1-\zeta)$ and p is an odd prime. That is impossible. Thus, $\varepsilon = \zeta^{2l}\overline{\varepsilon}, \ \varepsilon = \zeta^l \eta$ and $\eta = \zeta^{-l}\varepsilon = \zeta^{l}\overline{\varepsilon} = \overline{\zeta^{-l}\varepsilon} = \overline{\eta}$ is a real unit of L. The lemma is proved.

3. Proof of Theorem. Let (x, y, m, n) be a solution of (1)

(5)
$$gcd(x\varphi(x), n) = 1$$

By [8], (1) with *n* even has no solutions other than (x, y, m, n) = (3, 11, 5, 2) or (7, 20, 4, 2). It suffices to consider the case $2 \nmid n$. Since n > 1, *n* has an odd prime factor *p*. Then $(x, y^{n/p}, m, p)$ is a solution of (1) satisfying (5). We can therefore assume that *n* is an odd prime.

If x - 1 is an *n*th power, then $x - 1 = y_1^n$ and

(6)
$$x^m - (y_1 y)^n = 1$$
, $x, y_1 y, m, n \in \mathbb{N}, x > 1, y_1 y > 1, m > 2, n > 2$.

By [4], we see from (6) that $n \mid x$, which contradicts (5). Therefore, $\theta := (x-1)^{1/n} \notin \mathbb{Q}$ and $K = \mathbb{Q}(\theta)$ is an algebraic number field of degree n.

Let $x = q_1^{r_1} \dots q_s^{r_s}$, where $r_1, \dots, r_s \in \mathbb{N}$, and q_1, \dots, q_s are distinct primes. Then, by (5), we have $q_i \nmid x - 1$, $q_i \nmid n$ and $q_i \not\equiv 1 \pmod{n}$ for $i = 1, \dots, s$. Notice that the congruences

$$z^n \equiv x - 1 \pmod{q_i}, \quad i = 1, \dots, s,$$

have solutions $z \equiv -1 \pmod{q_i}$ (i = 1, ..., s) respectively. By Lemma 1, we get

(7)
$$[q_i] = [q_i, 1+\theta] \prod_{j=2}^{g_i} \mathfrak{p}_{ij}^{e_{ij}}, \quad i = 1, \dots, s_i$$

where $[q_i, 1 + \theta]$ and \mathfrak{p}_{ij} are distinct prime ideals of K which satisfy $\langle [q_i, 1 + \theta] \rangle = 1$ and $\langle \mathfrak{p}_{ij} \rangle > 1$ for $i = 1, \ldots, s$ and $j = 2, \ldots, g_i$. Since

 $N_{K/\mathbb{Q}}(1+\theta) = x$, we infer from (7) that

(8)
$$[x] = \left(\prod_{i=1}^{s} [q_i, 1+\theta]^{r_i}\right) \left(\prod_{i=1}^{s} \left(\prod_{j=2}^{g_i} \mathfrak{p}_{ij}^{e_{ij}}\right)^{r_i}\right)$$
$$= [1+\theta] \left(\prod_{i=1}^{s} \left(\prod_{j=2}^{g_i} \mathfrak{p}_{ij}^{e_{ij}}\right)^{r_i}\right).$$

From (1) and (8),

(9)
$$[1+y\theta] \left[\frac{1+y^n \theta^n}{1+y\theta} \right] = [1+y^n \theta^n] = [x]^m$$
$$= [1+\theta]^m \left(\prod_{i=1}^s \left(\prod_{j=2}^{g_i} \mathfrak{p}_{ij}^{e_{ij}} \right)^{r_i} \right)^m.$$

Since $\operatorname{gcd}(x,n) = 1$, the ideals $[1+y\theta]$ and $[(1+y^n\theta^n)/(1+y\theta)]$ are coprime. If $\mathfrak{p}_{ij} \mid [1+y\theta]$ for some $i, j \in \mathbb{N}$ with $1 \leq i \leq s$ and $2 \leq j \leq g_i$, then from (9) we get $\mathfrak{p}_{ij}^{e_{ij}r_im} \mid [1+y\theta]$. For any ideal \mathfrak{a} in K, let $N\mathfrak{a}$ denote the norm of \mathfrak{a} . Recall that $\langle \mathfrak{p}_{ij} \rangle > 1$. So we have $q^{2r_im} \mid N\mathfrak{p}^{e_{ij}r_im}$. Further, since $\mathfrak{p}_{ij}^{e_{ij}r_im} \mid [1+y\theta]$ and $N[1+y\theta] = N_{K/\mathbb{Q}}(1+y\theta) = x^m$, we get $q_i^{2r_im} \mid x^m$, a contradiction. Therefore, $\mathfrak{p}_{ij} \nmid [1+y\theta]$, and by (9),

(10)
$$[1+y\theta] = [1+\theta]^m$$

Let U_K be the unit group of K. We see from (10) that

(11)
$$1 + y\theta = (1 + \theta)^m \varepsilon, \quad \varepsilon \in U_K, \ N_{K/\mathbb{Q}}(\varepsilon) = 1.$$

Since $K = \mathbb{Q}[\theta]$, we have

(12) $\varepsilon = \varepsilon(\theta) = a_0 + a_1\theta + \ldots + a_{n-1}\theta^{n-1}, \quad a_0, a_1, \ldots, a_{n-1} \in \mathbb{Q}.$ Let $\zeta = e^{2\pi\sqrt{-1}/n}$. Since $\theta\zeta, \ldots, \theta\zeta^{n-1}$ are conjugate numbers of θ , we get (13) $1 + y\theta\zeta = (1 + \theta\zeta)^m \varepsilon(\theta\zeta), \quad 1 + y\theta\zeta^{-1} = (1 + \theta\zeta^{-1})^m \varepsilon(\theta\zeta^{-1}),$

by (11). Let $L = K(\zeta) = \mathbb{Q}(\theta, \zeta)$, and let U_L , W_L be the groups of units and cyclotomic units of L respectively. Since L is a normal extension of K/\mathbb{Q} , we have $\varepsilon(\theta\zeta) \in U_L$, and by Lemma 3, $\varepsilon(\theta\zeta) = \zeta^l \eta$, where $l \in \mathbb{Z}$ with $0 \leq l \leq n-1$, and η is a real unit of L. Notice that $\varepsilon(\theta\zeta^{-1}) = \overline{\varepsilon(\theta\zeta)} = \zeta^{-l}\eta$. We see from (13) that

$$1 + y\theta\zeta = (1 + \theta\zeta)^{m}\zeta^{l}\eta, \quad 1 + y\theta\zeta^{-1} = (1 + \theta\zeta^{-1})^{m}\zeta^{-l}\eta,$$

whence we obtain

(14)
$$(1+y\theta\zeta)(1+\theta\zeta^{-1})^m - (1+y\theta\zeta^{-1})(1+\theta\zeta)^m\zeta^{2l} = 0,$$

since $\eta \neq 0$. Clearly, (14) can be written as

(15)
$$T_0(\zeta) + \theta T_1(\zeta) + \ldots + \theta^{n-1} T_{n-1}(\zeta) = 0,$$

where

(20)

(16)
$$T_i(\zeta) = b_{i,0} + b_{i,1}\zeta + \ldots + b_{i,n-2}\zeta^{n-2} \in \mathbb{Z}[\zeta], \quad i = 0, 1, \ldots, n-1.$$

By Lemma 3, we find from (14)–(16) that

(17)
$$b_{i,j} = 0, \quad i = 0, 1, \dots, n-1, \ j = 0, 1, \dots, n-2.$$

Since m > 2, $\theta^n = x - 1$ and $\zeta^n = 1$, we have

$$(1+\theta\zeta)^m = c_0 + c_1\theta\zeta + \ldots + c_{n-1}(\theta\zeta)^{n-1} \in \mathbb{Z}[\theta\zeta], \quad c_0 \ge 1, \ c_1 \ge 1.$$

From (14) and (15), we get

(18)
$$T_0(\zeta) = c_0 + c_{n-1}(x-1)y\zeta^2 - c_0\zeta^{2l} - c_{n-1}(x-1)y\zeta^{2l-2},$$

(19)
$$T_1(\zeta) = c_1 \zeta^{n-1} + c_0 y \zeta - c_1 \zeta^{2l+1} - c_0 y \zeta^{2l-1}.$$

If 1, ζ^2 , ζ^{2l} and ζ^{2l-2} are distinct, we see from (16)–(18) that $c_0 = 0$, a contradiction. Therefore, there exist at least two elements of $\{1, \zeta^2, \zeta^{2l}, \zeta^{2l-2}\}$ which are equal. Since $1 \neq \zeta^2$ and $\zeta^{2l} \neq \zeta^{2l-2}$, it suffices to consider the following three cases.

Case 1:
$$1 = \zeta^{2l}$$
. Then $l = 0, \eta = \varepsilon(\theta\zeta)$ and

$$\eta = a_0 + a_1 \theta \zeta + \ldots + a_{n-1} (\theta \zeta)^{n-1} = a_0 + a_1 \theta \zeta^{-1} + \ldots + a_{n-1} (\theta \zeta^{-1})^{n-1} = \overline{\eta}$$

by (12), since η is a real unit of L. Notice that $\zeta^i \neq \zeta^{-i}$ for $i = 1, \ldots, n-1$. By Lemma 2, we see from (20) that $a_1 = \ldots = a_{n-1} = 0$ and $\varepsilon = \varepsilon(\theta) =$ $\varepsilon(\theta\zeta) = a_0$. Since $N_{K/\mathbb{Q}}(\varepsilon) = 1$ by (11), we get $a_0 = \varepsilon = 1$ and

(21)
$$1 + y\theta = (1 + \theta)^n$$

by (11). For m > 1, (21) is impossible.

Case 2: $1 = \zeta^{2l-2}$ or $\zeta^2 = \zeta^{2l}$. Then l = 1 and $T_1(\zeta) = c_1 \zeta^{n-1} - c_1 \zeta^3$ by (20). Since $\zeta^{n-1} \neq \zeta^3$ and $c_1 \ge 1$, (16) is false. Case 3: $\zeta^2 = \zeta^{2l-2}$. Then l = 2 and $T_0(\zeta) = c_0 - c_0 \zeta^4$ by (19). Since

 $1 \neq \zeta^4$ and $c_0 \geq 1$, (16) is false.

All cases are considered and the Theorem is proved.

4. Proof of Corollary

LEMMA 4 ([2]). Let $n \in \mathbb{N}$ with $n \geq 3$, and let $\mu_n = \prod_{p|n} p^{1/(p-1)}$. Let $a, b \in \mathbb{N}$ such that $7a/8 \leq b < a$ and $a \equiv b \equiv 0 \pmod{n}$. If $\lambda =$ $4b(a-b)^{-2}\mu_n^{-1} > 1$, then

$$\left| \left(\frac{a}{b} \right)^{1/n} - \frac{X}{Y} \right| > \frac{c}{Y^{\delta}}$$

for any $X \in \mathbb{Z}$ and any $Y \in \mathbb{N}$, where

$$\delta = 1 + \frac{\log 2\mu_n(a+b)}{\log \lambda}, \quad c = \frac{1}{2^{\delta+2}(a+b)}$$

LEMMA 5 ([9]). Let $a, b \in \mathbb{N}$ with a > 1 and b > 1. Then the equation

$$aX^3 - bY^3 = 1, \quad X, Y \in \mathbb{N},$$

has at most one solution (X, Y).

LEMMA 6 ([12]). Let $a, b, c, n \in \mathbb{N}$ with $n \geq 3$. If $(ab)^{n/2-1} \geq 4c^{2n-2}(n\mu_n)^n$, where μ_n was defined in Lemma 4, then the inequality

$$|aX^n - bY^n| \le c, \quad X, Y \in \mathbb{N}, \ \gcd(X, Y) = 1,$$

has at most one solution (X, Y).

Proof of Corollary. Let $u_m(x)$ be an *n*th power which satisfies m > 1 and $m \equiv 1 \pmod{n}$. Then (1) has a corresponding solution (x, y, m, n). We may assume that *n* is a prime. By [8], if $(x, m, n) \neq (3, 5, 2)$, then *n* is an odd prime. Further, by Theorem, we have $n \mid x\varphi(x)$. If $n \mid x$, then we find from (1) that $y^n \equiv 1 \pmod{n}$. This implies that $y^n \equiv 1 \pmod{n^2}$ and $n^2 \mid x$. If $n \nmid x$, then $n \mid \varphi(x)$ and *x* has a prime factor *q* such that $q \equiv 1 \pmod{n}$. So we have

(22) $x \equiv 0 \pmod{n^2}$ or x has a prime factor q with $q \equiv 1 \pmod{n}$.

On the other hand, since $m \equiv 1 \pmod{n}$, m = nt + 1 and $(X, Y) = (x^t, y)$ is a solution of the equation

(23)
$$xX^n - (x-1)Y^n = 1, \quad X, Y \in \mathbb{N},$$

where $t \in \mathbb{N}$. Notice that (23) has another solution (X, Y) = (1, 1). By Lemmas 5 and 6, we get $n \geq 5$ and

(24)
$$(x(x-1))^{n/2-1} < 4n^{n^2/(n-1)}.$$

On combining (24) with (22), we obtain

(25)
$$n = 5 \text{ and } x = 11, 22, 25, 31, 33, 41 \text{ or } 44,$$

 $n = 7 \text{ and } x = 29, \quad n = 11 \text{ and } x = 23.$

If $2 \nmid t$, then $2 \mid m$ and

(26)
$$\frac{x^{m/2}-1}{x-1} = y_1^n, \quad x^{m/2}+1 = y_2^n, \quad y_1, y_2 \in \mathbb{N}, \ y_1y_2 = y_2^n$$

By [1], (26) is impossible for $n \leq 11$. Therefore, by (25), we get 2 | t. For the pairs (x, n) in (25), by computation, $u_{2n+1}(x)$ is not an *n*th power. So we have $t \geq 4$.

Let a = xn and b = (x - 1)n. If x > 1 and (X, Y) is a solution of (24), then

(27)
$$\left| \left(\frac{a}{b}\right)^{1/n} - \frac{Y}{X} \right| < \frac{1}{n(x-1)^{1/n}X^n}$$

On the other hand, by Lemma 4, if $x \ge 8$ and $4(x-1) > n^{n/(n-1)}$, then

(28)
$$\left| \left(\frac{a}{b}\right)^{1/n} - \frac{Y}{X} \right| > \frac{c}{X^{\delta}},$$

where

$$\delta < 2 + \frac{1}{\log 2} \left(\frac{n}{n-1} \log n + \log x \right), \quad c = \frac{1}{2^{\delta+2} n(2x-1)}$$

Take $(X, Y) = (x^t, y)$. The combination of (27) and (28) yields

$$\log x < \frac{10\log 2 + 2n\log n/(n-1)}{(n-2)t - 1 - n\log n/((n-1)\log 2)} < 2.32 < \log 11$$

and $x \leq 10$ for $n \geq 5$ and $t \geq 4$, which contradicts (25). Thus, the Corollary is proved.

Acknowledgements. The author would like to thank the referee for his valuable suggestions.

References

- [1] M. Aaltonen and K. Inkeri, Catalan's equation $x^p y^q = 1$ and related congruences, Math. Comp. 56 (1991), 359–370.
- [2] A. Baker, Rational approximations to ³√2 and other algebraic numbers, Quart. J. Math. Oxford 15 (1964), 375–383.
- [3] W. F. H. Berwick, Integral Bases, Cambridge Univ. Press, 1927.
- [4] J. W. S. Cassels, On the equation $a^x b^y = 1$, II, Math. Proc. Cambridge Philos. Soc. 56 (1960), 97–103.
- [5] L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
- [6] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, Massachusetts, 1970.
- [7] M.-H. Le, A note on the equation $(x^m 1)/(x 1) = y^n + 1$, Math. Proc. Cambridge Philos. Soc. 115 (1994), to appear.
- [8] W. Ljunggren, Noen setninger om ubestemte likninger av formen $(x^n 1)/(x 1) = y^q$, Norsk Mat. Tidsskr. 25 (1943), 17–20.
- [9] —, On an improvement of a theorem of T. Nagell concerning the diophantine equation $Ax^3 + By^3 = C$, Math. Scand. 1 (1953), 297–309.
- [10] T. N. Shorey, Perfect powers in values of certain polynomials at integer points, Math. Proc. Cambridge Philos. Soc. 99 (1986), 195–207.
- [11] —, On the equation $z^q = (x^n 1)/(x 1)$, Indag. Math. 48 (1986), 345–351.

M.-H. Le

 $\label{eq:classical} [12] \quad \text{C. L. Siegel, Die Gleichung $ax^n-by^n=c$, Math. Ann. 144 (1937), 57–68.}$

DEPARTMENT OF MATHEMATICS ZHANJIANG TEACHER'S COLLEGE P.O. BOX 524048 ZHANJIANG, GUANGDONG P.R. CHINA

> Received on 12.1.1994 and in revised form on 1.5.1994

(2557)