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1. Introduction. Let F' be a number field and O the ring of its integers.
Many results are known about the group K9Op, the tame kernel of F. In
particular, many authors have investigated the 2-Sylow subgroup of K5Op.
As compared with real quadratic fields, the 2-Sylow subgroups of K;Op for
imaginary quadratic fields F' are more difficult to deal with. The objective
of this paper is to prove a few theorems on the structure of the 2-Sylow
subgroups of K;Op for imaginary quadratic fields F'.

In our Ph.D. thesis (see [11]), we develop a method to determine the
structure of the 2-Sylow subgroups of KoOp for real quadratic fields F'. The
present paper is motivated by some ideas in the above thesis.

2. Notations and preliminaries. Let F' be a number field and O the
ring of integers in F. Let {2 be the set of all places of F'. For any finite place
P, denote by vp( ) the discrete valuation on F' corresponding to P. For any
{z,y} € K3F, the tame symbol is defined by

mp{z,y} = (_1)v7:(r)vp(y)xvp(y)y—vp(m) (mod P).

For any P € (2, the Hilbert symbol (f) of order 2 on Fp, the completion of

F at P, is defined as follows: Given non-zero elements «, 8 € Fp, (O‘7’D’8 ) =1
if &2 + Bn? =1 has a solution &,m € Fp, otherwise the symbol is defined
to be —1. In particular, suppose P is a non-dyadic place in §2. By a formula
in Theorem 5.4 of [9],

if {z,y} € KoF and 7p{z,y} =1 then

(2.1) (5”7)9) ~1.

[153]
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And if F = Q, the rational numbers field, and z, y are the units in Qs, then
LYY ((z=1)/2)-((y—1)/2)
2.2 — ] =(-1
(22 (5Y) =

(see Theorem 5.6 in [9]).
The following Product Formula for the Hilbert symbol is well known:

o, f
2.3 — | = 1.
2.3 1 (%)
Pes?
For any odd prime p, let (f) denote the Legendre symbol. We have
LEMMA 2.1 (Legendre). Suppose a,b,c are square free, (a,b) = (b,c) =

(¢c,a) = 1, and a,b,c do not have the same sign. Then the Diophantine
equation

az® +by? 4+ c2*> =0
has non-trivial integer solutions if and only if for every odd prime p|abc,
say pla, (‘Ifc) =1.
Proof. See Theorem 4.1 and its Corollary 2 in [3].

In this paper, we use (K20F )2 to denote the 2-Sylow subgroup of KoOp.

Let F be an imaginary quadratic field. By [13], we have [A : F'?] = 4,
where A = {z € F' | {—1, z} = 1}. In Section 5, we will determine A for
some imaginary quadratic fields.

3. General results

LEMMA 3.1. Let F = Q(v/—d) (d a positive square-free integer). For any
a=z+y/—d € F,put S ={P,....,P.,} = {P | mp{-1,a} = —1}.
Without loss of generality, we can assume that p; = P; N7Z is not inert for
1 <i < n. Then 2> +dy? = ep1...pn2?, where ¢ € {1,2} and z € Q.
Conversely, suppose that p1,...,p, are distinct primes in Z and P1,..., Py
are prime ideals of O such that P; NZ = p; for 1 < i < n. If there is an
e € {1,2} such that the equation x* + dy*> = ep1 ...pp2? is solvable in Q
(equivalently in Z), then there is an o € F" such that S = {P | mp{—1,a} =
—1} =A{Py,..., Pn}.

Proof. Suppose @ = =+ yv/—d € F and S = {P1,...,P,} =
{P|mp{-1,a} = —1}. Then (z + yv/—d) = q°P; ... P,a?, where q|2 and
o0 = 0or 1 and a is a fractional ideal of O in F. Hence, 22 + dy® =
EPL ... PnZ2.

Conversely, if 22 + dy? = ep; ... pnz? has a solution z,v, z € Z, then for
any 1 < i < n, either x4+yv/—d € P; or x—yv/—d € P;. So suitably choosing
§ € Q, we can assume that (§(z+yv/—d)) = q°P1 ... Ppa?, where q[2,e =0
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or 1 and a is a fractional ideal of Op in F. Then taking o = §(z + yv/—d)
yields the result.

THEOREM 3.2. Let F' = Q(v/—d) (d a positive square-free integer), and
m|d, a positive integer. If any prime factor of m satisfies p; = 1 (mod 4),
for 1 <i < n, then there is an o € KoOp with o* = {—1,m} if and only if
there is an ¢ € {1,2} such that the Diophantine equation emZ? = X2+ dY?>
s solvable in Z.

Proof. From the assumption, we have m = 22 +y?, where z,y € Z. Let

, r 2% +y? r m
o = -y 2 = Ty o
Y Y yy

Then o'? = {—1,m}. It is easy to check that {P | 7pa/ = —1} = {Py, ...
...y Pn}, where P, NZ = p; (1 < i < n). Therefore, the result follows from
Lemma 3.1.

LEMMA 3.3. Let F' = Q(v/—d) (d a positive square-free integer). LThen
m = 2% +y? for x,y € F, where m is an integer satisfying: m|d if d # —1
(mod 8) or m|d together with m #3 (mod 4) if d = —1 (mod 8).

Proof. Let {2 denote the set of all places of F'. In view of the Hasse—
Minkowski Theorem (see [10]), it is enough to prove that (—1#) =1 for
any P € (2.

Clearly, if P is the unique Archimedean place in {2, then (j;m) =1.

In the non-dyadic cases, (_%57”) =1 follows from (2.1).

If d # —1 (mod 8), then there is a unique dyadic place P in (2. Then
the Product Formula yields (AT’") =1.

Now suppose d = —1 (mod 8). Here m # 3 (mod 4). Let P;, P2 denote
the two dyadic places in 2. Then Fp, = Fp, = Q. Hence, by (2.2), we have

(_71,—:") =1 for i = 1,2. This completes the proof.

Remark. By a theorem due to Bass and Tate (see [8]), a necessary and
sufficient condition for {—1,m} = o? with a € Ky F is that m = 22 4 y? for
x,y € F. On the other hand, if d = —1 (mod 8), m|d and m =3 (mod 4),
then by (2.2), (_71,—:”) = —1, where ¢ = 1,2, and P;,Ps are the two dyadic
places of F. So {—1,m} # a? for any a € Ky F.

Now, let ' = Q(v/—d) be an imaginary quadratic field. Suppose m = —1
orm = 0q1...qr, where 6 = 1lor —1for 1 <i<r, ¢ =3 (mod4)isa
prime, and suppose m = X2 +Y? for X,Y € F. Write

ot yv—d ' +y'v—d
z z

Y = ,  where z,y,2’,y, 2 € Z.

Clearly m = X2 4+ Y2 implies that zy = —2'y’ and
(3.1) mz? = 2? — dy® + 2% — dy'*.
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Without loss of generality, we can assume that (x,y,z’,y") = 1 below.

LEMMA 3.4. Notations being as above, suppose k > 0 is an integer and p
is a prime with p? ™1 || (2 + 2'2). Then there is a prime ideal P of F such
that vp(z+yv/—d) > 0,vp (2’ +y'v/—d) > 0. Conversely, if vp(z+yv/—d) >
0 and vp(x' +y'v/—d) > 0, then vp(z? + /%) > 0.

Proof. It follows from (3.1) that mz?2? = (22 + 2?)(2? — dy’?). Then
p?P || (22 4 2'2) implies p| (2% — dy'?) (note that p = 1 (mod 4)). But
(x +yv—d)(x —yv/—d) = 22 + dy?> = —2'> + dy?> =0 (mod P). So we may
assume that vp(x + yv/—d) > 0. Similarly, vp (2’ + y'v/—d) > 0.

Conversely, suppose vp(z + yv/—d) > 0 and vp (2’ + 3'v/—d) > 0. Let
p = PNZ. Then p|(z* + dy?), p| (2"? + dy'?). If p|z, then p|z’ or p|y’

since zy = —2'y’. But p|y’ also implies p|z’. Hence p| (2 + 2?). Now we
assume that pfz and pfa’. It is easy to verify that

(T + .%'/2
(3.2) x4y - :x<$l2~x—(x—|—y\/—7d)).

So, vp(z? 4+ 2"%) > 0.

LEMMA 3.5. With notations being as above, suppose P is a non-dyadic
prime ideal of Op, P NZ = p and ptm. If vp(2® + 2'?) > 0 and vp(z +
yv/—d) > 0, then vy(z* + 2?) = vp(z + yv/—d) (mod 2).

Proof. First suppose that vp(z) = 0. Then p is unramified in Op, hence
vp(2? + %) = vp(2? + %) and vp(z + yv/—d) = vp(2? + dy?). It can be
deduced from the identity

z+yv—d\’ N o +y=d\’
B z z
that vp(z + yv/—d) = vp(2’ + y'vV—=d). If vp(z + yv/—d) # vp(2? + 2'?),
then (3.2) yields vp (22 + 2/?) > vp(z + yv/—d) = vp(2? + dy?). Hence,
vp (22 + dy?) = vp(2? + dy® — (2% + 2'%)) = vp(—2% + dy?).
Now, vp(22+2?) = vp(2?+2'%) (mod 2) is a consequence of the observation
that

% + 22
(3:3) («" — dy?) (x’2> =mz°.
Then suppose that vp(z) > 0. In this case, the only possibility is that
pld, pty and pty’. Then

implies

vp(z +yvV—d) = vp(z® + 2%) =1 (mod 2).
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THEOREM 3.6. Let F' = Q(v/—d) (d a positive square-free integer), and
let m be an integer with m|d if d # —1 (mod 8), and with m|d and m # 3
(mod 4) ifd = —1 (mod 8). Moreover, if m # —1, then for any prime factor
of m, p = 3 (mod 4). Then there is an o € K2Op with o = {—~1,m} if
and only if there is an € € {1,2} such that

d _
(/m) = (5) for any prime p|m;
p p

<m> = (E> for any prime p|d, ptm.
p p

Proof. We know that there are x,y,2’,y', 2z € Z with (z,y,2',y') =1
such that mz? = (x + yv/—d)? + (2/ + y'v/—d)?. Write

N {Zizg (z +n;jjd)2 }

Then 32 = {—1,m} and it is not hard to check that

(_1)”7’('5)_”77(14‘9\/?‘1)

™ = if PNZ=ptm and vp(z + yv/—d) = vp(z' + y'v/—d),
1 otherwise.

In view of Lemma 3.5 and replacing 5 by S{—1,d} for a suitable ¢ € Z if
necessary allows us to assume that 7p3 = —1 if and only if p?**1 || (22 +2'2),
where p = P NZ and k is a non-negative integer. Hence, by Lemma 3.1 we
conclude that there is a 3 € KoOp with 2 = {—1,m} if and only if there
is an € € {1,2} such that the Diophantine equation

(3.4) e(x? +2?) 7% = X? +dY?

is solvable in Z.
Obviously, we can assume that 22 4+ 2/2 is square-free.

Let us assume that c is the greatest common divisor of ¢(z? + 2'?) and
d. Then (3.4) can be written as

8(132 + x/2)

C

72 =cX?+ QYQ.
C

By Lemma 2.1, it is solvable in Z if and only if

(3.5) (;) - (‘f/c> for any prime p

2 12 d
(3.6) <€($+$)> = </C) for any prime p]|c,
p p

x? + x'?
)
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and
2 2 d
(3.7) <C> = <5(x+x)/c> for any prime p‘ —.
p p c
Note that the identity (3.3) can be written as
d 2 2
(3.8) mex? — —7° = AT e
mc c
so that

% + z?

< mce > < d/ mc) .
— ) = for any prime p
p p

This is equivalent to (3.5), because p | # implies that p = 1 (mod 4).
In other words, (3.5) is trivial. If p| ¢, then

(5) - (57)

So (3.6) is equivalent to

() (). . (2)-()

So does the case p|d, pfc and pfm. If p|m, then

(=5) - (575)

In this case, (3.7) is equivalent to

(4)-6) = ()-6)

This concludes the proof.

COROLLARY 3.7. Let the assumptions and the notations be as in Theo-
rem 3.6, and assume that n is a positive integer satisfying n|d and for any
prime factor of n, p = 1 (mod 4). Then there is a 3 € KoOp such that
(3% = {—1,mn} if and only if

() Jor any prime pmn, (“5) = (57).
mn £

(ii) for any prime p|d, ptmn, (T) = (5), where e =1 or 2.
Proof. Consider e(2? + 2"?)nZ? = X2 + dY? in place of (3.4).

COROLLARY 3.8. Let F = Q(v/—d) be an imaginary quadratic field. Then
{—1, -1} = o? with a € K2O0p if eitherd =1 or d = 2 or for any odd prime
pld, p=1 (mod 4) or for any odd prime p|d, p=1 or 3 (mod 8).

Otherwise, {—1, —1}#a? for any o € K2Op, in particular, {—1, —1}#1.

LEMMA 3.9. Let m = 3 (mod 4) and d = —1 (mod 8). Then fore =1
or 2, the Diophantine equation emZ?* = X2 — dY? has no solutions in Z.
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Proof. Consider the congruence
emZ* = X? —dY? (mod 8), ie., emZ?®=X?+Y? (mod 8).
Note that for any a € Z, a> =0 or 4 or 1 (mod 8). Then the result follows.
As a consequence of Lemma 2.1, Corollary 3.7 and Lemma 3.9, we have:

THEOREM 3.10. Let F = Q(v/—d) (d a positive square-free integer), and
m|d an integer. Then there is an o € KoOp with o = {—1,m} if and
only if there is an € € {1,2} such that the Diophantine equation emZ? =
X?% —dY? is solvable in 7.

Next, we consider the case when 2 € NF. Just as before, we always
discuss imaginary quadratic fields.

Let F = Q(v/—d) (d a positive square-free integer). Then 2 € NF if
and only if —d = u? — 2w? with u,w € Z (see [2]). When d is not a prime,

the symbol (E) denotes the Jacobi symbol. Note that (”Tw) = (“;l“’). For

simplicity of notation, denote by ¢ the Jacobi symbol (“JFT“’)

LEMMA 3.11. Let d be a positive square-free integer with —d = u? — 2w?,

where u,w € Z. Then there is a prime p =1 (mod 4) with ptd, pt(u+ w)
and ptuw such that the Diophantine equation

(3.9) X2 —dY? = (u+w)pZ?
is solvable in Z if d # —1 (mod 8), and
(3.10) X2 —dY? = (u+w)pZ?

is solvable in Z if d = —1 (mod 8).

Proof. Clearly, (wiw) = 1. Hence, if —d = 7 (mod 8), then by the

properties of the Jacobi symbol (see [6]), we have (“+w) = 1. For any prime

| d, we choose a prime p=1 (mod 4) with p{(u + w) and pfuw such that
P\ _ (utw

(7) = (*)-

Put d = 2d’ if 2| d. For any prime [ | d’, we choose a prime p with pt(u+
w), ptuw suc,h that (2) = (%) and p =1 (mod 8) if (%) =lorp=5
(mod 8) if (%) = —1. In both cases, (%) =1

If d = —1 (mod 8), we choose a prime p =1 (mod 4) such that pt(u +
w), ptuw and for any prime [|d, (%) = (M) We also have (;%) =1.

Then by Lemma 2.1, the result follows.

Remark. In the proof of the above theorem, we used the remarkable
fact that any arithmetic progression contains infinitely many primes.

By choice of X,Y, Z, a solution of equation (3.9) or (3.10), we can find
g,h € Z such that h =Y, (u+ w)g + wh = X and (g,h) = 1. Put

(3.11) a=g>+h% 0= (¢>—-h>+2h)w.
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Clearly, if d = —1 (mod 8) and (%) = —1, then (=) = 1. With-
out loss of generality, we can assume that ¢ = 1. Then
(qu+0)(ut+w) = ((ut+w)g+wh)? +(u? —2w?)h? = X2 —dY? = (u+w)pZ?,

hence,

(3.12) au+ 0 =pZ>.

Therefore,
0 2 0

(3.13) 2<u+> = O‘(L;L) =&+
« [0

where £,n € Q with a&, an € Z. It follows from ptuw and (g,h) = 1 that
(p, ) = (p,0) = 1. Moreover, we can assume that (a&,p) = (an,p) = 1.
Let

(3.14) r=alpZ® +an), y=a%,
(3.15) a=anpZ? —af), b=a’n,
where A = (g% — h? — 2gh)w. Note that A2 + 62 = 2a?w?. Then
(3.16) (z +yvV—d)? + (a + bV—d)? = (u + V—d)(2paZ?)?.
On the other hand, o?(£2 +n?) =0 (mod pZ?), hence,
2% + dy? = (an)\)? + da*n® = (an))? + (v — 2w?)a'n?
= (an)?*(\? + o*u? — 20%w?) = (an)?(—0% + o*u?)
=0 (mod pZ?)
and
22+ dy? = (a€pZ?)? — u?(0?€)? = 22 ((pZ%)? — ®u?) =0 (mod w).
Similarly,
a’> 4+ db* =0 (mod pZ?) and a®+db®> =0 (mod w).
LEMMA 3.12. With the notations as above, set E = x + y/—d, F =

a+ by —d and
5 [E B+
P2
Then 3% = {=1,u +V/—d} € K2OF and there is a 3’ € K2Op with 32 =
{—1,u + v/—d} if and only if the Diophantine equation
(3.17) (u+w)N? = 82 — dT?
1s solvable in Z.

Proof. We only need to consider non-dyadic places of F'. It is easy to see
that for any place P, if vp(E) # vp(F), then 7p 5 = 1 and if vp(E) = vp(F),
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then
(3.18) B = (_1)UP(aZ2pU)/F).

Obviously, if vp(E) = vp(F), then PNZ = p'|dZ*pw. We deduce
from a|y, a|b and (p,a) = 1 that for any place P, if PNZ = p'|«,
then 7p3 = 753, where P # P is the conjugation of P. Thus, multiplying
B by {—1,c} for a suitable ¢ € Z if necessary allows us to assume that
p3 = 1 for any PNZ = p'|a. On the other hand, if PNZ = p'|w,
vp(E) = vp(F), then vp(F) = vp(w), since 22 + dy? = a® +db* = 0
(mod w). Hence 7pf = 1 for any P NZ = p'|w. Finally, since (%) =1,
p = PP. It follows from 2% + dy? = a® + db®> = 0 (mod pZ?), (p,a) = 1
and (3.16) that if vp(E) + vp(F) # 0 then either vp(E) or vp(F) = 1
(mod 2). Hence, 7p8 = 1 and 750 = —1. If vp(E) = vp(F) = 0, then
mp = —1 and 7503 = 1. By Lemma 3.1, we see that there is a ' € K30
with 32 = {—1,u 4 v/—d} if and only if the Diophantine equation

(3.19) epN? = §% + dT?
is solvable in Z for ¢ = 1 or 2. This is equivalent to saying that the Dio-

phantine equation (3.17) is solvable in Z. This proves our theorem.

The following theorem is a consequence of the above lemma and Theo-
rem 3.6.

THEOREM 3.13. Let F' = Q(v/—d) (d a positive square-free integer) with
—d = u? — 2w? for u,w € Z, and let m|d. Then there is a 3 € KoOp with
B2 = {—1,m(u+ v—d)} if and only if the Diophantine equation

(3.20) m(u+w)N? = 5% — dT?
s solvable in 7.
Proof. First, we observe that if d = —1 (mod 8) and (“£%) = —1

together with m = 1 (mod 4), then (3.20) has no solutions in Z. In fact,
consider m(u + w)N? = S? — dT? (mod 4), i.e., 3N? = 52 + T? (mod 4);
then the result follows.

Next, ifd = —1 (mod 8) and (“£%) = —1 together withm =1 (mod 4),
then there is no 8 € KoF with 8% = {—1,m(u + v/—d)}.

Then, by Lemma 3.12 and Theorem 3.6, the assertion follows.

4. 4-rank K50Op. For any number fields F' a 4-rank KoOp formula is
proved in [7] (compare also [5]). For quadratic field, we refer to [1], [11].
Here, we apply Theorems 3.10 and 3.13 to determine the 4-rank K>Op for
any imaginary quadratic field F. Let F' = Q(v/—d) (d a positive square-free
integer). Put d’ = d or d according as 2|d or not. Write K = {m | m|d,
m#1, —d',2¢fm} and V = {(u + vV—d)m | —d = u? — 2w? with u,w € Z,
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w>0,me KU{l,—d}} and put
K ={ke€ K|ekZ* = X? —dY? is solvable in Z for ¢ = 1 or 2},
Vo= {m(u+v—=d)|m(u++v—d) €V,
m(u+w)Z* = X? — dY? is solvable in Z},

V = {m(u+w) | m(u+v—d) € Vo}.

THEOREM 4.1. With the above notations, let F = Q(v/—d) be an imag-
inary quadratic field. Then r4 = 4 — rank KoOp = log, ’"1'2, where r =
#F(HKUV).

Proof. For any positive integer n, let ,,(K2Op) denote the subgroup

generated by all elements of order n. By [2], 2(K20p) can be generated by
the following elements:

{_Lk} (k € K)v
{~1, m(u+ vV—=d)} (m(u+V—d) €V if —d=u?—2w? with u,w € 7).

Since [A : F?] = 4, there are the only two elements 6, —d'/d € K or
5, (=d'/8)(u++/—d)? € Vq satisfying 6, —d/§ € A. Suppose that ay,...,a,,
generate 4(K20F). Then a? = {—1,b;} € o(K20F) (1 <i <ry). Set by = 6.
Then by Theorems 3.10 and 3.13,

#{b“ bzk,—d/bl1 bzk | il,...,ik € {0,1,...,7"4}}

=#(KUVo) =#(KUV).

It is easy to verify that r = #(K UV) = 2"%2 — 2. So r4 = log, %2 as
desired.

COROLLARY 4.2. 74 = 0 if and only if r = #(K UV) = 2.

COROLLARY 4.3. 14 = 5 if and only if K = K and #V = #V.

5. The structure of (K>Op). In this section, we apply Theorems 3.10,
3.13 and 4.1 to determine the structure of (K30 )2 for imaginary quadratic
fields F'.

THEOREM 5.1. Let F = Q(v/—d) be an imaginary quadratic field with
d either pq or 2pq or pgr or 2pqr, where p,q,r are distinct odd primes. If
2 € NF, put v = v+ w, where u,w € Z are such that —d = u® — 2w?. Let §
be an element such that A = F2U2F2USF?2U25F 2. Then we have the
tables given below.

If F is a field as in Table 111, then ro = 2, r4 = 0, otherwise (except for
the case d = 2pqr with p,q,r =7,5,3 (mod 8)) 1o =2, ry =1 .

Notes. 1. Only when 2| d and d/2 =1 (mod 8), the alternative () can
occur in Table II.
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Table I
F p,q (mod 8) r9 T4 4]
Qv=pa) 5,7 Lo | (e
Q(v/~200) 3,7 Lo | (B)r
Q(v=pa) 3,5 [2] 1 0 —p
5,5 1 0 -1
Q(v—2pq) 3,5 1 0 p
3,3 1 0 )
Table I1
F p,q (mod 8) The Legendre symbols r4 ()
V) = — () (% 0
PN ENCESG
1 (3)=(3) !
Y)=—lor (%)=-1 1
g L)
(3)=(3)=1 2
a) — _ 5= _
L ((pq)) 1 0 ( 1)
1) =1 1
Q(v=paq) .
(1) o=
Q(v—2pq) L5
(3 1
(1) ;
1,7 v) = 1 0
W=
() 1
- (-0 | o
-0 1
3,3 1
Q(v=pa) 55 )

2. If p=¢q (mod 8) (or ¢ =7 (mod 8) or p =g =r (mod 8)), then the
condition on the Legendre symbols, say (-), should be understood as: if there
is a choice of p,q,r with the Legendre symbols satisfying (). For example,
in the case 7,7,5 in Table III, the condition on the Legendre symbol is
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Table ITI
F p,q,7 (mod 8) Thsyllfggflsdre 5
T | B @ e
2N O ETIO B IO R
) N N (e B B BN OO
Q(v=2pqr) o (4) =1 (L)t (2) =1
N IO B R IO
_ (5= (it () =1
5 [@-0-G) E
755 (B)=-1 | rit(d) =1 —pif(})=-1
73,3 (%):1 —p if % = -1 *Tlf(%):l
5,5,3 ) = -1 F(9) = —1; (9)qif (4) =1
Qv/=par) () o (#) (£)aif (1)
P8 (B)=-1  |-pit(5) =1 (§)rit () =1
53,1 (%_):*1 rif (5):*1;.*(1if o)=1
(5) =1 pif (1) =
N BT IO
G
s | =1 | i@
s | (B [ -r (Per()-
Qv=2pgr)| 55,1 (22) = -1 1
s | =t |G =n ()=
5.3.1 (5)=-1 rif (£) =—1; qif (£) =1
()= )=
3,3,1 (22) =1 1
(B) = —1. In practice, we identify (¢) = —1 with (2) = —1. Hence, if
() = —1 then we also have ro = 0.

Proof of Theorem 5.1. We will repeatedly use the notations K, K,
V and V which are defined in Section 4.
It is not hard to verify the correctness of the statement r4 = 0 when §
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Table IV
F p,q,7 (mod &) The Legendre symbols T4 1)
7,5,3 1
== [0 |
5,5,5 (B=F)=0F=1 |2
Q(/=p7) otherwise 1
—pqr
B-(-1 >
otherwise 1
EOENNE
otherwise 1
H=(=1_ |0 |
Q(v/—2pgr) 5,5,5 (%) - (g) - (;) — 1| 9
otherwise 1
(H=G)=—1 |0 |-
() =()=1 [0 |-
(H-(-(=-1 |
Q(v/=pgr) otherwise 1
Q(v=2pqr) (2)=(4)=—1 0 | -1
(=)= o |-
H=()=(=1 |
otherwise 1

has been listed. In fact, one can easily check that K = {§,—d/d} (or K =
{6, —d/(26)}) and V = {). Then the result follows from Theorem 4.1.

On the other hand, r4 = r if and only if K = K and V = V. Hence, it
is also easy to verify the correctness of the statement r4 = ro.

Now, for Tables I, II we only need to consider the following cases: 1,1;
1,7; 7,7.

The case 1,1. Clearly, 7, =2 and —1 € K. Suppose (£) = —1. Then

il P
pZ? = X? — dY? has no solutions in Z, hence +p € K, so r4 < 1. If (%) =
(%) =1, then v € V, hence 74 > 1, therefore ry = 1. If (%) = (%) = —1,
then pv € V, hence 74 = 1. If (%) = —(g), then V = 0, hence 4 = 0.

Suppose (%) = 1. Then £p € K, hence 74 > 1. If (%) = -1, or (g) = -1,
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Table V

F p,q,7 (mod 8) The Legendre symbols T4

—~
S
~—
Il
—~
~—
—

=~
=~
N
~—
B
SN—
Il
—
—
IS4
SN—
I
—
sle | sle | sle
SN—
=

—
33
SN—
I
—
—
ST
SN—
I
—
S
SN—
I
|
—_
—
Qe
SN—
I
—
SN—
=

otherwise 0
) =(2), ;’ =112
(g) - (%) =1 (P) otglil?Wl(se) 1
7,7,1 -
otherwise (? . !
() =100 |0
Q(v/=pgr) (2) = (2) = (2) -1 () =(2)=1 2
Q(v/—2pqr) P P a otherwise 1

nes | (@i (-Gt (-1 [

otherwise

v v

(3)=()=(5) =1 (3) —O(t}qlzrv—m(er) =1
LLL  [(§)=-1,(5)=(5)=1 () _Ot(izwé;;) =1 :

Gir)=1 |1
(i) =-10_[9

otherwise

then v € V, hence 74y < 1, s0 74 = 1. If (%) = (g) =1, then K = K and
V =V, hence ry = 2.

The case 1,7. We have r, = 2 and —1 ¢ K, hence r4, < 1. Suppose
(%) = —1. Then +p ¢ K, hence r4 = 0. Suppose (%) =1.1If (%) = —1, then

= {p,—q},V = 0, hence ry = 0. If (%) = (g) =1, then v € K, hence
rg >1,s0ry =1.
The case 7,7. We have r, = 2 and —1 ¢ K, hence r, < 1. Suppose
(%) = 1. Then q € K. If (%) = (g) = 1, then v € V; if (%) = (g) = -1,
then —v € V, hence 74 > 1, so ry = 1; if (%) = —(g), then V = (), hence
T4 = 0.

The proof of Table III is direct.
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For Table IV, we only need to consider the three cases: 7,5,3, 5,5,1 and
3,3,1 (d=pgr). B
For the case 7,5,3, we have —1 ¢ K, hence r4 < 1. But it is easy to see
that —(%)p, (g)q €K,V =V=0, hencery >1,s0ry =1.
) -

For the case 5,5,1 or 3,3,1, we have —1 € K,V =V = (. If
(%) = 1, then K = K, hence r4 = 2. Otherwise, we have (f%) = —1 or
= (ﬂ) =1
r )

() =-11I (%) = -1, (I) = L then £p ¢ K, £q € K; if (¥)
then £r € K, hence, we have ry = 1.

Finally, we consider Table V. Clearly, in any case, ro = 3. Without loss
v

of generality, when 21{d, or pgr =7 (mod 8), we can assume (W) =1.0On

the other hand, when d = 2pqr with pgr =1 (mod 8), if (p'“?) = —1, then
it is easy to see that V = (). Hence, we always assume (%) =1
The case 7,7,7. We have —1,p,q,7 ¢ K, hence r, < 1. Suppose

(2) = (z) = (%), then +p, +q,+r € K, hence r4 = 0. Since (%) =1, there

r q
are the following possibilities:

-0+ 0= (-

Suppose (%) = 1. Then —r € K. If (%) = (g) = (%) =1, then
v € V, and if (%) = -1, (3) =1, then —pv € V, hence r4 > 1, so
ra=11(2) = (¢) = -1, (¥) =1L, 0r (¥) = (%) = =1, (3) = 1, then
V = (), hence 74 = 0.

Similarly, suppose (

1, then v € V, and if
rqy = 1. Otherwise, r4 = 0.
Suppose (2) = (g) = 1. Then —q € K. If (%) = (9) = (9) =1, then

q q r
v € V, and if (%) = (%) = —1, (%) =1, then —pv € V, hence ry = 1.
Otherwise r4 = 0.

The case 7,7,1. We have —1 ¢ K. Suppose (%) = —1. Then +p ¢ K.
If (g) = 1, then (%)q € K and =+, (g)q ¢ K, and if (%) = —1, then
—r € K and +q,r € K. Hence r4 < 1. If (%) = (%) = (%) =1, thenv € V;
if (%) = (9) = —1, and (%) =1, then —v € V; if (%) = (3) = —1 and

q s

(g) = 1. Then —r € K. If (%) = (g) - (2) -
) = (%) = -1, (%) = 1, then —pv € V, hence

—~ 3
QS ~—
Il

(%) =1, then (g)pv cV;if (%) = (%) =—1and (%) =1, then (%)p’u cV.
Hence 74 > 1. So 4 = 1. This discussion also works for (g) = —1.

Suppose (B) = (%) = 1. Then (g)p, (%)q € K. If () = —1, then
either (%) = —1 and (g) =1, or (%) =1 and (g) = —1. In both cases,
+pv, kqu, £rv € V. If (%) = 1, then either (%) = (g) =1lor (%) = (g) =

—1, therefore either v € V or —v € V, hence r4 > 2, s0 14 = 2.
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The case7,1,1. We have —1 ¢ K, hence r4 < 2. Suppose (%) = (%) =

(g) = 1. Then —p,q,r € K. If (%) = (%) = (%) =1, then v € V, hence
ry > 2, 80 ry = 2. Otherwise, v ¢ V, hence £pv,+qv,trv ¢ V, since
—p,q,r € K. Hence ry = 1.

Suppose (%) = (%) =—1lor (%) = (%) =—1lor (%) = (%) = —1. Then
+p,tq, +r € K, hence r4 = 0.

Suppose (%) = —1 and (%) = (g) =1. Then r € K. If (%) = (%) =
(%) =1, then v € V; (%) (%) = —1 and (%) = 1, then quv € V,
hence r4, = 1. Otherwise, V = 0, hence r, = 0. Suppose (g) = —1 and
(%) = (5) = 1. Thenqel? If(%) = (g) = (%) =1, then v € V, and
if (%) = 1 and ( ) ( ) = —1, then rv € V, hence 4 = 1. Otherwise,

= (), hence r4 = 0.

The case 1,1,1. We have —1 € K. Suppose (%) = (%) = (g) = 1.

Then K = K, hence r4 > 2. If (%) = (%) = (%) =1, then V =V, hence

ry = 3. Otherwise, v ¢ K, hence ry = 2.

Suppose (7) = (%) =-1, (%) = 1. Then +p, +q,+r € K, hence r4 < 1.
If (”) ( )= (%) =1, thenv € V; if (%) = (g) = —1and (%) =1, then
pv e V; lf( ):(f)z—land (%)zl,thenqvev;if(g):(y):—1

and (p) =1, then 7v € V. In any case, 74 > 1, so ry = 1.

Suppose (%) = (%) = (%) = —1. Then ry < 1.1If ( )= (g)
thenvev;if(%) ( )z—land( )—1 thenrveVﬁ(E)
and (%) =1, then qv € V; if (q) (;) = —1 and (5) =1, thenpv € V. In
any case, 74 > 1,s0 4 = 1.

Suppose (%) = —1 and (%) = (g) = 1. Then +r € K, +p,+q ¢ K. If
(%) = (g) = (%) =1, then v € V; if (%) = (g) = —1 and (%) =1, then
qu € V. In both cases, r4 = 2. Otherwise V = (), hence r4 = 1.

This concludes the proof of the theorem.

SYS

Remarks. 1. Our method can be applied to any imaginary quadratic
field.
2. Similar result for real quadratic fields have been obtained by the author

(see [12]).
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