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1. Introduction and main result. Number theory plays an important
role in the theory of various methods for generating uniform pseudorandom
numbers in the interval [0, 1). A well-known example is provided by the
classical linear congruential method for the generation of uniform pseudo-
random numbers, in which number-theoretic techniques are heavily used
in the analysis of distribution properties and of the lattice structure (see
[6, Chapter 3]). The family of nonlinear congruential methods represents
another area of the theory of pseudorandom number generation where sig-
nificant applications of number theory occur. These nonlinear congruential
methods of generating uniform pseudorandom numbers have been studied
intensively during the last years. Reviews of the development of this impor-
tant area can be found in the survey articles [1–3], [7], [8], [10] and in the
monograph [9]. The earliest nonlinear congruential approach is the quadratic
congruential method proposed by Knuth [6, p. 25], which is considered in
the present paper in the case of an odd prime power modulus m = pω with
some prime p ≥ 3 and an integer ω ≥ 2. Let Zn = {0, 1, . . . , n− 1} for inte-
gers n ≥ 1. For parameters a, b, c, y0 ∈ Zm a quadratic congruential sequence
(yn)n≥0 of elements of Zm is defined by

yn+1 ≡ ay2
n + byn + c (modm), n ≥ 0.

A sequence (xn)n≥0 of quadratic congruential pseudorandom numbers in the
interval [0, 1) is obtained by xn = yn/m for n ≥ 0. The sequences (xn)n≥0

and (yn)n≥0 are purely periodic with the maximum possible period length
m if and only if the conditions a ≡ 0 (mod p), b ≡ 1 (mod p), c 6≡ 0 (mod p),
and a 6≡ 3c (mod 9) for p = 3 are satisfied [6, p. 34]. We assume from now
on that these conditions for the maximum possible period length hold.

Statistical independence properties of the generated sequences, which are
very important for their usability in a stochastic simulation, can be analysed
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based on the discrepancy of s-tuples of successive pseudorandom numbers
with s ≥ 2. For N arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)s the discrepancy
is defined by

DN (t0, t1, . . . , tN−1) = sup
J
|FN (J)− V (J)|,

where the supremum is extended over all subintervals J of [0, 1)s, FN (J) is
N−1 times the number of points among t0, t1, . . . , tN−1 falling into J , and
V (J) denotes the s-dimensional volume of J . In the present paper the pairs

xn = (xn, xn+1) ∈ [0, 1)2, n ≥ 0,

of successive quadratic congruential pseudorandom numbers are considered
and the abbreviation

D(2)
m = Dm(x0,x1, . . . ,xm−1)

is used.
In [4] upper and lower bounds for the discrepancy D(2)

m have been estab-
lished. These results suggest that it is reasonable to choose the parameter a
in such a way that a 6≡ 0 (mod p2). Then the upper bound for D(2)

m has the
form

D(2)
m < (4 + 5p−3/2)m−1/2p1/2

(
1
π

logm+
1
5

)2

+ 2m−1,

i.e., the upper bound is of an order of magnitude m−1/2p1/2(logm)2. It
should be observed that the discrepancy ofm independent and uniformly dis-
tributed random points from [0, 1)2 is almost always of an order of magnitude
between m−1/2 and m−1/2(log logm)1/2 according to the law of the iterated
logarithm for discrepancies [5]. The following main result of the present pa-
per provides an improved upper bound for D(2)

m which is of an order of mag-
nitude m−1/2(p1/2 + p−1/2(logm)2). Hence, for ω = ω(p) ∼ p1/2(log p)−1,
its order of magnitude can be made as small as m−1/2 logm.

Theorem. The discrepancy D(2)
m of pairs in the quadratic congruential

method with modulus m = pω and a 6≡ 0 (mod p2) satisfies

D(2)
m < (4 + 5p−3/2)m−1/2

×
(

1
9
p1/2 +

1
π2 p

−1/2
(

logm+
2π
3

log p
)

(logm+ 1.395)
)

+ 2m−1.

2. Auxiliary results. First, some further notation is necessary. For
integers k ≥ 1 and q ≥ 2 let Ck(q) be the set of all nonzero lattice points
(h1, . . . , hk) ∈ Zk with −q/2 < hj ≤ q/2 for 1 ≤ j ≤ k. Define

r(h, q) =
{
q sin(π|h|/q) for h ∈ C1(q),
1 for h = 0,
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and

r(h, q) =
k∏

j=1

r(hj , q)

for h = (h1, . . . , hk) ∈ Ck(q). For real t the abbreviation e(t) = e2πit is used,
and u · v stands for the standard inner product of u,v ∈ Rk. Subsequently,
two known results are stated which follow from [9, Theorem 3.10] and [4,
Lemma 7(a)], respectively. The third lemma is crucial for the proof of the
main result.

Lemma 1. Let N ≥ 1 and q ≥ 2 be integers. Let tn = yn/q ∈ [0, 1)k with
yn ∈ Zkq for 0 ≤ n < N . Then the discrepancy of the points t0, t1, . . . , tN−1

satisfies

DN (t0, t1, . . . , tN−1) ≤ k

q
+

1
N

∑

h∈Ck(q)

1
r(h, q)

∣∣∣
N−1∑
n=0

e(h · tn)
∣∣∣.

Lemma 2. Let (xn)n≥0 be the sequence of pairs of successive quadratic
congruential pseudorandom numbers as defined above. Let h = (h1, h2) ∈
C2(m) with gcd(h2, p

ω−1) = pν and ν ∈ {0, 1, . . . , ω − 1}. Then

∣∣∣
m−1∑
n=0

e(h · xn)
∣∣∣ =

{
p(ω+ν+1)/2 for h1 + h2 ≡ 0 (mod pν+1),
0 for h1 + h2 6≡ 0 (mod pν+1).

Lemma 3. Let q = pα with some prime p ≥ 3 and an integer α ≥ 1. Then
∑

h=(h1,h2)∈C2(q)
h1h2 6≡0 (modp)
h1+h2≡0 (modp)

1
r(h, q)

<
4
π2p

(
log q +

2π
3

log p
)

(log q + 1.395) +
4
9
.

P r o o f. (i) First, two preliminary estimates are established. Straightfor-
ward calculations show that

(p−1)/2∑

d=1

p

d(p− d)
<

p

p− 1
+

p/2∫
1

p

x(p− x)
dx

= log p+
p

p− 1
− log

(
p

p− 1

)
< log p+ 1.095

and
(p−1)/2∑

d=1

p2

d2(p− d)2 <
p2

(p− 1)2 +
p/2∫
1

p2

x2(p− x)2 dx

= 2 +
p

(p− 1)2 +
2
p

log(p− 1)
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=
2
p

log p+ 2 +
1
p

(
p2

(p− 1)2 − log
(

p2

(p− 1)2

))

<
2
p

log p+ 2 +
1.44
p
.

(ii) Now, for α ≥ 2 and any integer d ∈ {1, . . . , p− 1} one obtains

(q−1)/2∑

h=1
h≡d (modp)

1
r(h, q)

<
1

r(d, q)
+

(q−2d)/(2p)∫
0

1
q sin(π(px+ d)/q)

dx

=
1

r(d, q)
− 1
πp

log(tan(πd/(2q))) <
1

r(d, q)
− 1
πp

log(πd/(2q))

<
1

q sin(πd/q)
+

1
πp

log q − 0.143
p

<
1
3d

+
1
πp

log q − 0.143
p

,

where in the last step 6d ≤ q has to be assumed. It follows by inspection
that the resulting estimate remains valid for d = 2 and q = 9. Therefore

∑

h∈C1(q)
h≡d (modp)

1
r(h, q)

=
(q−1)/2∑

h=1
h≡d (modp)

1
r(h, q)

+
(q−1)/2∑

h=1
h≡p−d (modp)

1
r(h, q)

<
p

3d(p− d)
+

2
πp

log q − 0.286
p

for α ≥ 2 and any d ∈ {1, . . . , p− 1}.
(iii) Finally, it follows from the estimates in (ii) and (i) that for α ≥ 2,
∑

h=(h1,h2)∈C2(q)
h1h2 6≡0 (modp)
h1+h2≡0 (modp)

1
r(h, q)

=
p−1∑

d=1

∑

h1∈C1(q)
h1≡d (modp)

∑

h2∈C1(q)
h2≡p−d (modp)

1
r(h1, q)r(h2, q)

<

p−1∑

d=1

(
p

3d(p− d)
+

2
πp

log q − 0.286
p

)2

<
2
9

(
2
p

log p+ 2 +
1.44
p

)
+

4
3

(
2
πp

log q − 0.286
p

)
(log p+ 1.095)
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+ p

(
2
πp

log q − 0.286
p

)2

<
4
π2p

(
log q +

2π
3

log p
)

(log q + 1.395) +
4
9
,

which is the desired result.
(iv) For α = 1, it follows from sinx > x(π − x)/π for x ∈ (0, π) and the

second part of (i) that

∑

h=(h1,h2)∈C2(p)
h1h2 6≡0 (modp)
h1+h2≡0 (modp)

1
r(h, p)

= 2
(p−1)/2∑

d=1

1
(p sin(πd/p))2

<
2
π2

(p−1)/2∑

d=1

p2

d2(p− d)2 <
4
π2p

(log p+ 0.72) +
4
π2 ,

which completes the proof.

3. Proof of the Theorem. First, Lemma 1 is applied with k = 2,
q = N = m, and tn = xn for 0 ≤ n < m. This yields

D(2)
m ≤

2
m

+
1
m

∑

h∈C2(m)

1
r(h,m)

∣∣∣
m−1∑
n=0

e(h · xn)
∣∣∣

=
2
m

+
1
m

ω−1∑
ν=0

∑

h=(h1,h2)∈C2(m)
gcd(h2,p

ω−1)=pν

1
r(h,m)

∣∣∣
m−1∑
n=0

e(h · xn)
∣∣∣

=
2
m

+
p1/2

m1/2

ω−1∑
ν=0

pν/2
∑

h=(h1,h2)∈C2(m)
gcd(h2,p

ω−1)=pν

h1+h2≡0 (modpν+1)

1
r(h,m)

=
2
m

+
p1/2

m1/2

ω−1∑
ν=0

p−3ν/2
∑

g=(g1,g2)∈C2(pω−ν)
g1g2 6≡0 (modp)
g1+g2≡0 (modp)

1
r(g, pω−ν)

,

where in the penultimate step Lemma 2 has been used. Now, it follows from
Lemma 3 that

D(2)
m <

2
m

+
p1/2

m1/2

ω−1∑
ν=0

p−3ν/2

×
(

4
π2p

(
log pω−ν +

2π
3

log p
)

(log pω−ν + 1.395) +
4
9

)
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<
2
m

+
p1/2

m1/2

( ∞∑
ν=0

(p−3/2)ν
)

×
(

4
π2p

(
logm+

2π
3

log p
)

(logm+ 1.395) +
4
9

)

<
2
m

+
p1/2

m1/2

(
1 +

5
4p3/2

)

×
(

4
π2p

(
logm+

2π
3

log p
)

(logm+ 1.395) +
4
9

)
,

which yields the desired result.
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