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1. Introduction. Let F be a number field andOF the ring of its integers.
Many results are known about the group K2OF , the tame kernel of F . In
particular, many authors have investigated the 2-Sylow subgroup of K2OF .
As compared with real quadratic fields, the 2-Sylow subgroups of K2OF for
imaginary quadratic fields F are more difficult to deal with. The objective
of this paper is to prove a few theorems on the structure of the 2-Sylow
subgroups of K2OF for imaginary quadratic fields F .

In our Ph.D. thesis (see [11]), we develop a method to determine the
structure of the 2-Sylow subgroups of K2OF for real quadratic fields F . The
present paper is motivated by some ideas in the above thesis.

2. Notations and preliminaries. Let F be a number field and OF the
ring of integers in F . Let Ω be the set of all places of F . For any finite place
P, denote by vP( ) the discrete valuation on F corresponding to P. For any
{x, y} ∈ K2F , the tame symbol is defined by

τP{x, y} ≡ (−1)vP(x)vP(y)xvP(y)y−vP(x) (mod P).

For any P ∈ Ω, the Hilbert symbol
( ·
P
)

of order 2 on FP , the completion of
F at P, is defined as follows: Given non-zero elements α, β ∈ FP ,

(
α,β
P
)

= 1
if αξ2 + βη2 = 1 has a solution ξ, η ∈ FP , otherwise the symbol is defined
to be −1. In particular, suppose P is a non-dyadic place in Ω. By a formula
in Theorem 5.4 of [9],

if {x, y} ∈ K2F and τP{x, y} = 1 then

(2.1)
(
x, y

P
)

= 1.

[153]
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And if F = Q, the rational numbers field, and x, y are the units in Q2, then

(2.2)
(
x, y

2

)
= (−1)((x−1)/2)·((y−1)/2)

(see Theorem 5.6 in [9]).
The following Product Formula for the Hilbert symbol is well known:

(2.3)
∏

P∈Ω

(
α, β

P
)

= 1.

For any odd prime p, let
(
P
)

denote the Legendre symbol. We have

Lemma 2.1 (Legendre). Suppose a, b, c are square free, (a, b) = (b, c) =
(c, a) = 1, and a, b, c do not have the same sign. Then the Diophantine
equation

ax2 + by2 + cz2 = 0

has non-trivial integer solutions if and only if for every odd prime p | abc,
say p | a,

(−bc
p

)
= 1.

P r o o f. See Theorem 4.1 and its Corollary 2 in [3].

In this paper, we use (K2OF )2 to denote the 2-Sylow subgroup of K2OF .
Let F be an imaginary quadratic field. By [13], we have [∆ : F ·2] = 4,

where ∆ = {z ∈ F · | {−1, z} = 1}. In Section 5, we will determine ∆ for
some imaginary quadratic fields.

3. General results

Lemma 3.1. Let F = Q(
√−d) (d a positive square-free integer). For any

α = x + y
√−d ∈ F ·, put S = {P1, . . . ,Pn} = {P | τP{−1, α} = −1}.

Without loss of generality , we can assume that pi = Pi ∩ Z is not inert for
1 ≤ i ≤ n. Then x2 + dy2 = εp1 . . . pnz

2, where ε ∈ {1, 2} and z ∈ Q.
Conversely , suppose that p1, . . . , pn are distinct primes in Z and P1, . . . ,Pn
are prime ideals of OF such that Pi ∩ Z = pi for 1 ≤ i ≤ n. If there is an
ε ∈ {1, 2} such that the equation x2 + dy2 = εp1 . . . pnz

2 is solvable in Q
(equivalently in Z), then there is an α ∈ F · such that S = {P | τP{−1, α} =
−1} = {P1, . . . ,Pn}.

P r o o f. Suppose α = x + y
√−d ∈ F · and S = {P1, . . . ,Pn} =

{P | τP{−1, α} = −1}. Then (x + y
√−d) = qσP1 . . .Pna2, where q | 2 and

σ = 0 or 1 and a is a fractional ideal of OF in F . Hence, x2 + dy2 =
εp1 . . . pnz

2.
Conversely, if x2 + dy2 = εp1 . . . pnz

2 has a solution x, y, z ∈ Z, then for
any 1 ≤ i ≤ n, either x+y

√−d ∈ Pi or x−y√−d ∈ Pi. So suitably choosing
δ ∈ Q, we can assume that (δ(x+y

√−d)) = qeP1 . . .Pna2, where q | 2, e = 0
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or 1 and a is a fractional ideal of OF in F . Then taking α = δ(x + y
√−d)

yields the result.

Theorem 3.2. Let F = Q(
√−d) (d a positive square-free integer), and

m | d, a positive integer. If any prime factor of m satisfies pi ≡ 1 (mod 4),
for 1 ≤ i ≤ n, then there is an α ∈ K2OF with α2 = {−1,m} if and only if
there is an ε ∈ {1, 2} such that the Diophantine equation εmZ2 = X2 +dY 2

is solvable in Z.

P r o o f. From the assumption, we have m = x2 + y2, where x, y ∈ Z. Let

α′ =
{
x

y
,
x2 + y2

y2

}
=
{
x

y
,
m

y2

}
.

Then α′2 = {−1,m}. It is easy to check that {P | τPα′ = −1} = {P1, . . .
. . . ,Pn}, where Pi ∩ Z = pi (1 ≤ i ≤ n). Therefore, the result follows from
Lemma 3.1.

Lemma 3.3. Let F = Q(
√−d) (d a positive square-free integer). ŁThen

m = x2 + y2 for x, y ∈ F , where m is an integer satisfying : m | d if d 6≡ −1
(mod 8) or m | d together with m 6≡ 3 (mod 4) if d ≡ −1 (mod 8).

P r o o f. Let Ω denote the set of all places of F . In view of the Hasse–
Minkowski Theorem (see [10]), it is enough to prove that

(−1,m
P
)

= 1 for
any P ∈ Ω.

Clearly, if P is the unique Archimedean place in Ω, then
(−1,m
P
)

= 1.
In the non-dyadic cases,

(−1,m
P
)

= 1 follows from (2.1).
If d 6≡ −1 (mod 8), then there is a unique dyadic place P in Ω. Then

the Product Formula yields
(−1,m
P
)

= 1.
Now suppose d ≡ −1 (mod 8). Here m 6≡ 3 (mod 4). Let P1,P2 denote

the two dyadic places in Ω. Then FP1
∼= FP2

∼= Q2. Hence, by (2.2), we have(−1,m
Pi
)

= 1 for i = 1, 2. This completes the proof.

R e m a r k. By a theorem due to Bass and Tate (see [8]), a necessary and
sufficient condition for {−1,m} = α2 with α ∈ K2F is that m = x2 + y2 for
x, y ∈ F . On the other hand, if d ≡ −1 (mod 8), m | d and m ≡ 3 (mod 4),
then by (2.2),

(−1,m
Pi
)

= −1, where i = 1, 2, and P1,P2 are the two dyadic
places of F . So {−1,m} 6= α2 for any α ∈ K2F .

Now, let F = Q(
√−d) be an imaginary quadratic field. Suppose m = −1

or m = δq1 . . . qr, where δ = 1 or −1 for 1 ≤ i ≤ r, qi ≡ 3 (mod 4) is a
prime, and suppose m = X2 + Y 2 for X,Y ∈ F . Write

X =
x+ y

√−d
z

, Y =
x′ + y′

√−d
z

, where x, y, x′, y′, z ∈ Z.
Clearly m = X2 + Y 2 implies that xy = −x′y′ and

(3.1) mz2 = x2 − dy2 + x′2 − dy′2.
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Without loss of generality, we can assume that (x, y, x′, y′) = 1 below.

Lemma 3.4. Notations being as above, suppose k ≥ 0 is an integer and p
is a prime with p2k+1 ‖ (x2 + x′2). Then there is a prime ideal P of F such
that vP(x+y

√−d) > 0, vP(x′+y′
√−d) > 0. Conversely , if vP(x+y

√−d) >
0 and vP(x′ + y′

√−d) > 0, then vP(x2 + x′2) > 0.

P r o o f. It follows from (3.1) that mx2z2 = (x2 + x′2)(x2 − dy′2). Then
p2k+1 ‖ (x2 + x′2) implies p | (x2 − dy′2) (note that p ≡ 1 (mod 4)). But
(x+ y

√−d)(x− y√−d) = x2 + dy2 ≡ −x′2 + dy2 ≡ 0 (mod P). So we may
assume that vP(x+ y

√−d) > 0. Similarly, vP(x′ + y′
√−d) > 0.

Conversely, suppose vP(x + y
√−d) > 0 and vP(x′ + y′

√−d) > 0. Let
p = P ∩ Z. Then p | (x2 + dy2), p | (x′2 + dy′2). If p |x, then p |x′ or p | y′
since xy = −x′y′. But p | y′ also implies p |x′. Hence p | (x2 + x′2). Now we
assume that p -x and p -x′. It is easy to verify that

(3.2) x′ + y′
√
−d =

x′

x

(
x+ x′2

x′2
· x− (x+ y

√
−d)

)
.

So, vP(x2 + x′2) > 0.

Lemma 3.5. With notations being as above, suppose P is a non-dyadic
prime ideal of OF ,P ∩ Z = p and p -m. If vP(x2 + x′2) > 0 and vP(x +
y
√−d) > 0, then vp(x2 + x′2) ≡ vP(x+ y

√−d) (mod 2).

P r o o f. First suppose that vP(x) = 0. Then p is unramified in OF , hence
vp(x2 + x′2) = vP(x2 + x′2) and vP(x + y

√−d) = vP(x2 + dy2). It can be
deduced from the identity

m =
(
x+ y

√−d
z

)2

+
(
x′ + y′

√−d
z

)2

that vP(x + y
√−d) = vP(x′ + y′

√−d). If vP(x + y
√−d) 6= vP(x2 + x′2),

then (3.2) yields vP(x2 + x′2) > vP(x+ y
√−d) = vP(x2 + dy2). Hence,

vP(x2 + dy2) = vP(x2 + dy2 − (x2 + x′2)) = vP(−x′2 + dy2).

Now, vP(x2+x′2) ≡ vP(x2+x′2) (mod 2) is a consequence of the observation
that

(3.3) (x′2 − dy2)
(
x2 + x′2

x′2

)
= mz2.

Then suppose that vP(x) > 0. In this case, the only possibility is that
p | d, p - y and p - y′. Then

(x2 − dy′2)
(
x2 + x′2

x2

)
= mz2

implies
vP(x+ y

√
−d) ≡ vP(x2 + x′2) ≡ 1 (mod 2).
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Theorem 3.6. Let F = Q(
√−d) (d a positive square-free integer), and

let m be an integer with m | d if d 6≡ −1 (mod 8), and with m | d and m 6≡ 3
(mod 4) if d ≡ −1 (mod 8). Moreover , if m 6= −1, then for any prime factor
of m, p ≡ 3 (mod 4). Then there is an α ∈ K2OF with α2 = {−1,m} if
and only if there is an ε ∈ {1, 2} such that

(
d/m

p

)
=
(−ε
p

)
for any prime p |m;

(
m

p

)
=
(
ε

p

)
for any prime p | d, p -m.

P r o o f. We know that there are x, y, x′, y′, z ∈ Z with (x, y, x′, y′) = 1
such that mz2 = (x+ y

√−d)2 + (x′ + y′
√−d)2. Write

β =
{
x′ + y′

√−d
x+ y

√−d ,
mz2

(x+ y
√−d)2

}
.

Then β2 = {−1,m} and it is not hard to check that

τPβ =





(−1)vP(z)−vP(x+y
√−d)

if P ∩ Z = p -m and vP(x+ y
√−d) = vP(x′ + y′

√−d),

1 otherwise.

In view of Lemma 3.5 and replacing β by β{−1, δ} for a suitable δ ∈ Z if
necessary allows us to assume that τPβ = −1 if and only if p2k+1 ‖ (x2+x′2),
where p = P ∩ Z and k is a non-negative integer. Hence, by Lemma 3.1 we
conclude that there is a β ∈ K2OF with β2 = {−1,m} if and only if there
is an ε ∈ {1, 2} such that the Diophantine equation

(3.4) ε(x2 + x′2)Z2 = X2 + dY 2

is solvable in Z.
Obviously, we can assume that x2 + x′2 is square-free.
Let us assume that c is the greatest common divisor of ε(x2 + x′2) and

d. Then (3.4) can be written as

ε(x2 + x′2)
c

Z2 = cX2 +
d

c
Y 2.

By Lemma 2.1, it is solvable in Z if and only if
(
c

p

)
=
(−d/c

p

)
for any prime p

∣∣∣∣
x2 + x′2

c
,(3.5)

(
ε(x2 + x′2)

p

)
=
(
d/c

p

)
for any prime p | c,(3.6)
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and

(3.7)
(
c

p

)
=
(
ε(x2 + x′2)/c

p

)
for any prime p

∣∣∣∣
d

c
.

Note that the identity (3.3) can be written as

(3.8) mcx2 − d

mc
y2 =

x2 + x′2

c
z2,

so that (
mc

p

)
=
(
d/mc

p

)
for any prime p

∣∣∣∣
x2 + x′2

c
.

This is equivalent to (3.5), because p | x2+x′2
c implies that p ≡ 1 (mod 4).

In other words, (3.5) is trivial. If p | c, then(−d/mc
p

)
=
(

(x2 + x′2)/c
p

)
.

So (3.6) is equivalent to(−d/mc
p

)
=
(
εd/c

p

)
, i.e.,

(
m

p

)
=
(
ε

p

)
.

So does the case p | d, p - c and p -m. If p |m, then(−d/mc
p

)
=
(

(x2 + x′2)/c
p

)
.

In this case, (3.7) is equivalent to(−d/mc
p

)
=
(
εc

p

)
, i.e.,

(
d/m

p

)
=
(−ε
p

)
.

This concludes the proof.

Corollary 3.7. Let the assumptions and the notations be as in Theo-
rem 3.6, and assume that n is a positive integer satisfying n | d and for any
prime factor of n, p ≡ 1 (mod 4). Then there is a β ∈ K2OF such that
β2 = {−1,mn} if and only if

(i) for any prime p |mn, (d/mnp
)

=
(−ε
p

)
,

(ii) for any prime p | d, p -mn,
(
mn
p

)
=
(
ε
p

)
, where ε = 1 or 2.

P r o o f. Consider ε(x2 + x′2)nZ2 = X2 + dY 2 in place of (3.4).

Corollary 3.8. Let F = Q(
√−d) be an imaginary quadratic field. Then

{−1,−1} = α2 with α ∈ K2OF if either d = 1 or d = 2 or for any odd prime
p | d, p ≡ 1 (mod 4) or for any odd prime p | d, p ≡ 1 or 3 (mod 8).

Otherwise, {−1,−1}6=α2 for any α ∈ K2OF , in particular , {−1,−1}6=1.

Lemma 3.9. Let m ≡ 3 (mod 4) and d ≡ −1 (mod 8). Then for ε = 1
or 2, the Diophantine equation εmZ2 = X2 − dY 2 has no solutions in Z.
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P r o o f. Consider the congruence

εmZ2 ≡ X2 − dY 2 (mod 8), i.e., εmZ2 ≡ X2 + Y 2 (mod 8).

Note that for any a ∈ Z, a2 ≡ 0 or 4 or 1 (mod 8). Then the result follows.

As a consequence of Lemma 2.1, Corollary 3.7 and Lemma 3.9, we have:

Theorem 3.10. Let F = Q(
√−d) (d a positive square-free integer), and

m | d an integer. Then there is an α ∈ K2OF with α2 = {−1,m} if and
only if there is an ε ∈ {1, 2} such that the Diophantine equation εmZ2 =
X2 − dY 2 is solvable in Z.

Next, we consider the case when 2 ∈ NF . Just as before, we always
discuss imaginary quadratic fields.

Let F = Q(
√−d) (d a positive square-free integer). Then 2 ∈ NF if

and only if −d = u2 − 2w2 with u,w ∈ Z (see [2]). When d is not a prime,
the symbol

(
d

)
denotes the Jacobi symbol. Note that

(
u+w
d

)
=
(
u−w
d

)
. For

simplicity of notation, denote by ψ the Jacobi symbol
(
u+w
d

)
.

Lemma 3.11. Let d be a positive square-free integer with −d = u2− 2w2,
where u,w ∈ Z. Then there is a prime p ≡ 1 (mod 4) with p - d, p - (u+ w)
and p -uw such that the Diophantine equation

(3.9) X2 − dY 2 = (u+ w)pZ2

is solvable in Z if d 6≡ −1 (mod 8), and

(3.10) X2 − dY 2 = ψ(u+ w)pZ2

is solvable in Z if d ≡ −1 (mod 8).

P r o o f. Clearly,
(

d
u+w

)
= 1. Hence, if −d ≡ 7 (mod 8), then by the

properties of the Jacobi symbol (see [6]), we have
(
u+w
d

)
= 1. For any prime

l | d, we choose a prime p ≡ 1 (mod 4) with p - (u+w) and p -uw such that(
p
l

)
=
(
u+w
l

)
.

Put d = 2d′ if 2 | d. For any prime l | d′, we choose a prime p with p - (u+
w), p -uw such that

(
p
l

)
=
(
u+w
l

)
and p ≡ 1 (mod 8) if

(
d′
p

)
= 1 or p ≡ 5

(mod 8) if
(
d′
p

)
= −1. In both cases,

(
d
p

)
= 1.

If d ≡ −1 (mod 8), we choose a prime p ≡ 1 (mod 4) such that p - (u+
w), p -uw and for any prime l | d,

(
p
l

)
=
(ψ(u+w)

l

)
. We also have

(
d
p

)
= 1.

Then by Lemma 2.1, the result follows.

R e m a r k. In the proof of the above theorem, we used the remarkable
fact that any arithmetic progression contains infinitely many primes.

By choice of X,Y, Z, a solution of equation (3.9) or (3.10), we can find
g, h ∈ Z such that h = Y, (u+ w)g + wh = X and (g, h) = 1. Put

(3.11) α = g2 + h2, θ = (g2 − h2 + 2gh)w.
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Clearly, if d ≡ −1 (mod 8) and
(
u+w
d

)
= −1, then

(−(u+w)
d

)
= 1. With-

out loss of generality, we can assume that ψ = 1. Then

(αu+θ)(u+w) = ((u+w)g+wh)2+(u2−2w2)h2 = X2−dY 2 = (u+w)pZ2,

hence,

(3.12) αu+ θ = pZ2.

Therefore,

(3.13) 2
(
u+

θ

α

)
=

2α(αu+ θ)
α2 = ξ2 + η2,

where ξ, η ∈ Q with αξ, αη ∈ Z. It follows from p -uw and (g, h) = 1 that
(p, α) = (p, θ) = 1. Moreover, we can assume that (αξ, p) = (αη, p) = 1.

Let

x = αξpZ2 + αηλ, y = α2ξ,(3.14)

a = αηpZ2 − αξλ, b = α2η,(3.15)

where λ = (g2 − h2 − 2gh)w. Note that λ2 + θ2 = 2α2w2. Then

(3.16) (x+ y
√
−d)2 + (a+ b

√
−d)2 = (u+

√
−d)(2pαZ2)2.

On the other hand, α2(ξ2 + η2) ≡ 0 (mod pZ2), hence,

x2 + dy2 ≡ (αηλ)2 + dα4η2 = (αηλ)2 + (u2 − 2w2)α4η2

= (αη)2(λ2 + α2u2 − 2α2w2) = (αη)2(−θ2 + α2u2)

≡ 0 (mod pZ2)

and

x2 + dy2 ≡ (αξpZ2)2 − u2(α2ξ)2 = α2ξ2((pZ2)2 − α2u2) ≡ 0 (mod w).

Similarly,

a2 + db2 ≡ 0 (mod pZ2) and a2 + db2 ≡ 0 (mod w).

Lemma 3.12. With the notations as above, set E = x + y
√−d, F =

a+ b
√−d and

β =
{
E

F
,
E2 + F 2

F 2

}
.

Then β2 = {−1, u +
√−d} ∈ K2OF and there is a β′ ∈ K2OF with β′2 =

{−1, u+
√−d} if and only if the Diophantine equation

(3.17) (u+ w)N2 = S2 − dT 2

is solvable in Z.

P r o o f. We only need to consider non-dyadic places of F . It is easy to see
that for any place P, if vP(E) 6= vP(F ), then τPβ = 1 and if vP(E) = vP(F ),
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then

(3.18) τPβ = (−1)vP(αZ2pw/F ).

Obviously, if vP(E) = vP(F ), then P ∩ Z = p′ | dZ2pw. We deduce
from α | y, α | b and (p, α) = 1 that for any place P, if P ∩ Z = p′ |α,
then τPβ = τP̄β, where P 6= P is the conjugation of P. Thus, multiplying
β by {−1, c} for a suitable c ∈ Z if necessary allows us to assume that
τPβ = 1 for any P ∩ Z = p′ |α. On the other hand, if P ∩ Z = p′ |w,
vP(E) = vP(F ), then vP(F ) = vP(w), since x2 + dy2 ≡ a2 + db2 ≡ 0
(mod w). Hence τPβ = 1 for any P ∩ Z = p′ |w. Finally, since

(
d
p

)
= 1,

p = PP. It follows from x2 + dy2 ≡ a2 + db2 ≡ 0 (mod pZ2), (p, α) = 1
and (3.16) that if vP(E) + vP(F ) 6= 0 then either vP(E) or vP(F ) ≡ 1
(mod 2). Hence, τPβ = 1 and τP̄β = −1. If vP(E) = vP(F ) = 0, then
τPβ = −1 and τP̄β = 1. By Lemma 3.1, we see that there is a β′ ∈ K2OF
with β′2 = {−1, u+

√−d} if and only if the Diophantine equation

(3.19) εpN2 = S2 + dT 2

is solvable in Z for ε = 1 or 2. This is equivalent to saying that the Dio-
phantine equation (3.17) is solvable in Z. This proves our theorem.

The following theorem is a consequence of the above lemma and Theo-
rem 3.6.

Theorem 3.13. Let F = Q(
√−d) (d a positive square-free integer) with

−d = u2 − 2w2 for u,w ∈ Z, and let m | d. Then there is a β ∈ K2OF with
β2 = {−1,m(u+

√−d)} if and only if the Diophantine equation

(3.20) m(u+ w)N2 = S2 − dT 2

is solvable in Z.

P r o o f. First, we observe that if d ≡ −1 (mod 8) and
(
u+w
d

)
= −1

together with m ≡ 1 (mod 4), then (3.20) has no solutions in Z. In fact,
consider m(u + w)N2 = S2 − dT 2 (mod 4), i.e., 3N2 = S2 + T 2 (mod 4);
then the result follows.

Next, if d ≡ −1 (mod 8) and
(
u+w
d

)
= −1 together withm ≡ 1 (mod 4),

then there is no β ∈ K2F with β2 = {−1,m(u+
√−d)}.

Then, by Lemma 3.12 and Theorem 3.6, the assertion follows.

4. 4-rank K2OF . For any number fields F a 4-rank K2OF formula is
proved in [7] (compare also [5]). For quadratic field, we refer to [1], [11].
Here, we apply Theorems 3.10 and 3.13 to determine the 4-rank K2OF for
any imaginary quadratic field F . Let F = Q(

√−d) (d a positive square-free
integer). Put d′ = 1

2d or d according as 2 | d or not. Write K = {m | m | d,
m 6= 1, −d′, 2 -m} and V = {(u +

√−d)m | −d = u2 − 2w2 with u,w ∈ Z,
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w > 0, m ∈ K ∪ {1,−d′}} and put

K = {k ∈ K | εkZ2 = X2 − dY 2 is solvable in Z for ε = 1 or 2},
V 0 = {m(u+

√
−d) |m(u+

√
−d) ∈ V,

m(u+ w)Z2 = X2 − dY 2 is solvable in Z},
V = {m(u+ w) |m(u+

√
−d) ∈ V 0}.

Theorem 4.1. With the above notations, let F = Q(
√−d) be an imag-

inary quadratic field. Then r4 = 4 − rankK2OF = log2
r+2

4 , where r =
#(K ∪ V ).

P r o o f. For any positive integer n, let n(K2OF ) denote the subgroup
generated by all elements of order n. By [2], 2(K2OF ) can be generated by
the following elements:

{−1, k} (k ∈ K),

{−1, m(u+
√
−d)} (m(u+

√
−d) ∈ V if − d = u2 − 2w2 with u,w ∈ Z).

Since [∆ : F ·2] = 4, there are the only two elements δ,−d′/δ ∈ K or
δ, (−d′/δ)(u+

√−d)2 ∈ V 0 satisfying δ,−d/δ ∈ ∆. Suppose that a1, . . . , ar4
generate 4(K2OF ). Then a2

i = {−1, bi} ∈ 2(K2OF ) (1 ≤ i ≤ r4). Set b0 = δ.
Then by Theorems 3.10 and 3.13,

#{bi1 . . . bik ,−d/bi1 . . . bik | i1, . . . , ik ∈ {0, 1, . . . , r4}}
= #(K ∪ V 0) = #(K ∪ V ).

It is easy to verify that r = #(K ∪ V ) = 2r4+2 − 2. So r4 = log2
r+2

4 as
desired.

Corollary 4.2. r4 = 0 if and only if r = #(K ∪ V ) = 2.

Corollary 4.3. r4 = r2 if and only if K = K and #V = #V .

5. The structure of (K2OF )2. In this section, we apply Theorems 3.10,
3.13 and 4.1 to determine the structure of (K2OF )2 for imaginary quadratic
fields F .

Theorem 5.1. Let F = Q(
√−d) be an imaginary quadratic field with

d either pq or 2pq or pqr or 2pqr, where p, q, r are distinct odd primes. If
2 ∈ NF , put v = u+w, where u,w ∈ Z are such that −d = u2 − 2w2. Let δ
be an element such that ∆ = F ·2 ∪ 2F ·2 ∪ δF ·2 ∪ 2δF ·2. Then we have the
tables given below.

If F is a field as in Table III, then r2 = 2, r4 = 0, otherwise (except for
the case d = 2pqr with p, q, r ≡ 7, 5, 3 (mod 8)) r2 = 2, r4 = 1 .

N o t e s. 1. Only when 2 | d and d/2 ≡ 1 (mod 8), the alternative (∗) can
occur in Table II.



Imaginary quadratic fields 163

Table I

F p, q (mod 8) r2 r4 δ

Q(
√−pq) 5, 7 1 0

(
q
p

)
p

Q(
√−2pq) 3, 7 1 0

(
p
q

)
p

Q(
√−pq) 3, 5 [2] 1 0 −p

5, 5 1 0 −1

Q(
√−2pq) 3, 5 1 0 p

3, 3 1 0 −1

Table II

F p, q (mod 8) The Legendre symbols r4 (δ)(
v
p

)
= −
(
v
q

)
(∗) 0(

q
p

)
= −1 (

v
p

)
=
(
v
q

)
1

1, 1 (
v
p

)
= −1 or

(
v
q

)
= −1 1(

q
p

)
= 1 (

v
p

)
=
(
v
q

)
= 1 2

(
q
p

)
= −1 0 (δ = −1)

1, 3 (
q
p

)
= 1 1

Q(
√−pq) (

q
p

)
= −1 0 (δ = −1)

Q(
√−2pq) 1, 5 (

q
p

)
= 1 1

(
q
p

)
= −1 0

1, 7
(
v
p

)
= −1 0(

q
p

)
= 1 (

v
p

)
= 1 1

(
v
p

)
= −
(
v
q

)
(∗) 0

7, 7 (
v
p

)
=
(
v
q

)
1

3, 3 1
Q(
√−pq)

5, 5 1

2. If p ≡ q (mod 8) (or q ≡ r (mod 8) or p ≡ q ≡ r (mod 8)), then the
condition on the Legendre symbols, say (·), should be understood as: if there
is a choice of p, q, r with the Legendre symbols satisfying (·). For example,
in the case 7, 7, 5 in Table III, the condition on the Legendre symbol is
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Table III

F p, q, r (mod 8) The Legendre
symbols δ

7, 7, 5
(
p
r

)
= −1 −r if

(
q
r

)
= −1;

(
q
p

)
q if
(
q
r

)
= 1

7, 7, 3
(
p
r

)
= 1 −r if

(
r
q

)
= −1;

(
q
p

)
q if
(
r
q

)
= 1

Q(
√−pqr)

(
p
r

)
= −1 −r if

(
r
q

)
= −1;

(
q
p

)
q if
(
r
q

)
= 1

7, 5, 1
Q(
√−2pqr)

(
q
r

)
= −1 −

(
q
p

)
p if
(
r
p

)
= 1

(
p
r

)
= −1 −r if

(
r
q

)
= −1;

(
q
p

)
q if
(
r
q

)
= 1

7, 3, 1 (
q
r

)
= −1

(
p
q

)
p if
(
p
r

)
= 1

3, 3, 3
(
p
q

)
=
(
q
r

)
=
(
r
p

)
−1

7, 5, 5
(
q
p

)
= −1 r if

(
p
r

)
= 1; −p if

(
p
r

)
= −1

7, 3, 3
(
q
p

)
= 1 −p if

(
p
r

)
= −1; −r if

(
p
r

)
= 1

5, 5, 3
(
p
r

)
= −1 r if

(
q
r

)
= −1;

(
q
p

)
q if
(
q
r

)
= 1

Q(
√−pqr)

5, 3, 3
(
q
p

)
= −1 −p if

(
r
p

)
= −1;

(
r
q

)
r if
(
r
p

)
= 1

(
r
p

)
= −1 r if

(
r
q

)
= −1; −q if

(
r
q

)
= 1

5, 3, 1 (
r
q

)
= −1 p if

(
r
p

)
= 1

7, 5, 5
(
q
p

)
= 1 −p if

(
p
r

)
= 1; −r if

(
p
r

)
= −1

7, 5, 3 −
(
qr
p

)
p

7, 3, 3
(
q
p

)
= −1 −p if

(
p
r

)
= −1; r if

(
p
r

)
= 1

5, 5, 3
(
p
r

)
= −1 r if

(
q
r

)
= 1; −

(
q
p

)
q if
(
q
r

)
= −1

Q(
√−2pqr) 5, 5, 1

(
pq
r

)
= −1 −1

5, 3, 3
(
q
p

)
= 1 −p if

(
r
p

)
= 1;

(
q
r

)
r if
(
r
p

)
= −1

(
r
p

)
= −1 r if

(
r
q

)
= −1; q if

(
r
q

)
= 1

5, 3, 1 (
r
q

)
= −1 −p if

(
r
p

)
= 1

3, 3, 1
(
pq
r

)
= −1 −1

(
p
r

)
= −1. In practice, we identify

(
q
r

)
= −1 with

(
p
r

)
= −1. Hence, if(

q
r

)
= −1 then we also have r2 = 0.

P r o o f o f T h e o r e m 5.1. We will repeatedly use the notations K,K,
V and V which are defined in Section 4.

It is not hard to verify the correctness of the statement r4 = 0 when δ
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Table IV

F p, q, r (mod 8) The Legendre symbols r4 δ

7, 5, 3 1(
q
p

)
=
(
r
p

)
= −1 0 −1

5, 5, 5
(
q
p

)
=
(
p
r

)
=
(
r
q

)
= 1 2

otherwise 1
Q(
√−pqr) (

p
r

)
=
(
q
r

)
= 1 2

5, 5, 1
otherwise 1(

p
r

)
=
(
q
r

)
= 1 2

3, 3, 1
otherwise 1(

q
p

)
=
(
p
r

)
= 1 0 −1

Q(
√−2pqr) 5, 5, 5

(
q
p

)
=
(
p
r

)
=
(
r
p

)
= −1 2

otherwise 1(
q
p

)
=
(
r
p

)
= −1 0 −1

(
p
q

)
=
(
r
q

)
= −1 0 −1

5, 1, 1 (
q
p

)
=
(
p
r

)
=
(
q
r

)
= 1 2

Q(
√−pqr) otherwise 1

Q(
√−2pqr)

(
p
r

)
=
(
q
r

)
= −1 0 −1

(
q
p

)
=
(
r
p

)
= −1 0 −1

3, 1, 1 (
q
p

)
=
(
p
r

)
=
(
q
r

)
= 1 2

otherwise 1

has been listed. In fact, one can easily check that K = {δ,−d/δ} (or K =
{δ,−d/(2δ)}) and V = ∅. Then the result follows from Theorem 4.1.

On the other hand, r4 = r2 if and only if K = K and V = V . Hence, it
is also easy to verify the correctness of the statement r4 = r2.

Now, for Tables I, II we only need to consider the following cases: 1,1;
1,7; 7,7.

T h e c a s e 1, 1. Clearly, r2 = 2 and −1 ∈ K. Suppose
(
q
p

)
= −1. Then

pZ2 = X2 − dY 2 has no solutions in Z, hence ±p 6∈ K, so r4 ≤ 1. If
(
v
p

)
=(

v
q

)
= 1, then v ∈ V , hence r4 ≥ 1, therefore r4 = 1. If

(
v
p

)
=
(
v
q

)
= −1,

then pv ∈ V , hence r4 = 1. If
(
v
p

)
= −( vq

)
, then V = ∅, hence r4 = 0.

Suppose
(
q
p

)
= 1. Then ±p ∈ K, hence r4 ≥ 1. If

(
v
p

)
= −1, or

(
v
q

)
= −1,
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Table V

F p, q, r (mod 8) The Legendre symbols r4(
v
p

)
=
(
v
r

)
1(

q
r

)
= 1

7, 7, 7
(
v
q

)
=
(
v
r

)
1

(
p
r

)
= 1

(
q
p

)
=
(
q
r

)
= −1

(
v
q

)
=
(
v
r

)
1

otherwise 0(
v
p

)
=
(
v
q

)
,
(
v
r

)
= 1 2(

p
r

)
=
(
q
r

)
= 1

otherwise 1
7, 7, 1 (

v
pqr

)
= 1 1

otherwise (
v
pqr

)
= −1(∗) 0

Q(
√−pqr)

(
v
q

)
=
(
v
r

)
= 1 2(

q
p

)
=
(
r
p

)
=
(
r
q

)
= 1

Q(
√−2pqr) otherwise 1

r2 = 3 7, 1, 1
(
q
p

)
= −1,

(
r
p

)
=
(
r
q

)
= 1

(
v
r

)
= 1 1

(
r
q

)
= −1,

(
q
p

)
=
(
r
p

)
= 1

(
v
q

)
=
(
v
r

)
1

otherwise 0(
v
p

)
=
(
v
q

)
=
(
v
r

)
= 1 3(

q
p

)
=
(
r
p

)
=
(
r
q

)
= 1

otherwise 2(
v
p

)
=
(
v
q

)
,
(
v
r

)
= 1 2

1, 1, 1
(
q
p

)
= −1,

(
r
p

)
=
(
r
q

)
= 1

otherwise 1(
v
pqr

)
= 1 1

otherwise (
v
pqr

)
= −1(∗) 0

then v 6∈ V , hence r4 ≤ 1, so r4 = 1. If
(
v
p

)
=
(
v
q

)
= 1, then K = K and

V = V , hence r4 = 2.
T h e c a s e 1, 7. We have r2 = 2 and −1 6∈ K, hence r4 ≤ 1. Suppose(

q
p

)
= −1. Then ±p 6∈ K, hence r4 = 0. Suppose

(
q
p

)
= 1. If

(
v
p

)
= −1, then

K = {p,−q}, V = ∅, hence r4 = 0. If
(
v
p

)
=
(
v
q

)
= 1, then v ∈ K, hence

r4 ≥ 1, so r4 = 1.
T h e c a s e 7, 7. We have r2 = 2 and −1 6∈ K, hence r4 ≤ 1. Suppose(

q
p

)
= 1. Then q ∈ K. If

(
v
p

)
=
(
v
q

)
= 1, then v ∈ V ; if

(
v
p

)
=
(
v
q

)
= −1,

then −v ∈ V , hence r4 ≥ 1, so r4 = 1; if
(
v
p

)
= −( vq

)
, then V = ∅, hence

r4 = 0.
The proof of Table III is direct.
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For Table IV, we only need to consider the three cases: 7, 5, 3, 5, 5, 1 and
3, 3, 1 (d = pqr).

For the case 7, 5, 3, we have −1 6∈ K, hence r4 ≤ 1. But it is easy to see
that −( qrp

)
p,
(
p
q

)
q ∈ K, V = V = ∅, hence r4 ≥ 1, so r4 = 1.

For the case 5, 5, 1 or 3, 3, 1, we have −1 ∈ K, V = V = ∅. If
(
p
r

)
=(

q
r

)
= 1, then K = K, hence r4 = 2. Otherwise, we have

(
p
r

)
= −1 or(

q
r

)
= −1. If

(
p
r

)
= −1,

(
q
r

)
= 1, then ±p 6∈ K, ±q ∈ K; if

(
p
r

)
=
(
q
r

)
= −1,

then ±r ∈ K, hence, we have r4 = 1.
Finally, we consider Table V. Clearly, in any case, r2 = 3. Without loss

of generality, when 2 - d, or pqr ≡ 7 (mod 8), we can assume
(
v
pqr

)
= 1. On

the other hand, when d = 2pqr with pqr ≡ 1 (mod 8), if
(
v
pqr

)
= −1, then

it is easy to see that V = ∅. Hence, we always assume
(
v
pqr

)
= 1.

T h e c a s e 7, 7, 7. We have −1, p, q, r 6∈ K, hence r4 ≤ 1. Suppose(
p
r

)
=
(
r
q

)
=
(
q
p

)
, then ±p,±q,±r 6∈ K, hence r4 = 0. Since

(
p
r

)
= 1, there

are the following possibilities:(
q

p

)
=
(
q

r

)
= 1,

(
p

q

)
=
(
q

r

)
= 1,

(
p

q

)
=
(
r

q

)
= 1.

Suppose
(
q
p

)
=
(
q
r

)
= 1. Then −r ∈ K. If

(
v
p

)
=
(
v
q

)
=
(
v
r

)
= 1, then

v ∈ V , and if
(
v
p

)
=
(
v
r

)
= −1,

(
v
q

)
= 1, then −pv ∈ V , hence r4 ≥ 1, so

r4 = 1. If
(
v
p

)
=
(
v
q

)
= −1,

(
v
r

)
= 1, or

(
v
q

)
=
(
v
r

)
= −1,

(
v
p

)
= 1, then

V = ∅, hence r4 = 0.
Similarly, suppose

(
p
q

)
=
(
q
r

)
= 1. Then −r ∈ K. If

(
v
p

)
=
(
v
q

)
=
(
v
r

)
=

1, then v ∈ V , and if
(
v
q

)
=
(
v
r

)
= −1,

(
v
p

)
= 1, then −pv ∈ V , hence

r4 = 1. Otherwise, r4 = 0.
Suppose

(
p
q

)
=
(
r
q

)
= 1. Then −q ∈ K. If

(
v
p

)
=
(
v
q

)
=
(
v
r

)
= 1, then

v ∈ V , and if
(
v
q

)
=
(
v
r

)
= −1,

(
v
p

)
= 1, then −pv ∈ V , hence r4 = 1.

Otherwise r4 = 0.
T h e c a s e 7, 7, 1. We have −1 6∈ K. Suppose

(
p
r

)
= −1. Then ±p 6∈ K.

If
(
q
r

)
= 1, then

(
q
p

)
q ∈ K and ±r, (pq

)
q 6∈ K, and if

(
q
r

)
= −1, then

−r ∈ K and ±q, r 6∈ K. Hence r4 ≤ 1. If
(
v
p

)
=
(
v
q

)
=
(
v
r

)
= 1, then v ∈ V ;

if
(
v
p

)
=
(
v
q

)
= −1, and

(
v
r

)
= 1, then −v ∈ V ; if

(
v
p

)
=
(
v
r

)
= −1 and(

v
q

)
= 1, then

(
p
q

)
pv ∈ V ; if

(
v
q

)
=
(
v
r

)
= −1 and

(
v
p

)
= 1, then

(
q
p

)
pv ∈ V .

Hence r4 ≥ 1. So r4 = 1. This discussion also works for
(
q
r

)
= −1.

Suppose
(
p
r

)
=
(
q
r

)
= 1. Then

(
p
q

)
p,
(
q
p

)
q ∈ K. If

(
v
r

)
= −1, then

either
(
v
p

)
= −1 and

(
v
q

)
= 1, or

(
v
p

)
= 1 and

(
v
q

)
= −1. In both cases,

±pv,±qv,±rv 6∈ V . If
(
v
r

)
= 1, then either

(
v
p

)
=
(
v
q

)
= 1 or

(
v
p

)
=
(
v
q

)
=

−1, therefore either v ∈ V or −v ∈ V , hence r4 ≥ 2, so r4 = 2.
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T h e c a s e 7, 1, 1. We have −1 6∈ K, hence r4 ≤ 2. Suppose
(
q
p

)
=
(
r
p

)
=(

r
q

)
= 1. Then −p, q, r ∈ K. If

(
v
p

)
=
(
v
q

)
=
(
v
r

)
= 1, then v ∈ V , hence

r4 ≥ 2, so r4 = 2. Otherwise, ±v 6∈ V , hence ±pv,±qv,±rv 6∈ V , since
−p, q, r ∈ K. Hence r4 = 1.

Suppose
(
p
r

)
=
(
q
r

)
= −1 or

(
p
r

)
=
(
q
p

)
= −1 or

(
q
r

)
=
(
q
p

)
= −1. Then

±p,±q,±r 6∈ K, hence r4 = 0.
Suppose

(
q
p

)
= −1 and

(
r
p

)
=
(
r
q

)
= 1. Then r ∈ K. If

(
v
p

)
=
(
v
q

)
=(

v
r

)
= 1, then v ∈ V ; if

(
v
p

)
=
(
v
q

)
= −1 and

(
v
r

)
= 1, then qv ∈ V ,

hence r4 = 1. Otherwise, V = ∅, hence r4 = 0. Suppose
(
r
q

)
= −1 and(

r
p

)
=
(
q
p

)
= 1. Then q ∈ K. If

(
v
p

)
=
(
v
q

)
=
(
v
r

)
= 1, then v ∈ V , and

if
(
v
p

)
= 1 and

(
v
q

)
=
(
v
r

)
= −1, then rv ∈ V , hence r4 = 1. Otherwise,

V = ∅, hence r4 = 0.

T h e c a s e 1, 1, 1. We have −1 ∈ K. Suppose
(
q
p

)
=
(
r
p

)
=
(
r
q

)
= 1.

Then K = K, hence r4 ≥ 2. If
(
v
p

)
=
(
v
q

)
=
(
v
r

)
= 1, then V = V , hence

r4 = 3. Otherwise, v 6∈ K, hence r4 = 2.
Suppose

(
q
p

)
=
(
q
r

)
= −1,

(
r
p

)
= 1. Then ±p,±q,±r 6∈ K, hence r4 ≤ 1.

If
(
v
p

)
=
(
v
q

)
=
(
v
r

)
= 1, then v ∈ V ; if

(
v
p

)
=
(
v
q

)
= −1 and

(
v
r

)
= 1, then

pv ∈ V ; if
(
v
p

)
=
(
v
r

)
= −1 and

(
v
q

)
= 1, then qv ∈ V ; if

(
v
q

)
=
(
v
r

)
= −1

and
(
v
p

)
= 1, then rv ∈ V . In any case, r4 ≥ 1, so r4 = 1.

Suppose
(
q
p

)
=
(
q
r

)
=
(
r
p

)
= −1. Then r4 ≤ 1. If

(
v
p

)
=
(
v
q

)
=
(
v
r

)
= 1,

then v ∈ V ; if
(
v
p

)
=
(
v
q

)
= −1 and

(
v
r

)
= 1, then rv ∈ V ; if

(
v
p

)
=
(
v
r

)
= −1

and
(
v
q

)
= 1, then qv ∈ V ; if

(
v
q

)
=
(
v
r

)
= −1 and

(
v
p

)
= 1, then pv ∈ V . In

any case, r4 ≥ 1, so r4 = 1.
Suppose

(
q
p

)
= −1 and

(
r
p

)
=
(
r
q

)
= 1. Then ±r ∈ K, ±p,±q 6∈ K. If(

v
p

)
=
(
v
q

)
=
(
v
r

)
= 1, then v ∈ V ; if

(
v
p

)
=
(
v
q

)
= −1 and

(
v
r

)
= 1, then

qv ∈ V . In both cases, r4 = 2. Otherwise V = ∅, hence r4 = 1.
This concludes the proof of the theorem.

R e m a r k s. 1. Our method can be applied to any imaginary quadratic
field.

2. Similar result for real quadratic fields have been obtained by the author
(see [12]).
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