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A note on perfect powers of the form xm−1 + . . . + x + 1

by
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1. Introduction. Let Z, N, Q be the sets of integers, positive integers
and rational numbers respectively. Let x,m, n ∈ N be such that x > 1 and
n > 1, and let um(x) = (xm − 1)/(x − 1). In [10], Shorey proved that if
m > 1, m ≡ 1 (mod n) and um(x) is an nth power, then max(x,m, n) < C,
where C is an effectively computable absolute constant. In [11], he further
proved that if both um1(x) and um2(x) are nth powers with m1 < m2

and m1 ≡ m2 (mod n), then max(x,m2, n) < C. Recently, the author [7]
showed that if both um1(x) and um2(x) are nth powers with m1 < m2 and
m1 ≡ m2 (mod n), then m1 = 1. For m1 = 1, the problem is still open. In
this note we prove a general result as follows.

Theorem. The equation

(1)
xm − 1
x− 1

= yn, x, y, m, n ∈ N, x > 1, y > 1, m > 2, n > 1,

has no solution (x, y,m, n) satisfying gcd(xϕ(x), n) = 1, where ϕ(x) is Eu-
ler’s function of x.

By the above theorem, we can obtain the following result.

Corollary. If m > 1, m ≡ 1 (mod n) and um(x) is an n-th power ,
then (x, m, n) = (3, 5, 2).

Thus it can be seen that the above theorem contributes to solving many
problems concerning the equation (1).

2. Preliminaries. Let p be an odd prime, and let a ∈ N be such that
a > 1, p - a and θ = a1/p 6∈ Q. Then K = Q(θ) is an algebraic number field
of degree p. Further let a = pk1

1 . . . pks
s , where k1, . . . , ks ∈ N, p1, . . . , ps are

distinct primes, and let S = {±pr0pr1
1 . . . prs

s | r0, r1, . . . , rs are nonnegative
integers}. Then K has an integral base of the form {θi/Ii | i = 0, 1, . . .
. . . , p− 1}, where Ii ∈ S for i = 0, 1, . . . , p− 1.
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Let OK be the algebraic integer ring of K. Then we have Z[θ] ⊆ OK . For
α1, . . . , αr ∈ OK , let [α1, . . . , αr] be the ideal of K generated by α1, . . . , αr,
and let 〈[α1, . . . , αr]〉 denote the residue class degree of [α1, . . . , αr] if
[α1, . . . , αr] is a prime ideal.

Lemma 1. Let q be a prime. If q - ap, q 6≡ 1 (mod p) and the congruence

(2) zp ≡ a (mod q)

is solvable, then (2) has exactly one solution z ≡ z0 (mod q). Moreover ,

[q] = p1p
e2
2 . . . peg

g , e2, . . . , eg ∈ N,

where p1, p2, . . . , pg are distinct prime ideals of K such that p1 = [q, θ− z0],
〈p1〉 = 1 and 〈pj〉 > 1 for j = 2, . . . , g.

P r o o f. By [5, Theorem 3.7.2], if q - a and (2) is solvable, then the
number of solutions of (2) is gcd(p, q − 1). Hence, if q 6≡ 1 (mod p), then
(2) has exactly one solution, say z ≡ z0 (mod q). Furthermore, since q - p,
the solution is simple. This implies that

(3) zp − a ≡ (z − z0)(h2(z))e2 . . . (hg(z))eg (mod q), e2, . . . , eg ∈ N,

where h2(z), . . . , hg(z) ∈ Z[z] are distinct monic irreducible polynomials
mod q of degrees greater than one. Notice that the discriminant
∆(1, θ, . . . , θp−1) = (−1)(p−1)/2ap−1pp. Since q - ap, by [6, Chapter 1], we
deduce from (3) that

[q] = [q, θ − z0][q, h2(θ)]e2 . . . [q, hg(θ)]eg ,

where [q, θ− z0], [q, h2(θ)], . . . , [q, hg(θ)] are distinct prime ideals which sat-
isfy 〈[q, θ − z0]〉 = 1 and 〈[q, hj(θ)]〉 > 1 for j = 2, . . . , g. The lemma is
proved.

Let ζ = e2π
√
−1/p. Then L = K(ζ) = Q(θ, ζ) is the normal extension

of K/Q. Notice that {θi | i = 0, 1, . . . , p − 1} and {ζj | j = 0, 1, . . . , p − 2}
are bases of K and Q(ζ) respectively. We have

Lemma 2 ([3]). {θiζj | i = 0, 1, . . . , p − 1, j = 0, 1, . . . , p − 2} is a base
of L.

Let UL, WL be the groups of units and cyclotomic units of L respectively.
Then WL = {±ζl | l = 0, 1, . . . , p− 1}.

Lemma 3. If ε ∈ UL, then ε = ζlη, where l ∈ Z with 0 ≤ l ≤ p− 1, and
η is a real unit of L.

P r o o f. Let τi : L → L be the field homomorphism defined by τi(ζ) = ζ
and τi(θ) = θζi for i = 0, . . . , p− 1 and σj : L → L the field homomorphism
induced by σj(ζ) = ζj and σj(θ) = θ for j = 1, . . . , p − 1. Further, for any
α ∈ L, let τiσj : τiσj(α) = τi(σj(α)). Then τiσj (i = 0, . . . , p − 1, j =
1, . . . , p − 1) are distinct p(p − 1) distinct embeddings of L into C, where
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C is the set of complex numbers. Since L is a normal extension of K/Q,
Gal(L/Q) = {τiσj | i = 0, 1, . . . , p− 1, j = 1, . . . , p− 1} is the Galois group
of L/Q.

Let %′ = τ0σp−1. Then %′(α) = α for any α ∈ L. Hence, %(α) =
%(%′(α)) = %′(%(α)) = %(α) for any α ∈ L and any % ∈ Gal(L/Q). If ε ∈ UL,
then ε = %′(ε) ∈ UL and∣∣∣∣%(

ε

ε

)∣∣∣∣ =
∣∣∣∣%(ε)
%(ε)

∣∣∣∣ =
∣∣∣∣ %(ε)
%(ε)

∣∣∣∣ = 1, % ∈ Gal(L/Q).

This implies that ε/ε ∈ WL. Since WL = {±ζ2l | l = 0, 1, . . . , p− 1}, we get
ε = ±ζ2lε, where l ∈ Z. Let η = ζ−lε. If ε = −ζ2lε, then

(4) η = ζ−lε = −ζlε = −ζ−lε = −η.

Since ζ≡ζ−1≡1 (mod 1−ζ), by Lemma 2, α≡α (mod 1−ζ) for any α∈ L.
From (4), we get 2η ≡ 0 (mod 1 − ζ). Notice that η ∈ UL, p |NL/Q(1 − ζ)
and p is an odd prime. That is impossible. Thus, ε = ζ2lε, ε = ζlη and
η = ζ−lε = ζlε = ζ−lε = η is a real unit of L. The lemma is proved.

3. Proof of Theorem. Let (x, y,m, n) be a solution of (1)

(5) gcd(xϕ(x), n) = 1.

By [8], (1) with n even has no solutions other than (x, y,m, n) = (3, 11, 5, 2)
or (7, 20, 4, 2). It suffices to consider the case 2 - n. Since n > 1, n has an
odd prime factor p. Then (x, yn/p,m, p) is a solution of (1) satisfying (5).
We can therefore assume that n is an odd prime.

If x− 1 is an nth power, then x− 1 = yn
1 and

(6) xm − (y1y)n = 1, x, y1y, m, n ∈ N, x > 1, y1y > 1, m > 2, n > 2.

By [4], we see from (6) that n |x, which contradicts (5). Therefore, θ :=
(x− 1)1/n 6∈ Q and K = Q(θ) is an algebraic number field of degree n.

Let x = qr1
1 . . . qrs

s , where r1, . . . , rs ∈ N, and q1, . . . , qs are distinct
primes. Then, by (5), we have qi - x − 1, qi - n and qi 6≡ 1 (mod n) for
i = 1, . . . , s. Notice that the congruences

zn ≡ x− 1 (mod qi), i = 1, . . . , s,

have solutions z ≡ −1 (mod qi) (i = 1, . . . , s) respectively. By Lemma 1,
we get

(7) [qi] = [qi, 1 + θ]
gi∏

j=2

p
eij

ij , i = 1, . . . , s,

where [qi, 1 + θ] and pij are distinct prime ideals of K which satisfy
〈[qi, 1 + θ]〉 = 1 and 〈pij〉 > 1 for i = 1, . . . , s and j = 2, . . . , gi. Since
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NK/Q(1 + θ) = x, we infer from (7) that

[x] =
( s∏

i=1

[qi, 1 + θ]ri

)( s∏
i=1

( gi∏
j=2

p
eij

ij

)ri
)

(8)

= [1 + θ]
( s∏

i=1

( gi∏
j=2

p
eij

ij

)ri
)
.

From (1) and (8),

[1 + yθ]
[
1 + ynθn

1 + yθ

]
= [1 + ynθn] = [x]m(9)

= [1 + θ]m
( s∏

i=1

( gi∏
j=2

p
eij

ij

)ri
)m

.

Since gcd(x, n) = 1, the ideals [1+yθ] and [(1+ynθn)/(1+yθ)] are coprime.
If pij | [1 + yθ] for some i, j ∈ N with 1 ≤ i ≤ s and 2 ≤ j ≤ gi, then from
(9) we get p

eijrim
ij | [1 + yθ]. For any ideal a in K, let Na denote the norm

of a. Recall that 〈pij〉 > 1. So we have q2rim |Npeijrim. Further, since
p

eijrim
ij | [1 + yθ] and N [1 + yθ] = NK/Q(1 + yθ) = xm, we get q2rim

i |xm, a
contradiction. Therefore, pij - [1 + yθ], and by (9),

(10) [1 + yθ] = [1 + θ]m.

Let UK be the unit group of K. We see from (10) that

(11) 1 + yθ = (1 + θ)mε, ε ∈ UK , NK/Q(ε) = 1.

Since K = Q[θ], we have

(12) ε = ε(θ) = a0 + a1θ + . . . + an−1θ
n−1, a0, a1, . . . , an−1 ∈ Q.

Let ζ = e2π
√
−1/n. Since θζ, . . . , θζn−1 are conjugate numbers of θ, we get

(13) 1 + yθζ = (1 + θζ)mε(θζ), 1 + yθζ−1 = (1 + θζ−1)mε(θζ−1),

by (11). Let L = K(ζ) = Q(θ, ζ), and let UL, WL be the groups of units
and cyclotomic units of L respectively. Since L is a normal extension of
K/Q, we have ε(θζ) ∈ UL, and by Lemma 3, ε(θζ) = ζlη, where l ∈ Z with
0 ≤ l ≤ n−1, and η is a real unit of L. Notice that ε(θζ−1) = ε(θζ) = ζ−lη.
We see from (13) that

1 + yθζ = (1 + θζ)mζlη, 1 + yθζ−1 = (1 + θζ−1)mζ−lη,

whence we obtain

(14) (1 + yθζ)(1 + θζ−1)m − (1 + yθζ−1)(1 + θζ)mζ2l = 0,

since η 6= 0. Clearly, (14) can be written as

(15) T0(ζ) + θT1(ζ) + . . . + θn−1Tn−1(ζ) = 0,
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where

(16) Ti(ζ) = bi,0 + bi,1ζ + . . . + bi,n−2ζ
n−2 ∈ Z[ζ], i = 0, 1, . . . , n− 1.

By Lemma 3, we find from (14)–(16) that

(17) bi,j = 0, i = 0, 1, . . . , n− 1, j = 0, 1, . . . , n− 2.

Since m > 2, θn = x− 1 and ζn = 1, we have

(1 + θζ)m = c0 + c1θζ + . . . + cn−1(θζ)n−1 ∈ Z[θζ], c0 ≥ 1, c1 ≥ 1.

From (14) and (15), we get

T0(ζ) = c0 + cn−1(x− 1)yζ2 − c0ζ
2l − cn−1(x− 1)yζ2l−2,(18)

T1(ζ) = c1ζ
n−1 + c0yζ − c1ζ

2l+1 − c0yζ2l−1.(19)

If 1, ζ2, ζ2l and ζ2l−2 are distinct, we see from (16)–(18) that c0 = 0, a con-
tradiction. Therefore, there exist at least two elements of {1, ζ2, ζ2l, ζ2l−2}
which are equal. Since 1 6= ζ2 and ζ2l 6= ζ2l−2, it suffices to consider the
following three cases.

C a s e 1: 1 = ζ2l. Then l = 0, η = ε(θζ) and

η = a0 + a1θζ + . . . + an−1(θζ)n−1(20)
= a0 + a1θζ

−1 + . . . + an−1(θζ−1)n−1 = η

by (12), since η is a real unit of L. Notice that ζi 6= ζ−i for i = 1, . . . , n− 1.
By Lemma 2, we see from (20) that a1 = . . . = an−1 = 0 and ε = ε(θ) =
ε(θζ) = a0. Since NK/Q(ε) = 1 by (11), we get a0 = ε = 1 and

(21) 1 + yθ = (1 + θ)m

by (11). For m > 1, (21) is impossible.
C a s e 2: 1 = ζ2l−2 or ζ2 = ζ2l. Then l = 1 and T1(ζ) = c1ζ

n−1 − c1ζ
3

by (20). Since ζn−1 6= ζ3 and c1 ≥ 1, (16) is false.
C a s e 3: ζ2 = ζ2l−2. Then l = 2 and T0(ζ) = c0 − c0ζ

4 by (19). Since
1 6= ζ4 and c0 ≥ 1, (16) is false.

All cases are considered and the Theorem is proved.

4. Proof of Corollary

Lemma 4 ([2]). Let n ∈ N with n ≥ 3, and let µn =
∏

p|n p1/(p−1).
Let a, b ∈ N such that 7a/8 ≤ b < a and a ≡ b ≡ 0 (mod n). If λ =
4b(a− b)−2µ−1

n > 1, then ∣∣∣∣(a

b

)1/n

− X

Y

∣∣∣∣ >
c

Y δ
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for any X ∈ Z and any Y ∈ N, where

δ = 1 +
log 2µn(a + b)

log λ
, c =

1
2δ+2(a + b)

.

Lemma 5 ([9]). Let a, b ∈ N with a > 1 and b > 1. Then the equation

aX3 − bY 3 = 1, X, Y ∈ N,

has at most one solution (X, Y ).

Lemma 6 ([12]). Let a, b, c, n ∈ N with n ≥ 3. If (ab)n/2−1 ≥
4c2n−2(nµn)n, where µn was defined in Lemma 4, then the inequality

|aXn − bY n| ≤ c, X, Y ∈ N, gcd(X, Y ) = 1,

has at most one solution (X, Y ).

P r o o f o f C o r o l l a r y. Let um(x) be an nth power which satisfies
m>1 and m≡1 (mod n). Then (1) has a corresponding solution (x, y,m, n).
We may assume that n is a prime. By [8], if (x, m, n) 6= (3, 5, 2), then n
is an odd prime. Further, by Theorem, we have n |xϕ(x). If n |x, then we
find from (1) that yn ≡ 1 (mod n). This implies that yn ≡ 1 (mod n2)
and n2 |x. If n - x, then n |ϕ(x) and x has a prime factor q such that q ≡ 1
(mod n). So we have

(22) x ≡ 0 (mod n2) or x has a prime factor q with q ≡ 1 (mod n).

On the other hand, since m ≡ 1 (mod n), m = nt + 1 and (X, Y ) =
(xt, y) is a solution of the equation

(23) xXn − (x− 1)Y n = 1, X, Y ∈ N,

where t ∈ N. Notice that (23) has another solution (X, Y ) = (1, 1). By
Lemmas 5 and 6, we get n ≥ 5 and

(24) (x(x− 1))n/2−1 < 4nn2/(n−1).

On combining (24) with (22), we obtain

(25)
n = 5 and x = 11, 22, 25, 31, 33, 41 or 44,

n = 7 and x = 29, n = 11 and x = 23.

If 2 - t, then 2 |m and

(26)
xm/2 − 1

x− 1
= yn

1 , xm/2 + 1 = yn
2 , y1, y2 ∈ N, y1y2 = y.

By [1], (26) is impossible for n ≤ 11. Therefore, by (25), we get 2 | t. For
the pairs (x, n) in (25), by computation, u2n+1(x) is not an nth power. So
we have t ≥ 4.
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Let a = xn and b = (x− 1)n. If x > 1 and (X, Y ) is a solution of (24),
then

(27)
∣∣∣∣(a

b

)1/n

− Y

X

∣∣∣∣ <
1

n(x− 1)1/nXn
.

On the other hand, by Lemma 4, if x ≥ 8 and 4(x− 1) > nn/(n−1), then

(28)
∣∣∣∣(a

b

)1/n

− Y

X

∣∣∣∣ >
c

Xδ
,

where

δ < 2 +
1

log 2

(
n

n− 1
log n + log x

)
, c =

1
2δ+2n(2x− 1)

.

Take (X, Y ) = (xt, y). The combination of (27) and (28) yields

log x <
10 log 2 + 2n log n/(n− 1)

(n− 2)t− 1− n log n/((n− 1) log 2)
< 2.32 < log 11

and x ≤ 10 for n ≥ 5 and t ≥ 4, which contradicts (25). Thus, the Corollary
is proved.
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