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1. Introduction. Let p(x) and u(x) be two non-negative summable
functions defined on the interval [a, b], which assume the value zero only on a
set of measure zero. Let φ1(x), φ2(x), . . . be a finite or denumerably infinite
system of linearly independent functions defined on [a, b] which belong to
L2

p(x)([a, b]) ∩ Lp
u(x)([a, b]), p ≥ 1 (Lq

v(x)([a, b]) is the class of those functions
f(x) for which the product v(x)|f(x)|q is summable).

Let {ωk(x)} be the orthonormal system with weight p(x) that is obtained
by the orthogonalization of the original system {φk(x)} according to the
Schmidt procedure. Then

(1) ωk(x) = β1kφ1(x) + . . . + βkkφk(x), βkk = (∆k−1/∆k)1/2,

and

(2) φm(x) =
m∑

s=1

bmsωs(x), bmm = (∆m/∆m−1)1/2,

where ∆k is the Gram determinant of the system of functions {φi(x)}k
i=1,

∆0 = 1.
We consider integrals of the type

(3)
b∫

a

u(x)|Qn(x)|p dx, p ≥ 1,

where Qn(x) is a non-trivial generalized polynomial , i.e. a function of the
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218 F. Luquin

form

Qn(x) =
n∑

k=1

αkφk(x)

with coefficients α1, . . . , αn not simultaneously zero.
We prove the following general theorem:

Theorem 1. There exists a non-trivial generalized polynomial Qn(x)
with rational integral coefficients such that

(4) In =
b∫

a

u(x)|Qn(x)|p dx ≤ np−1∆p/(2n)
n

n∑
s=1

As,

where ∆n is the Gram determinant of the system {φk(x)}n
k=1 with respect

to the weight function p(x), As =
∫ b

a
u(x)|ωs(x)|p dx and {ωk(x)} is the or-

thonormal system with weight p(x) that is obtained by the orthogonalization
of the system {φk(x)}.

As applications of Theorem 1 we obtain bounds of the values of the
integral (3) for integral polynomials Qn(x) =

∑n
k=0 αkxk on certain intervals

and for several weight functions p(x) and u(x).

(i) In [12], Theorem 1 was proved for {φk(x)} ⊂ C([a, b]) and p(x) =
u(x) = 1. The case p = 2 was proved by E. Aparicio [2, 3].

(ii) Concerning the existence of polynomials with rational integral coeffi-
cients on intervals of length less than 4 and with arbitrarily small norms (see
[9, 6, 2, 8, 14, 4, 5]), D. Hilbert [9] proved the following theorem: If b−a < 4,
then for all 0 < δ < 1, there exists a polynomial Pn(x) with rational integral
coefficients, not simultaneously zero, such that

∫ b

a
P 2

n(x) dx < δ < 1.

In the case of uniform norm a similar theorem was proved by Fekete [6],
see also [4]. The importance of these polynomials may be seen in [7].

2. Proof of Theorem 1. We consider an integral of type (3). Substi-
tuting in (3) the expressions (2) for the functions φm(x), we obtain

In =
b∫

a

u(x)
∣∣∣ n∑

k=1

αk

k∑
s=1

bksωs(x)
∣∣∣p dx

and by changing the order of summation we get

(5) In =
b∫

a

u(x)
∣∣∣ n∑

s=1

[ n∑
k=s

bksαk

]
ωs(x)

∣∣∣p dx
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and hence

(6) In ≤
b∫

a

u(x)
[ n∑

s=1

|Ls||ωs(x)|
]p

dx,

where

(7) Ls =
n∑

k=s

bksαk (s = 1, . . . , n).

By Minkowski’s Linear Forms Theorem [13], there exists a system of rational
integers α1, . . . , αn, not simultaneously zero, such that

(8) |Ls| ≤ ∆1/n (s = 1, . . . , n),

where ∆ is the determinant of the system (7).
By (2), bkk =

∫ b

a
φk(x)ωk(x)p(x) dx and the determinant ∆ = b11 . . . bnn

becomes ∆ = ∆
1/2
n , and therefore,

(9) |Ls| ≤ ∆1/(2n)
n (s = 1, . . . , n).

From (6) and (9) and taking into account the inequality( n∑
s=1

|as|
)p

≤ np−1
n∑

s=1

|as|p,

(4) follows.

R e m a r k 1. If p = 2 and p(x) = u(x), since the system {ωk(x)} is
orthonormal, from (5) and (9) we can obtain (see [2, 3])

(10) In =
n∑

s=1

( n∑
k=s

bksαk

)2

≤ n∆1/n
n .

R e m a r k 2. If the functions u(x) and {φk(x)} belong to C([a, b]), then

Jn = max
a≤x≤b

∣∣∣u(x)
n∑

k=1

αkφk(x)
∣∣∣(11)

≤ ∆1/(2n)
n max

a≤x≤b

( n∑
s=1

|u(x)ωs(x)|
)
≤ nMn∆1/(2n)

n ,

where
Mn = max

a≤x≤b
1≤s≤n

|u(x)ωs(x)|.

On the other hand, for a fixed natural number n, we may consider σn

defined by

(12) σ−np
n = inf

Qn

b∫
a

u(x)|Qn(x)|p dx,
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where the infimum is over all non-trivial generalized polynomials with ra-
tional integral coefficients.

We then have the following result:

Corollary 1. The inequality

(13) σ = lim
n→∞

σn ≥ lim
n→∞

∆−1/(2n2)
n lim

n→∞

( n∑
s=1

As

)−1/(pn)

holds if the limits exist.

R e m a r k 3. If p(x) = u(x) = (1 − x2)−1/2, estimate (13) is optimal.
Consider the system {φk(x)} = {T̂k−1(x)}, k = 1, . . . , n, of normalized or-
thogonal Chebyshev polynomials with positive leading coefficient (as usual,
we shall denote by R̃n(x) a polynomial of degree n normalized so that its
leading coefficient is 1). Then

σ−np
n = inf

αk∈Z

1∫
−1

(1− x2)−1/2
∣∣∣ n∑

k=1

αkT̂k−1(x)
∣∣∣p dx

≥ ‖T̃n−1(x)‖−p
2,p(x) inf

0 6=αn∈Z
|αn|p

× inf
ck∈R

1∫
−1

(1− x2)−1/2|T̃n−1(x) + cn−2T̂n−2(x) + . . . |p dx

≥ ‖T̃n−1(x)‖−p
2,p(x)

1∫
−1

(1− x2)−1/2|T̃n−1(x)|p dx.

This last inequality follows by Rivlin [11, p. 81]. Here ‖ · ‖p,v(x) is the
Lp-norm with weight v(x). In view of Achieser [1, p. 251],

σ−np
n ≥

(
2
π

)p/2 Γ
(

1
2

)
Γ

(
p+1
2

)
Γ

(
p
2 + 1

) (n ≥ 2)

and hence
σ = lim

n→∞
σn ≤ 1.

But for this case ∆n = 1, and

As =
1∫

−1

(1− x2)−1/2|T̂s−1(x)|p dx =
(

2
π

)p/2 Γ
(

1
2

)
Γ

(
p+1
2

)
Γ

(
p
2 + 1

) ,

A1 = π1−p/2.

Therefore the limit as n →∞ of the right-hand side of (13) is also 1.

3. Theorems of Hilbert’s type. Let u(x) = p(x) = [(x−a)(b−x)]−1/2

and consider the system {φk(x) = xk}, k = 0, 1, . . . , on the interval [a, b].
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Then the polynomials {ωk(x)} which form an orthonormal system are the
Chebyshev polynomials {T̂k(x)}, k = 0, 1, . . . (see [10, 11]). Since

bkk =
b∫

a

[(x− a)(b− x)]−1/2xkT̂k(x) dx =
(

b− a

4

)k

(2π)1/2,

b00 = π1/2,

it is clear that

∆n+1 =
n∏

k=0

b2
kk = πn+12n

(
b− a

4

)n(n+1)

.

Moreover,

As =
(

2
π

)p/2 Γ
(

1
2

)
Γ

(
p+1
2

)
Γ

(
p
2 + 1

) , A0 = π1−p/2.

Applying the inequality (4), we then have the following result:
Theorem 2. For every natural number n, there exists a non-trivial poly-

nomial Qn(x) =
∑n

k=0 αkxk with rational integral coefficients such that
b∫

a

[(x− a)(b− x)]−1/2|Qn(x)|p dx

≤
(

π + 2p/2 Γ
(

1
2

)
Γ

(
p+1
2

)
Γ

(
p
2 + 1

) n

)
2pn/(2n+2)(n + 1)p−1

(
b− a

4

)pn/2

(p = 1, 2, . . .).

We note that the limit as n →∞ of the right-hand side is zero if b−a < 4.
Thus we can reword Theorem 2 in the following way (see (ii)):

Theorem 3. If b−a < 4, then for all 0 < δ < 1, there exists a polynomial
Qn(x) =

∑n
k=0 αkxk with rational integral coefficients, not simultaneously

zero, such that
b∫

a

[(x− a)(b− x)]−1/2|Qn(x)|p dx ≤ δ < 1 (p = 1, 2, . . .).

It is clear that in the case p = 2 by (10) we can get
b∫

a

[(x− a)(b− x)]−1/2Q2
n(x) dx ≤ π(n + 1)2n/(n+1)

(
b− a

4

)n

.

Theorem 4. For every natural number n, there exists a non-trivial poly-
nomial Qn(x) with rational integral coefficients, of degree ≤ n, such that

In+1 =
b∫

a

|Qn(x)| dx ≤ 2
(

b− a

2

)
(n + 1)

(
b− a

4

)n/2

.
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P r o o f. Consider the Chebyshev polynomials {Ûk(x)} of the second kind
which form an orthonormal system with weight p(x) = [(x − a)(b − x)]1/2

on the interval [a, b] (see [10, 11]).
From Theorem 1 it follows that

(14) In+1 ≤ ∆
1/(2n+2)
n+1

n∑
s=0

As.

Since

bkk =
b∫

a

[(x− a)(b− x)]1/2xkÛk(x) dx

= (π/2)1/2

(
b− a

2

)(
b− a

4

)k

, k = 0, 1, . . . ,

it follows that

(15) ∆n+1 = (π/2)n+1

(
b− a

2

)2(n+1)(
b− a

4

)n(n+1)

.

Moreover,

As =
b∫

a

|Ûs(x)| dx = 2(2/π)1/2, s = 0, 1, . . . ,

and therefore

(16)
n∑

s=0

As = 2(2/π)1/2(n + 1).

From (14)–(16) the theorem follows.

We next turn to the least-squares approximation problem on an interval:

Theorem 5. For every natural number n, there exists a non-trivial poly-
nomial Qn(x) =

∑n
k=0 αkxk with rational integral coefficients such that

In+1 =
b∫

a

[(x− a)(b− x)]1/2Q2
n(x) dx ≤ π

2

(
b− a

2

)2

(n + 1)
(

b− a

4

)n

.

P r o o f. By Remark 1 we have

(17) In+1 ≤ (n + 1)∆1/(n+1)
n+1 .

Let {Ûk(x)} be the orthonormal system obtained by the orthogonalization
of {xk} with weight [(x− a)(b− x)]1/2. Since

bkk = (π/2)1/2

(
b− a

2

)(
b− a

4

)k

, k = 0, 1, . . . ,
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it follows that

(18) ∆n+1 = (π/2)n+1

(
b− a

2

)2(n+1)(
b− a

4

)n(n+1)

.

From (17) and (18) the theorem follows.

Theorem 6. For every natural number n, there exists a non-trivial poly-
nomial Qn(x) =

∑n
k=0 αkxk with rational integral coefficients such that

In+1 =
b∫

a

(
b− x

x− a

)1/2

Q2
n(x) dx ≤ π

(
b− a

2

)
(n + 1)

(
b− a

4

)n

.

P r o o f. In this case we consider the polynomials {Ŵk(x)} which form
an orthonormal system on [a, b] with weight [(b − x)/(x − a)]1/2 (see [10,
11]). But now

bkk =
b∫

a

(
b− x

x− a

)1/2

xkŴk(x) dx = π1/2

(
b− a

2

)1/2(
b− a

4

)k

,

and therefore

∆n+1 = πn+1

(
b− a

2

)n+1(
b− a

4

)n(n+1)

,

so that (10) becomes

In+1 ≤ π

(
b− a

2

)
(n + 1)

(
b− a

4

)n

.

Following the notation used by Achieser [1, pp. 249–254], let

ω(x) =
(

1− x

a1

)(
1− x

a2

)
. . .

(
1− x

a2q

)
be a polynomial which is positive in (−1, 1), and can have simple roots at
one or both ends of (−1, 1). The polynomial ω(x) is of degree 2q − 1 if
a2q = ∞ and |ak| < ∞, k = 1, . . . , 2q − 1. Set

x =
1
2

(
v +

1
v

)
(|v| ≤ 1),

(19) ak =
1
2

(
ck +

1
ck

)
(|ck| ≤ 1, k = 1, . . . , 2q),

Ω(v) =
2q∏

k=1

√
v − ck,
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(19)
[cont.]

Lm =


2−m+1

2q∏
k=1

(1 + c2
k)1/2 (m > q),

2−q+1

2q∏
k=1

(1 + c2
k)1/2(1 + c1c2 . . . c2q)−1 (m = q).

We consider the weight functions

u(x) =
(1− x2)(p−1)/2

[ω(x)]p/2
and p(x) =

(1− x2)1/2

ω(x)
.

Let {ωk(x)}n
k=0 be the orthonormal system with weight p(x) that is obtained

by the orthogonalization of {xk}n
k=0. By Achieser [1, p. 251], the system of

monic polynomials {Ũm(x;ω)}m≥q of degree m in x,

Ũm(x;ω) = Lm+1

{
v2q−m−1 Ω(1/v)

Ω(v)
− vm+1−2q Ω(v)

Ω(1/v)

} √
ω(x)

1/v − v
,

is orthogonal on [−1, 1] with weight function p(x). Hence

{ω0(x), ω1(x), . . . , ωq−1(x), Ûq(x;ω), . . . , Ûn(x;ω)}
is an orthonormal system with weight p(x) on [−1, 1].

Since

bkk =
1∫

−1

(1− x2)1/2

ω(x)
xkωk(x) dx = ‖ω̃k‖2,p(x), k = 0, 1, . . . , q − 1,

and

bkk =
1∫

−1

(1− x2)1/2

ω(x)
xkÛk(x;ω) dx =

(
π

2

)1/2

Lk+1, k = q, . . . , n,

it follows that

(20) ∆n+1 =
( q−1∏

k=0

‖ω̃k‖22,p(x)

)(
π

2

)n−q+1

2−(n+q)(n−q+1)

2q∏
k=1

(1+ c2
k)n−q+1.

On the other hand,

As =
1∫

−1

(1− x2)(p−1)/2

[ω(x)]p/2
|Ûs(x;ω)|p dx

=
(

π

2

)−p/2

L−p
s+1

1∫
−1

∣∣∣∣ (1− x2)1/2

[ω(x)]1/2
Ũs(x;ω)

∣∣∣∣p dx

(1− x2)1/2

=
(

π

2

)−p/2 Γ
(

1
2

)
Γ

(
p+1
2

)
Γ

(
p
2 + 1

) (s ≥ q).
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Therefore

(21)
n∑

s=0

As =
[ q−1∑

s=0

As +
(

π

2

)−p/2 Γ
(

1
2

)
Γ

(
p+1
2

)
Γ

(
p
2 + 1

) (n− q + 1)
]
.

From (4), (20) and (21), we deduce the following result:

Theorem 7. Suppose that

ω(x) =
(

1− x

a1

)(
1− x

a2

)
. . .

(
1− x

a2q

)
> 0

in (−1, 1), and ω(x) can have simple roots at one or both ends of the interval
(−1, 1).For every natural number n ≥ q, there exists a non-trivial polynomial
Qn(x) =

∑n
k=0 αkxk with rational integral coefficients such that

1∫
−1

∣∣∣∣ (1− x2)1/2

[ω(x)]1/2
Qn(x)

∣∣∣∣p dx

(1− x2)1/2

≤ (n + 1)p−1

{( q−1∏
k=0

‖ω̃k‖22,p(x)

)(
π

2

)n−q+1

2−(n+q)(n−q+1)

×
2q∏

k=1

(1 + c2
k)n−q+1

}p/(2n+2)

×
[ q−1∑

s=0

‖ωs‖p
p,u(x) +

(
π

2

)−p/2 Γ
(

1
2

)
Γ

(
p+1
2

)
Γ

(
p
2 + 1

) (n− q + 1)
]
.

4. Theorem of Fekete’s type. As before we follow the notation used
by Achieser [1, p. 249]. Given a polynomial

ω(x) =
(

1− x

a1

)(
1− x

a2

)
. . .

(
1− x

a2q

)
which is positive in [−1, 1]. The degree of ω(x) is 2q − 1 if a2q = ∞ and
|ak| < ∞ (k = 1, . . . , 2q − 1). We use the notation (19).

Let {ωk(x)} be the orthonormal system with weight

p(x) =
1

ω(x)(1− x2)1/2

obtained by the orthogonalization of the system {xk}. By Achieser [1, p. 250]
it is known that the system of monic polynomials {T̃m(x;ω)}, m ≥ q,

T̃m(x;ω) =
Lm

2

{
v2q−m Ω(1/v)

Ω(v)
+ vm−2q Ω(v)

Ω(1/v)

}√
ω(x)

is orthogonal on [−1, 1] with weight p(x).
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Consider the orthonormal system

{ω0(x), ω1(x), . . . , ωq−1(x), T̂q(x;ω), . . . , T̂n(x;ω)}

with weight p(x).
By Remark 2,

(22) max
−1≤x≤1

∣∣∣∣ 1√
ω(x)

n∑
k=0

αkxk

∣∣∣∣ ≤ (n + 1)Mn+1∆
1/(2n+2)
n+1 ,

where

(23) Mn+1

= max
{

max
−1≤x≤1
0≤s≤q−1

∣∣∣∣ 1√
ω(x)

ωs(x)
∣∣∣∣, max
−1≤x≤1
q≤s≤n

∣∣∣∣ 1√
ω(x)

T̂s(x;ω)
∣∣∣∣}

= max
{

max
−1≤x≤1
0≤s≤q−1

∣∣∣∣ 1√
ω(x)

ωs(x)
∣∣∣∣,( 2

π

)1/2

(1 + c1 . . . c2q)−1/2,

(
2
π

)1/2}
,

and ∆n+1 is the Gram determinant of the system {xk}n
k=0 with weight p(x).

Since

bkk =
1∫

−1

ωk(x)xkp(x) dx = ‖ω̃k‖2,p(x), k = 0, . . . , q − 1,

and

bkk =
1∫

−1

T̂k(x;ω)
xk

ω(x)(1− x2)1/2
dx = (πLkLk+1)1/2, k ≥ q,

we have

(24) ∆n+1

=
( q−1∏

k=0

‖ω̃k‖22,p(x)

)
πn−q+1 2−n2+(q−1)2 1

1 + c1 . . . c2q

2q∏
k=1

(1 + c2
k)n−q+1.

From (22)–(24), we have thus proved the following:

Theorem 8. Suppose that

ω(x) =
(

1− x

a1

)(
1− x

a2

)
. . .

(
1− x

a2q

)
is positive in [−1, 1]. For every natural number n ≥ q, there exists a non-
trivial polynomial Qn(x) =

∑n
k=0 αkxk with rational integral coefficients

such that
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max
−1≤x≤1

∣∣∣∣ 1√
ω(x)

n∑
k=0

αkxk

∣∣∣∣
≤ (n + 1)max

{
max
−1≤x≤1
0≤s≤q−1

∣∣∣∣ 1√
ω(x)

ωs(x)
∣∣∣∣,

(
2
π

)1/2

(1 + c1 . . . c2q)−1/2,

(
2
π

)1/2}

×
{( q−1∏

k=0

‖ω̃k‖22,p(x)

)
πn−q+1 2−n2+(q−1)2

× 1
1 + c1 . . . c2q

2q∏
k=1

(1 + c2
k)n−q+1

}1/(2n+2)

.
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[6] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichun-
gen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228–249.

[7] L. B. O. Ferguson, Approximation by Polynomials with Integral Coefficients,
Math. Surveys 17, Amer. Math. Soc., Providence, R.I., 1980.

[8] A. O. Gel’ fond, On uniform approximation by polynomials with rational integral
coefficients, Uspekhi Mat. Nauk (N.S.) 10 (1) (63) (1955), 41–65 (in Russian).

[9] D. Hi lbert, Ein Beitrag zur Theorie des Legendre’schen Polynoms, Acta Math. 18
(1894), 155–159.

[10] I. P. Natanson, Constructive Function Theory , Vols. I, II, Ungar, New York, 1964–
1965.

[11] T. J. Riv l in, The Chebyshev Polynomials, Wiley, New York, 1974.
[12] I. N. Sanov, Functions with integral parameters, deviating the least from zero,

Leningrad. Gos. Univ. Uchen. Zap. Ser. Mat. Nauk 111 (1949), 32–46 (in Russian).
[13] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Sprin-

ger, 1980.



228 F. Luquin

[14] R. M. Tr igub, Approximation of functions by polynomials with integral coefficients,
Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 261–280 (in Russian).

DEPARTAMENTO DE MATEMÁTICAS
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