A note on perfect powers of the form $x^{m-1}+\ldots+x+1$

by

Maohua Le (Zhanjiang)

1. Introduction. Let $\mathbb{Z}, \mathbb{N}, \mathbb{Q}$ be the sets of integers, positive integers and rational numbers respectively. Let $x, m, n \in \mathbb{N}$ be such that $x>1$ and $n>1$, and let $u_{m}(x)=\left(x^{m}-1\right) /(x-1)$. In [10], Shorey proved that if $m>1, m \equiv 1(\bmod n)$ and $u_{m}(x)$ is an nth power, then $\max (x, m, n)<C$, where C is an effectively computable absolute constant. In [11], he further proved that if both $u_{m_{1}}(x)$ and $u_{m_{2}}(x)$ are nth powers with $m_{1}<m_{2}$ and $m_{1} \equiv m_{2}(\bmod n)$, then $\max \left(x, m_{2}, n\right)<C$. Recently, the author [7] showed that if both $u_{m_{1}}(x)$ and $u_{m_{2}}(x)$ are nth powers with $m_{1}<m_{2}$ and $m_{1} \equiv m_{2}(\bmod n)$, then $m_{1}=1$. For $m_{1}=1$, the problem is still open. In this note we prove a general result as follows.

Theorem. The equation

$$
\begin{equation*}
\frac{x^{m}-1}{x-1}=y^{n}, \quad x, y, m, n \in \mathbb{N}, x>1, y>1, m>2, n>1, \tag{1}
\end{equation*}
$$

has no solution (x, y, m, n) satisfying $\operatorname{gcd}(x \varphi(x), n)=1$, where $\varphi(x)$ is Euler's function of x.

By the above theorem, we can obtain the following result.
Corollary. If $m>1, m \equiv 1(\bmod n)$ and $u_{m}(x)$ is an n-th power, then $(x, m, n)=(3,5,2)$.

Thus it can be seen that the above theorem contributes to solving many problems concerning the equation (1).
2. Preliminaries. Let p be an odd prime, and let $a \in \mathbb{N}$ be such that $a>1, p \nmid a$ and $\theta=a^{1 / p} \notin \mathbb{Q}$. Then $K=\mathbb{Q}(\theta)$ is an algebraic number field of degree p. Further let $a=p_{1}^{k_{1}} \ldots p_{s}^{k_{s}}$, where $k_{1}, \ldots, k_{s} \in \mathbb{N}, p_{1}, \ldots, p_{s}$ are distinct primes, and let $S=\left\{ \pm p^{r_{0}} p_{1}^{r_{1}} \ldots p_{s}^{r_{s}} \mid r_{0}, r_{1}, \ldots, r_{s}\right.$ are nonnegative integers $\}$. Then K has an integral base of the form $\left\{\theta^{i} / I_{i} \mid i=0,1, \ldots\right.$ $\ldots, p-1\}$, where $I_{i} \in S$ for $i=0,1, \ldots, p-1$.

[^0]Let O_{K} be the algebraic integer ring of K. Then we have $\mathbb{Z}[\theta] \subseteq O_{K}$. For $\alpha_{1}, \ldots, \alpha_{r} \in O_{K}$, let $\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ be the ideal of K generated by $\alpha_{1}, \ldots, \alpha_{r}$, and let $\left\langle\left[\alpha_{1}, \ldots, \alpha_{r}\right]\right\rangle$ denote the residue class degree of $\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ if $\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ is a prime ideal.

Lemma 1. Let q be a prime. If $q \nmid a p, q \not \equiv 1(\bmod p)$ and the congruence

$$
\begin{equation*}
z^{p} \equiv a(\bmod q) \tag{2}
\end{equation*}
$$

is solvable, then (2) has exactly one solution $z \equiv z_{0}(\bmod q)$. Moreover,

$$
[q]=\mathfrak{p}_{1} \mathfrak{p}_{2}^{e_{2}} \ldots \mathfrak{p}_{g}^{e_{g}}, \quad e_{2}, \ldots, e_{g} \in \mathbb{N}
$$

where $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{g}$ are distinct prime ideals of K such that $\mathfrak{p}_{1}=\left[q, \theta-z_{0}\right]$, $\left\langle\mathfrak{p}_{1}\right\rangle=1$ and $\left\langle\mathfrak{p}_{j}\right\rangle>1$ for $j=2, \ldots, g$.

Proof. By [5, Theorem 3.7.2], if $q \nmid a$ and (2) is solvable, then the number of solutions of (2) is $\operatorname{gcd}(p, q-1)$. Hence, if $q \not \equiv 1(\bmod p)$, then (2) has exactly one solution, say $z \equiv z_{0}(\bmod q)$. Furthermore, since $q \nmid p$, the solution is simple. This implies that
(3) $\quad z^{p}-a \equiv\left(z-z_{0}\right)\left(h_{2}(z)\right)^{e_{2}} \ldots\left(h_{g}(z)\right)^{e_{g}}(\bmod q), \quad e_{2}, \ldots, e_{g} \in \mathbb{N}$,
where $h_{2}(z), \ldots, h_{g}(z) \in \mathbb{Z}[z]$ are distinct monic irreducible polynomials $\bmod q$ of degrees greater than one. Notice that the discriminant $\Delta\left(1, \theta, \ldots, \theta^{p-1}\right)=(-1)^{(p-1) / 2} a^{p-1} p^{p}$. Since $q \nmid a p$, by $[6$, Chapter 1], we deduce from (3) that

$$
[q]=\left[q, \theta-z_{0}\right]\left[q, h_{2}(\theta)\right]^{e_{2}} \ldots\left[q, h_{g}(\theta)\right]^{e_{g}},
$$

where $\left[q, \theta-z_{0}\right],\left[q, h_{2}(\theta)\right], \ldots,\left[q, h_{g}(\theta)\right]$ are distinct prime ideals which satisfy $\left\langle\left[q, \theta-z_{0}\right]\right\rangle=1$ and $\left\langle\left[q, h_{j}(\theta)\right]\right\rangle>1$ for $j=2, \ldots, g$. The lemma is proved.

Let $\zeta=e^{2 \pi \sqrt{-1} / p}$. Then $L=K(\zeta)=\mathbb{Q}(\theta, \zeta)$ is the normal extension of K / \mathbb{Q}. Notice that $\left\{\theta^{i} \mid i=0,1, \ldots, p-1\right\}$ and $\left\{\zeta^{j} \mid j=0,1, \ldots, p-2\right\}$ are bases of K and $\mathbb{Q}(\zeta)$ respectively. We have

Lemma 2 ([3]). $\left\{\theta^{i} \zeta^{j} \mid i=0,1, \ldots, p-1, j=0,1, \ldots, p-2\right\}$ is a base of L.

Let U_{L}, W_{L} be the groups of units and cyclotomic units of L respectively. Then $W_{L}=\left\{ \pm \zeta^{l} \mid l=0,1, \ldots, p-1\right\}$.

Lemma 3. If $\varepsilon \in U_{L}$, then $\varepsilon=\zeta^{l} \eta$, where $l \in \mathbb{Z}$ with $0 \leq l \leq p-1$, and η is a real unit of L.

Proof. Let $\tau_{i}: L \rightarrow L$ be the field homomorphism defined by $\tau_{i}(\zeta)=\zeta$ and $\tau_{i}(\theta)=\theta \zeta^{i}$ for $i=0, \ldots, p-1$ and $\sigma_{j}: L \rightarrow L$ the field homomorphism induced by $\sigma_{j}(\zeta)=\zeta^{j}$ and $\sigma_{j}(\theta)=\theta$ for $j=1, \ldots, p-1$. Further, for any $\alpha \in L$, let $\tau_{i} \sigma_{j}: \tau_{i} \sigma_{j}(\alpha)=\tau_{i}\left(\sigma_{j}(\alpha)\right)$. Then $\tau_{i} \sigma_{j}(i=0, \ldots, p-1, j=$ $1, \ldots, p-1)$ are distinct $p(p-1)$ distinct embeddings of L into \mathbb{C}, where
\mathbb{C} is the set of complex numbers. Since L is a normal extension of K / \mathbb{Q}, $\operatorname{Gal}(L / \mathbb{Q})=\left\{\tau_{i} \sigma_{j} \mid i=0,1, \ldots, p-1, j=1, \ldots, p-1\right\}$ is the Galois group of L / \mathbb{Q}.

Let $\varrho^{\prime}=\tau_{0} \sigma_{p-1}$. Then $\varrho^{\prime}(\alpha)=\bar{\alpha}$ for any $\alpha \in L$. Hence, $\varrho(\bar{\alpha})=$ $\varrho\left(\varrho^{\prime}(\alpha)\right)=\varrho^{\prime}(\varrho(\alpha))=\overline{\varrho(\alpha)}$ for any $\alpha \in L$ and any $\varrho \in \operatorname{Gal}(L / \mathbb{Q})$. If $\varepsilon \in U_{L}$, then $\bar{\varepsilon}=\varrho^{\prime}(\varepsilon) \in U_{L}$ and

$$
\left|\varrho\left(\frac{\varepsilon}{\bar{\varepsilon}}\right)\right|=\left|\frac{\varrho(\varepsilon)}{\varrho(\bar{\varepsilon})}\right|=\left|\frac{\varrho(\varepsilon)}{\overline{\varrho(\varepsilon)}}\right|=1, \quad \varrho \in \operatorname{Gal}(L / \mathbb{Q}) .
$$

This implies that $\varepsilon / \bar{\varepsilon} \in W_{L}$. Since $W_{L}=\left\{ \pm \zeta^{2 l} \mid l=0,1, \ldots, p-1\right\}$, we get $\varepsilon= \pm \zeta^{2 l} \bar{\varepsilon}$, where $l \in \mathbb{Z}$. Let $\eta=\zeta^{-l} \varepsilon$. If $\varepsilon=-\zeta^{2 l} \bar{\varepsilon}$, then

$$
\begin{equation*}
\eta=\zeta^{-l} \varepsilon=-\zeta^{l} \bar{\varepsilon}=-\overline{\zeta^{-l} \varepsilon}=-\bar{\eta} . \tag{4}
\end{equation*}
$$

Since $\zeta \equiv \zeta^{-1} \equiv 1(\bmod 1-\zeta)$, by Lemma $2, \alpha \equiv \bar{\alpha}(\bmod 1-\zeta)$ for any $\alpha \in L$. From (4), we get $2 \eta \equiv 0(\bmod 1-\zeta)$. Notice that $\eta \in U_{L}, p \mid N_{L / \mathbb{Q}}(1-\zeta)$ and p is an odd prime. That is impossible. Thus, $\varepsilon=\zeta^{2 l} \bar{\varepsilon}, \varepsilon=\zeta^{l} \eta$ and $\eta=\zeta^{-l} \varepsilon=\zeta^{l} \bar{\varepsilon}=\overline{\zeta^{-l} \varepsilon}=\bar{\eta}$ is a real unit of L. The lemma is proved.
3. Proof of Theorem. Let (x, y, m, n) be a solution of (1)

$$
\begin{equation*}
\operatorname{gcd}(x \varphi(x), n)=1 \tag{5}
\end{equation*}
$$

By [8], (1) with n even has no solutions other than $(x, y, m, n)=(3,11,5,2)$ or ($7,20,4,2$). It suffices to consider the case $2 \nmid n$. Since $n>1, n$ has an odd prime factor p. Then $\left(x, y^{n / p}, m, p\right)$ is a solution of (1) satisfying (5). We can therefore assume that n is an odd prime.

If $x-1$ is an nth power, then $x-1=y_{1}^{n}$ and
(6) $\quad x^{m}-\left(y_{1} y\right)^{n}=1, \quad x, y_{1} y, m, n \in \mathbb{N}, x>1, y_{1} y>1, m>2, n>2$.

By [4], we see from (6) that $n \mid x$, which contradicts (5). Therefore, $\theta:=$ $(x-1)^{1 / n} \notin \mathbb{Q}$ and $K=\mathbb{Q}(\theta)$ is an algebraic number field of degree n.

Let $x=q_{1}^{r_{1}} \ldots q_{s}^{r_{s}}$, where $r_{1}, \ldots, r_{s} \in \mathbb{N}$, and q_{1}, \ldots, q_{s} are distinct primes. Then, by (5), we have $q_{i} \nmid x-1, q_{i} \nmid n$ and $q_{i} \not \equiv 1(\bmod n)$ for $i=1, \ldots, s$. Notice that the congruences

$$
z^{n} \equiv x-1\left(\bmod q_{i}\right), \quad i=1, \ldots, s,
$$

have solutions $z \equiv-1\left(\bmod q_{i}\right)(i=1, \ldots, s)$ respectively. By Lemma 1 , we get

$$
\begin{equation*}
\left[q_{i}\right]=\left[q_{i}, 1+\theta\right] \prod_{j=2}^{g_{i}} \mathfrak{p}_{i j}^{e_{i j}}, \quad i=1, \ldots, s, \tag{7}
\end{equation*}
$$

where $\left[q_{i}, 1+\theta\right]$ and $\mathfrak{p}_{i j}$ are distinct prime ideals of K which satisfy $\left\langle\left[q_{i}, 1+\theta\right]\right\rangle=1$ and $\left\langle\mathfrak{p}_{i j}\right\rangle>1$ for $i=1, \ldots, s$ and $j=2, \ldots, g_{i}$. Since
$N_{K / \mathbb{Q}}(1+\theta)=x$, we infer from (7) that

$$
\begin{align*}
{[x] } & =\left(\prod_{i=1}^{s}\left[q_{i}, 1+\theta\right]^{r_{i}}\right)\left(\prod_{i=1}^{s}\left(\prod_{j=2}^{g_{i}} \mathfrak{p}_{i j}^{e_{i j}}\right)^{r_{i}}\right) \tag{8}\\
& =[1+\theta]\left(\prod_{i=1}^{s}\left(\prod_{j=2}^{g_{i}} \mathfrak{p}_{i j}^{e_{i j}}\right)^{r_{i}}\right) .
\end{align*}
$$

From (1) and (8),

$$
\begin{align*}
{[1+y \theta]\left[\frac{1+y^{n} \theta^{n}}{1+y \theta}\right] } & =\left[1+y^{n} \theta^{n}\right]=[x]^{m} \tag{9}\\
& =[1+\theta]^{m}\left(\prod_{i=1}^{s}\left(\prod_{j=2}^{g_{i}} \mathfrak{p}_{i j}^{e_{i j}}\right)^{r_{i}}\right)^{m}
\end{align*}
$$

Since $\operatorname{gcd}(x, n)=1$, the ideals $[1+y \theta]$ and $\left[\left(1+y^{n} \theta^{n}\right) /(1+y \theta)\right]$ are coprime. If $\mathfrak{p}_{i j} \mid[1+y \theta]$ for some $i, j \in \mathbb{N}$ with $1 \leq i \leq s$ and $2 \leq j \leq g_{i}$, then from (9) we get $\mathfrak{p}_{i j}^{e_{i j} r_{i} m} \mid[1+y \theta]$. For any ideal \mathfrak{a} in K, let $N \mathfrak{a}$ denote the norm of \mathfrak{a}. Recall that $\left\langle\mathfrak{p}_{i j}\right\rangle>1$. So we have $q^{2 r_{i} m} \mid N \mathfrak{p}^{e_{i j} r_{i} m}$. Further, since $\mathfrak{p}_{i j}^{e_{i j} r_{i} m} \mid[1+y \theta]$ and $N[1+y \theta]=N_{K / \mathbb{Q}}(1+y \theta)=x^{m}$, we get $q_{i}^{2 r_{i} m} \mid x^{m}$, a contradiction. Therefore, $\mathfrak{p}_{i j} \nmid[1+y \theta]$, and by (9),

$$
\begin{equation*}
[1+y \theta]=[1+\theta]^{m} \tag{10}
\end{equation*}
$$

Let U_{K} be the unit group of K. We see from (10) that

$$
\begin{equation*}
1+y \theta=(1+\theta)^{m} \varepsilon, \quad \varepsilon \in U_{K}, \quad N_{K / \mathbb{Q}}(\varepsilon)=1 \tag{11}
\end{equation*}
$$

Since $K=\mathbb{Q}[\theta]$, we have

$$
\begin{equation*}
\varepsilon=\varepsilon(\theta)=a_{0}+a_{1} \theta+\ldots+a_{n-1} \theta^{n-1}, \quad a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{Q} \tag{12}
\end{equation*}
$$

Let $\zeta=e^{2 \pi \sqrt{-1} / n}$. Since $\theta \zeta, \ldots, \theta \zeta^{n-1}$ are conjugate numbers of θ, we get

$$
\begin{equation*}
1+y \theta \zeta=(1+\theta \zeta)^{m} \varepsilon(\theta \zeta), \quad 1+y \theta \zeta^{-1}=\left(1+\theta \zeta^{-1}\right)^{m} \varepsilon\left(\theta \zeta^{-1}\right) \tag{13}
\end{equation*}
$$

by (11). Let $L=K(\zeta)=\mathbb{Q}(\theta, \zeta)$, and let U_{L}, W_{L} be the groups of units and cyclotomic units of L respectively. Since L is a normal extension of K / \mathbb{Q}, we have $\varepsilon(\theta \zeta) \in U_{L}$, and by Lemma $3, \varepsilon(\theta \zeta)=\zeta^{l} \eta$, where $l \in \mathbb{Z}$ with $0 \leq l \leq n-1$, and η is a real unit of L. Notice that $\varepsilon\left(\theta \zeta^{-1}\right)=\overline{\varepsilon(\theta \zeta)}=\zeta^{-l} \eta$. We see from (13) that

$$
1+y \theta \zeta=(1+\theta \zeta)^{m} \zeta^{l} \eta, \quad 1+y \theta \zeta^{-1}=\left(1+\theta \zeta^{-1}\right)^{m} \zeta^{-l} \eta
$$

whence we obtain

$$
\begin{equation*}
(1+y \theta \zeta)\left(1+\theta \zeta^{-1}\right)^{m}-\left(1+y \theta \zeta^{-1}\right)(1+\theta \zeta)^{m} \zeta^{2 l}=0 \tag{14}
\end{equation*}
$$

since $\eta \neq 0$. Clearly, (14) can be written as

$$
\begin{equation*}
T_{0}(\zeta)+\theta T_{1}(\zeta)+\ldots+\theta^{n-1} T_{n-1}(\zeta)=0 \tag{15}
\end{equation*}
$$

where
(16) $T_{i}(\zeta)=b_{i, 0}+b_{i, 1} \zeta+\ldots+b_{i, n-2} \zeta^{n-2} \in \mathbb{Z}[\zeta], \quad i=0,1, \ldots, n-1$.

By Lemma 3, we find from (14)-(16) that

$$
\begin{equation*}
b_{i, j}=0, \quad i=0,1, \ldots, n-1, j=0,1, \ldots, n-2 . \tag{17}
\end{equation*}
$$

Since $m>2, \theta^{n}=x-1$ and $\zeta^{n}=1$, we have

$$
(1+\theta \zeta)^{m}=c_{0}+c_{1} \theta \zeta+\ldots+c_{n-1}(\theta \zeta)^{n-1} \in \mathbb{Z}[\theta \zeta], \quad c_{0} \geq 1, c_{1} \geq 1 .
$$

From (14) and (15), we get

$$
\begin{align*}
& T_{0}(\zeta)=c_{0}+c_{n-1}(x-1) y \zeta^{2}-c_{0} \zeta^{2 l}-c_{n-1}(x-1) y \zeta^{2 l-2} \tag{18}\\
& T_{1}(\zeta)=c_{1} \zeta^{n-1}+c_{0} y \zeta-c_{1} \zeta^{2 l+1}-c_{0} y \zeta^{2 l-1} \tag{19}
\end{align*}
$$

If $1, \zeta^{2}, \zeta^{2 l}$ and $\zeta^{2 l-2}$ are distinct, we see from (16)-(18) that $c_{0}=0$, a contradiction. Therefore, there exist at least two elements of $\left\{1, \zeta^{2}, \zeta^{2 l}, \zeta^{2 l-2}\right\}$ which are equal. Since $1 \neq \zeta^{2}$ and $\zeta^{2 l} \neq \zeta^{2 l-2}$, it suffices to consider the following three cases.

Case 1: $1=\zeta^{2 l}$. Then $l=0, \eta=\varepsilon(\theta \zeta)$ and

$$
\begin{align*}
\eta & =a_{0}+a_{1} \theta \zeta+\ldots+a_{n-1}(\theta \zeta)^{n-1} \tag{20}\\
& =a_{0}+a_{1} \theta \zeta^{-1}+\ldots+a_{n-1}\left(\theta \zeta^{-1}\right)^{n-1}=\bar{\eta}
\end{align*}
$$

by (12), since η is a real unit of L. Notice that $\zeta^{i} \neq \zeta^{-i}$ for $i=1, \ldots, n-1$. By Lemma 2, we see from (20) that $a_{1}=\ldots=a_{n-1}=0$ and $\varepsilon=\varepsilon(\theta)=$ $\varepsilon(\theta \zeta)=a_{0}$. Since $N_{K / \mathbb{Q}}(\varepsilon)=1$ by (11), we get $a_{0}=\varepsilon=1$ and

$$
\begin{equation*}
1+y \theta=(1+\theta)^{m} \tag{21}
\end{equation*}
$$

by (11). For $m>1,(21)$ is impossible.
Case 2: $1=\zeta^{2 l-2}$ or $\zeta^{2}=\zeta^{2 l}$. Then $l=1$ and $T_{1}(\zeta)=c_{1} \zeta^{n-1}-c_{1} \zeta^{3}$ by (20). Since $\zeta^{n-1} \neq \zeta^{3}$ and $c_{1} \geq 1$, (16) is false.

Case 3: $\zeta^{2}=\zeta^{2 l-2}$. Then $l=2$ and $T_{0}(\zeta)=c_{0}-c_{0} \zeta^{4}$ by (19). Since $1 \neq \zeta^{4}$ and $c_{0} \geq 1,(16)$ is false.

All cases are considered and the Theorem is proved.

4. Proof of Corollary

Lemma 4 ([2]). Let $n \in \mathbb{N}$ with $n \geq 3$, and let $\mu_{n}=\prod_{p \mid n} p^{1 /(p-1)}$. Let $a, b \in \mathbb{N}$ such that $7 a / 8 \leq b<a$ and $a \equiv b \equiv 0(\bmod n)$. If $\lambda=$ $4 b(a-b)^{-2} \mu_{n}^{-1}>1$, then

$$
\left|\left(\frac{a}{b}\right)^{1 / n}-\frac{X}{Y}\right|>\frac{c}{Y^{\delta}}
$$

for any $X \in \mathbb{Z}$ and any $Y \in \mathbb{N}$, where

$$
\delta=1+\frac{\log 2 \mu_{n}(a+b)}{\log \lambda}, \quad c=\frac{1}{2^{\delta+2}(a+b)} .
$$

Lemma 5 ([9]). Let $a, b \in \mathbb{N}$ with $a>1$ and $b>1$. Then the equation

$$
a X^{3}-b Y^{3}=1, \quad X, Y \in \mathbb{N}
$$

has at most one solution (X, Y).
Lemma 6 ([12]). Let $a, b, c, n \in \mathbb{N}$ with $n \geq 3$. If $(a b)^{n / 2-1} \geq$ $4 c^{2 n-2}\left(n \mu_{n}\right)^{n}$, where μ_{n} was defined in Lemma 4, then the inequality

$$
\left|a X^{n}-b Y^{n}\right| \leq c, \quad X, Y \in \mathbb{N}, \operatorname{gcd}(X, Y)=1,
$$

has at most one solution (X, Y).
Proof of Corollary. Let $u_{m}(x)$ be an nth power which satisfies $m>1$ and $m \equiv 1(\bmod n)$. Then (1) has a corresponding solution (x, y, m, n). We may assume that n is a prime. By $[8]$, if $(x, m, n) \neq(3,5,2)$, then n is an odd prime. Further, by Theorem, we have $n \mid x \varphi(x)$. If $n \mid x$, then we find from (1) that $y^{n} \equiv 1(\bmod n)$. This implies that $y^{n} \equiv 1\left(\bmod n^{2}\right)$ and $n^{2} \mid x$. If $n \nmid x$, then $n \mid \varphi(x)$ and x has a prime factor q such that $q \equiv 1$ $(\bmod n)$. So we have

$$
\begin{equation*}
x \equiv 0\left(\bmod n^{2}\right) \quad \text { or } \quad x \text { has a prime factor } q \text { with } q \equiv 1(\bmod n) . \tag{22}
\end{equation*}
$$

On the other hand, since $m \equiv 1(\bmod n), m=n t+1$ and $(X, Y)=$ $\left(x^{t}, y\right)$ is a solution of the equation

$$
\begin{equation*}
x X^{n}-(x-1) Y^{n}=1, \quad X, Y \in \mathbb{N}, \tag{23}
\end{equation*}
$$

where $t \in \mathbb{N}$. Notice that (23) has another solution $(X, Y)=(1,1)$. By Lemmas 5 and 6 , we get $n \geq 5$ and

$$
\begin{equation*}
(x(x-1))^{n / 2-1}<4 n^{n^{2} /(n-1)} . \tag{24}
\end{equation*}
$$

On combining (24) with (22), we obtain

$$
\begin{align*}
& n=5 \text { and } x=11,22,25,31,33,41 \text { or } 44, \\
& n=7 \text { and } x=29, \quad n=11 \text { and } x=23 . \tag{25}
\end{align*}
$$

If $2 \nmid t$, then $2 \mid m$ and

$$
\begin{equation*}
\frac{x^{m / 2}-1}{x-1}=y_{1}^{n}, \quad x^{m / 2}+1=y_{2}^{n}, \quad y_{1}, y_{2} \in \mathbb{N}, y_{1} y_{2}=y \tag{26}
\end{equation*}
$$

By [1], (26) is impossible for $n \leq 11$. Therefore, by (25), we get $2 \mid t$. For the pairs (x, n) in (25), by computation, $u_{2 n+1}(x)$ is not an nth power. So we have $t \geq 4$.

Let $a=x n$ and $b=(x-1) n$. If $x>1$ and (X, Y) is a solution of (24), then

$$
\begin{equation*}
\left|\left(\frac{a}{b}\right)^{1 / n}-\frac{Y}{X}\right|<\frac{1}{n(x-1)^{1 / n} X^{n}} \tag{27}
\end{equation*}
$$

On the other hand, by Lemma 4 , if $x \geq 8$ and $4(x-1)>n^{n /(n-1)}$, then

$$
\begin{equation*}
\left|\left(\frac{a}{b}\right)^{1 / n}-\frac{Y}{X}\right|>\frac{c}{X^{\delta}} \tag{28}
\end{equation*}
$$

where

$$
\delta<2+\frac{1}{\log 2}\left(\frac{n}{n-1} \log n+\log x\right), \quad c=\frac{1}{2^{\delta+2} n(2 x-1)}
$$

Take $(X, Y)=\left(x^{t}, y\right)$. The combination of (27) and (28) yields

$$
\log x<\frac{10 \log 2+2 n \log n /(n-1)}{(n-2) t-1-n \log n /((n-1) \log 2)}<2.32<\log 11
$$

and $x \leq 10$ for $n \geq 5$ and $t \geq 4$, which contradicts (25). Thus, the Corollary is proved.

Acknowledgements. The author would like to thank the referee for his valuable suggestions.

References

[1] M. Aaltonen and K. Inkeri, Catalan's equation $x^{p}-y^{q}=1$ and related congruences, Math. Comp. 56 (1991), 359-370.
[2] A. Baker, Rational approximations to $\sqrt[3]{2}$ and other algebraic numbers, Quart. J. Math. Oxford 15 (1964), 375-383.
[3] W. F. H. Berwick, Integral Bases, Cambridge Univ. Press, 1927.
[4] J. W.S. Cassels, On the equation $a^{x}-b^{y}=1$, II, Math. Proc. Cambridge Philos. Soc. 56 (1960), 97-103.
[5] L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
[6] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, Massachusetts, 1970.
[7] M.-H. Le, A note on the equation $\left(x^{m}-1\right) /(x-1)=y^{n}+1$, Math. Proc. Cambridge Philos. Soc. 115 (1994), to appear.
[8] W. Ljunggren, Noen setninger om ubestemte likninger av formen $\left(x^{n}-1\right) /(x-1)$ $=y^{q}$, Norsk Mat. Tidsskr. 25 (1943), 17-20.
[9] -, On an improvement of a theorem of T. Nagell concerning the diophantine equation $A x^{3}+B y^{3}=C$, Math. Scand. 1 (1953), 297-309.
[10] T. N. Shorey, Perfect powers in values of certain polynomials at integer points, Math. Proc. Cambridge Philos. Soc. 99 (1986), 195-207.
[11] -, On the equation $z^{q}=\left(x^{n}-1\right) /(x-1)$, Indag. Math. 48 (1986), 345-351.
[12] C. L. Siegel, Die Gleichung $a x^{n}-b y^{n}=c$, Math. Ann. 144 (1937), 57-68.

DEPARTMENT OF MATHEMATICS
ZHANJIANG TEACHER'S COLLEGE
P.O. BOX 524048

ZHANJIANG, GUANGDONG
P.R. CHINA

Received on 12.1.1994
and in revised form on 1.5.1994

[^0]: Supported by the National Natural Science Foundation of China.

