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1. Introduction. Let B = {1 ≤ b1 < b2 < . . .} be an infinite sequence
of integers. For any integer n we define the counting function of B up to n
to be the number of elements of B not exceeding n; we denote it by B(n).
The lower asymptotic density dB and the upper asymptotic density dB are
defined by

dB = liminf
n→∞

B(n)/n, dB = limsup
n→∞

B(n)/n.

If dB = dB, we say that B has asymptotic density dB, given by the common
value.

In [3] I. Z. Ruzsa proved that if A = {1 ≤ a1 < a2 < . . .} is an infinite
sequence of integers and if an+1 ≤ 2an for all but at most finitely many
values of n, then P (A) has an asymptotic density, where P (A) is the set of
all sums of the form

∑
εiai, εi = 0 or 1. Ruzsa conjectured that for every

pair of numbers 0 ≤ α ≤ β ≤ 1 there exists A = {1 ≤ a1 < a2 < . . .}
for which d(P (A)) = α and d(P (A)) = β. He also mentioned that an easy
argument shows the case β = 1.

In this paper we prove Ruzsa’s conjecture:

Theorem. Let 0 ≤ α ≤ β ≤ 1. Then there exists an A = {a1 < a2 < . . .}
such that

(1) d(P (A)) = α and d(P (A)) = β.

The finite version of this question may be the following: for which t is it
possible to find a sequence a1 < . . . < an so that there are exactly t distinct
integers of the form

∑n
i=1 εiai, εi = 0 or 1. It was raised in [1] and solved

in [2].

Acknowledgements. I would like to thank the referee for his helpful
comments and suggestions.

Supported by CNRS Laboratoire de Mathématiques Discrètes, Marseille.
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2. The construction. If α = β 6= 0 then it is easy to see that d(P (A))
= α for A = {[2n/α] | n ∈ N}; if α = β = 0 then clearly d(P (A)) = 0 for
A = {22n | n ∈ N}. So assume that 0 ≤ α < β ≤ 1.

We use the following notation: A = {a1 < a2 < . . .}, An = {a1 <
. . . < an}; sn =

∑n
i=1 ai; %n = |P (An)|/sn; pn(x) = |P (An) ∩ [1, x]|; τn =

pn−1(an)/an.
Let A =

⋃∞
i=0 Bi, where the blocks Bi will be determined by an iterative

process.
First let us define the block B0. Let k0 = max{[18β/α] + 8, [18β] +

2, 2/(β − α)} and let B0 = {a1 < . . . < ak0}, where

ai =
{

2i if 0 ≤ i ≤ k0 − 1,
min{x | (2k0+1 − 2)/(x+ 2k0) ≤ β} for i = k0.

Thus P (Ak0) = [1, 2k0 − 1] ∪ [x+ 1, x+ 2k0 − 1] and so

%k0 = (2k0+1 − 1)/(x+ 2k0) ≤ β
and an easy calculation shows that %k0 ≥ β − 1/k0.

Assume now that the blocks B1, . . . ,Bj−1 have been defined such that
for each 1 ≤ m ≤ j − 1,

Bm = {a
N

(m)
1

< . . . < a
N

(m)
2

< . . . < a
N

(m)
3
}

where s
N

(m−1)
3

< a
N

(m)
1

with N
(m)
1 = N

(m−1)
3 + 1 and ak0 < a

N
(1)
1

with

N1(1) = k0 + 1. Furthermore, if k := k0 +m, then for every m, 1 ≤ m ≤ j,
the following properties are true:

(2) α ≤ τ
N

(k)
1
≤ α+ 1/k,

(3) %
N

(k)
2

> β/3,

(4) β − 1/k ≤ %
N

(k)
3
≤ β.

Our task is to define blocks Bj ,Bj+1, . . . so that the properties (2)–(4)
remain valid for k = k0 + m, m ≥ j as well. We verify these parallel with
the construction.

In the last section we prove that for x > sk0 ,

(5) α ≤ |P (A) ∩ [1, x]|/x ≤ β.
Now we note that (2), (4) and (5) imply

d(P (A)) = α and d(P (A)) = β.

Indeed, by (2) and (4) we have

lim
k→∞

|P (A
N

(k)
1

)|/a
N

(k)
1

= α, lim
k→∞

|P (A
N

(k)
3

)|/s
N

(k)
3

= β,

and by (5) we get (1).
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3. Proof of the Theorem. Now we prepare the block Bk.
We use the abbreviations Ni = N

(k)
i for i = 1, 2, 3 and let N0 = N

(k−1)
3 .

In the first step we make the sequence less dense. Let

(6) aN1 = max{y | y > sN0 , |P (AN0)|/y ≥ α}.
Since 1/2k0 < 1/k0 < β − α, y exists.

Since N1 > k0 + j, this definition implies

0 ≤ τN1 − α = |P (AN0)|/aN1 − α < |P (AN0)|/aN1 − |P (AN0)|/(aN1 + 1)

= |P (AN0)|/{aN1(aN1 + 1) < α/aN1 < 1/N1 < 1/k,

1 ≤ k0 < k, showing (2).
In the next step we do two things: we “stabilize” the density of our

sequence and then we make it more dense up to β/3.
Let M = aN1 . Let

(7) aN1+i = (i+ 1)aN1

for i = 1, . . . ,M and if t := [aN1/sN0 ] ≥ 2 then let

(8) aN1+M+i = (M + i+ 1)aN1 + sN0

for i = 1, . . . , t−1. The elements defined in (7) stabilize the density and the
ones defined in (8) will make the density close to β/3, which we now show.

Let N2 = N1 +M + t− 1. Then %N2 ≥ β/3. Indeed, if t < 2 then by (4),
(7) and since k > k0 > 3/β + 1, we have

%N2 > %N1−1/2 = %N0/2 > (β − 1/(k − 1))/2 > β/3.

Let now t ≥ 2 and let M + t ≤ j ≤ (M+1
2

)
. Clearly P (At) = P (At−1) ∪

{at + P (At−1)} for every t ∈ N. Since aN1 > sN0 and by (7) we see that
w ∈ P (AN2) ∩ [jaN1 , (j + 1)aN1 ] if and only if there exist v ∈ P (AN0) and
z, 1 ≤ z ≤ (M+1

2

)
, so that w = zaN1 + v. So we have

(9) |P (AN2) ∩ [jaN1 , (j + 1)aN1)| = t|P (AN0)|
and by (8),

(10) sN2 ≤
(
M + t+ 2

2

)
aN1 .

Furthermore, if
(
M+1

2

) ≤ j ≤ (M+t+1
2

)
then it is easy to check that

(11) P (AN2) ∩ [jaN1 , (j + 1)aN1 ] = jaN1 + {usN0 + P (AN0) | 0 ≤ u ≤ t}.
Hence

2 ≤ t ≤ aN1/sN0 = {|P (AN0)|/sN0}{aN1/|P (AN0)|} = %N0/τN1 < β/α

so we get

(12) β > 2α.
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Since M > aN1 > N1 > k0 by (9), (10) and (12) we get

(13) %N2

= |P (AN2)|/sN2 ≥
{(

M + 1
2

)
− (M + t)

}
t|P (AN0)|

/(
M + t+ 2

2

)
aN1

≥
(
M+1

2

)− (M + t)(
M+t+2

2

) (aN1/sN0 − 1)|P (AN0)|/aN1

≥ ((1− 2t/M)2 − 2/M)(|P (AN0)|/sN0 − |P (AN0)|/aN1)

≥ {(1− 2β/(αk0))2 − 2/k0}{β − 1/k0 − α}
≥ (1− 4β/(αk0)− 2/k0)(β/2− 1/k0) ≥ β/3.

For the last inequality we use k0 > 16β/α+8 and thus 1−4β/(αk0)−2/k0 >
3/4; furthermore, k0 > 18/β and thus β/2− 1/k0 > 4β/9. This proves (3).

In the next step we achieve that the sequence will be more dense, satis-
fying (4). Let v = sN2 . Let

(14) aN2+i = 2isN2

for i = 1, . . . , v. This definition implies that aN2+i > sN2+i−1 and so

(15) %N2+v = %N2 .

Write for short N = N2 + v; W = sN and Y = [W min{1/2, β/%N − 1}]
and L = s2

N2
. Let now

(16) KW (z) = |P (AN ) ∩ (P (AN ) +W − Y + z)|
for 0 ≤ z ≤ L.

Lemma. There exists a z∗ ∈ [0, L] such that

KW (z∗) ≤ Y (%2
N + 3/sN2).

P r o o f. Let KW =
∑L
z=0KW (z)/L. By (14) we have

(17) |P (AN ) ∩ [t, t+ L]| < %NL+ sN2 = (%+ 1/sN2)L

for t = 0, . . . , sN − L and

(18) |P (AN ) ∩ [W − Y, W ]| < Y (%N + 1/sN2).

Write

H = P (AN ) ∩ [W − Y,W ], Lz = W − Y + z + P (AN ).

Then by (17) and (18) we have

KW ≤
L∑
z=0

∑

u∈H∩Lz
1 ≤ (%N + 1/sN2)2 · L · Y/L < (%2

N + 3/sN2)Y.
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This implies that

KW (z∗) := min
0≤z≤L

KW (z) ≤ KW < (%2
N + 3/sN2)Y,

which proves the lemma.
Let

(19) aN+1 = W − Y + z∗.

Now we deduce a lower estimate for %N+1. By the Lemma we get

%N+1 =
2W%N −KW (z∗)

2W − Y + z∗
≥ 2W%N − (%2

N + 3/sN2)Y
2W − Y + z∗

(20)

≥ %N + Y %N (1− %N )/(2W − Y + z∗)

− z∗/(2W − Y )− 3Y/(sN2(2W − Y )).

Let

ωN = z∗/(2W − Y )− 3Y/(sN2(2W − Y )).

Clearly

lim
N→∞

ωN = 0.

First case: Y = [W min{1/2, β/%N − 1}] = [W (β/%N − 1)]. Then
by (20)

(21) %N+1

≥ %N +W (β/%N−1)%N (1−%N )/{2W −W (β/%N−1) + z∗} − (ωN + 1/W )

= %N + (β − %N )%N (1− %N )/{(3%N − β) + %Nz
∗/W} − (ωN + 1/W ).

Since β/3 < %N < β ≤ 1 the relation (β − %N )%N (1 − %N )/{(3%N − β) +
%Nz

∗/W} > 0 holds. This implies that if W (and so N) is large enough we
have

(22) %N+1 > %N .

Repeating the previous process we define by (14) and (19) the sequence
aN+2, aN+3, . . . More precisely, let N (1) = N + 1 and define aN(1) by (14)
and aN(2) by (19) and if N (1), N (2), . . . , N (2r) have been defined then let
N (2r+1) = N (2r) + 1 and define aN(2r+1) by (14) and aN(2r+2) by (19). Then
(22) yields that β/%N+1 − 1 < β/%N so at each step of the iterative process
described above we always fall in the first case. Since %N(i) ≤ β and also by
(22) we conclude that limi→∞ %N(i) = λ exists and clearly λ ≤ β. Thus by
(21) we get

λ ≥ λ+ (β − λ)λ(1− λ)/(3λ− β),

which implies λ = β. Hence there is an i ∈ N such that β−1/k ≤ %N(i) ≤ β.
So choosing N3 = N (i) we get (4).
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Second case: Y = [W/2]. Then by (20) we have

(23) %N+1 ≥ %N + (W/2)%N (1− %N )/(2W −W/2) + ω′N ,

where limω′N = 0. This implies that %N+1 ≥ %N if W (and so N) is large
enough. Repeating the previous processes which are defined by (14) and (19)
we see that limi→∞ %N(i) = µ exists. By (23) we conclude that µ ≥ 1 thus
there is an i ∈ N for which min{1/2, β/%N(i) − 1} = β/%N(i) − 1 so we can
use case 1.

4. Proof of property (5). We divide the interval [sk0 ,∞) into the
union

[sk0 ,∞) =
⋃

k≥k0

[s
N

(k−1)
3

, s
N

(k)
3

).

We now prove by induction on k that if

s
N

(k−1)
3

≤ x < s
N

(k)
3

for some k then (5) is true.
First, note that if we choose a

N
(k)
1

at each step (a
N

(k)
1

is the initial element

of the block Bk) then since a
N

(k)
1

> s
N

(k)
1 −1 we infer that the “density” of

A will not be affected in the interval [s
N

(k−1)
3

, s
N

(k)
3

) if we select further
elements a

N
(k)
3 +1, aN(k)

3 +2, . . .

For x = ak0 by the definition of ak0 we get

α ≤ p(ak0)/ak0 ≤ β.
Now let k > k0 and assume that s

N
(k−1)
3

≤ x ≤ s
N

(k)
3

. We use the abbrevia-

tions Ni = N
(k)
i , i = 1, 2, 3, and N0 = N

(k−1)
3 again.

1. Let sN0 ≤ x < aN1 . Since pN0(x)/x is a decreasing function of x in
this interval we have, by (6),

α ≤ p(aN1)/aN1 ≤ p(x)/x ≤ pN0(sN0)/sN0 ≤ β.
2. Let aN1 ≤ x ≤ sN2 and let jaN1 ≤ x < (j + 1)aN1 for some 1 ≤ j ≤(

M+t+1
2

)
. Let x′ = x−jaN1 . By the definition of aN1+1, . . . , aN2 we conclude

by (9) and (11) that

pN2(x)/x = {j|P (AN1)|+ ε|P (AN0)|+ pN2(x′)}/x,
where ε = 0 if 1 ≤ j ≤ (M+1

2

)
and ε = t− 1 if

(
M+1

2

) ≤ j ≤ (M+t+1
2

)
(i.e. if

t = [aN1/sN0 ] ≥ 2). The inductive hypothesis

aN1α ≤ |P (AN1)| ≤ aN1β, αsN0 ≤ p(sN0) ≤ βsN0 ,

and αx′ ≤ pN2(x′) ≤ βx′ yield

pN2(x)/x ≤ {jtsN0β + βx′}/x ≤ β{j(aN1/sN0)sN0 + x′}/x = β
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and
pN2(x)/x ≥ {jaN1α+ αx′}/x = α{jaN1 + x′}/x = α.

3. sN2 < x ≤ sN where N = N2 + v was defined in (14). By (14),

(24) [aN2+i, aN2+i+1] ∩ P (AN ) = aN2+i + P (AN2).

Thus if aN2+i ≤ x < 2aN2+i and x′ = x − aN2+i then by the inductive
hypothesis again and by (24),

(25) pN (x)/x ≤ {βaN2+i + x′β}/x = β

and

(26) pN (x)/x ≥ {αaN2+i + x′α}/x = α.

4. Finally, let x ∈ [aN+1, sN+1]. Since aN+1 < sN it follows that if
x ≤ sN then pN (x)/x ≥ α. This implies that

(27) pN+1(x)/x ≥ α
for every x ∈ [aN+1, sN+1].

Now we only have to prove that pN+1(x)/x ≤ β. If x ≥ W then by
Y ≤W (β/%N − 1) we have

pN+1(x)/x ≤ {%Nx+ Y %N}/x = %N + Y %N/x

≤ %N + Y %N/W ≤ %N + (β − %N ) = β.

If aN+1 ≤ x < W then

(28) pN+1(x)/x = %Nx+ (x− aN+1)%N/x < %N + Y %N/W = β.

Now, to define aN+2, aN+3, . . . by (14) and (19) we can apply the same ideas
as in items 3 and 4; in this way we conclude that (25)–(28) hold for every
x with sN ≤ x ≤ sN3 , so that (5) holds and this completes the proof of the
Theorem.
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[1] P. Erd ő s and E. Szemer éd i, On sums and products of integer , in: Studies in Pure
Mathematics, To the Memory of P. Turán, Akadémiai Kiadó, 1983, 213–218.
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