The Iwasawa λ-invariants of \mathbb{Z}_{p}-extensions of real quadratic fields

by
Takashi Fukuda (Chiba) and Hisao Taya (Tokyo)

1. Introduction. Let k be a totally real number field. Let p be a fixed prime number and \mathbb{Z}_{p} the ring of all p-adic integers. We denote by $\lambda=\lambda_{p}(k)$, $\mu=\mu_{p}(k)$ and $\nu=\nu_{p}(k)$ the Iwasawa invariants of the cyclotomic $\mathbb{Z}_{p^{-}}$ extension k_{∞} of k for p (cf. [10]).

Then Greenberg's conjecture states that both $\lambda_{p}(k)$ and $\mu_{p}(k)$ always vanish (cf. [8]). In other words, the order of the p-primary part of the ideal class group of k_{n} remains bounded as n tends to infinity, where k_{n} is the nth layer of k_{∞} / k. We know by the Ferrero-Washington theorem (cf. [2], [15]) that $\mu_{p}(k)$ always vanishes when k is an abelian (not necessarily totally real) number field. However, the conjecture remains unsolved up to now except for some special cases (cf. [1], [3], [5]-[8], [13]).

This paper is a continuation of our previous papers [3], [5]-[7] and [12], that is to say, we investigate Greenberg's conjecture when k is a real quadratic field and p is an odd prime number which splits in k. The purpose of this paper is to extend our previous results, and to give basic numerical data of $k=\mathbb{Q}(\sqrt{m})$ for $0 \leq m \leq 10000$ and $p=3$. On the basis of these data, we can verify Greenberg's conjecture for most of these k 's.
2. Notation and statement of the results. Let k be a real quadratic field with class number h and ε the fundamental unit of k. Let p be an odd prime number which splits in k, namely, $(p)=\mathfrak{p p}^{\prime}$ in k where $\mathfrak{p} \neq \mathfrak{p}^{\prime}$. Then we can choose $\alpha \in k$ such that $\mathfrak{p}^{\prime h}=(\alpha)$. In [6], we defined two invariants $n_{1}, n_{2} \in \mathbb{N}$ for k and p by

$$
\mathfrak{p}^{n_{1}}\left\|\left(\alpha^{p-1}-1\right), \quad \mathfrak{p}^{n_{2}}\right\|\left(\varepsilon^{p-1}-1\right) .
$$

Here $\mathfrak{p}^{n} \| \mathfrak{a}$ means that $\mathfrak{p}^{n} \mid \mathfrak{a}$ and $\mathfrak{p}^{n+1} \nmid \mathfrak{a}$ for an ideal \mathfrak{a} of k. In spite of ambiguity of α, n_{1} is uniquely determined under the condition $n_{1} \leq n_{2}$.

[^0]For the cyclotomic \mathbb{Z}_{p}-extension

$$
k=k_{0} \subset k_{1} \subset \ldots \subset k_{n} \subset \ldots \subset k_{\infty}=\bigcup_{n=1}^{\infty} k_{n}
$$

with Galois group $\Gamma=\operatorname{Gal}\left(k_{\infty} / k\right)$, let A_{n} be the p-primary part of the ideal class group of k_{n}, and \mathfrak{p}_{n} (resp. $\mathfrak{p}_{n}^{\prime}$) the unique prime ideal of k_{n} lying above \mathfrak{p} (resp. \mathfrak{p}^{\prime}). We put

$$
A_{n}^{\Gamma}=\left\{a \in A_{n} \mid a^{\sigma}=a \text { for all } \sigma \in \Gamma\right\} \quad \text { and } \quad D_{n}=\left\langle C l\left(\mathfrak{p}_{n}\right)\right\rangle \cap A_{n},
$$

where $C l\left(\mathfrak{p}_{n}\right)$ denotes the ideal class represented by \mathfrak{p}_{n}. Then we have $A_{n}^{\Gamma} \supset$ D_{n}. These groups are closely related to Greenberg's conjecture (cf. Theorem 2 in [8]).

Moreover, we introduce two other invariants $n_{0}^{(r)}$ and $n_{2}^{(r)}$ following [13]. Let E_{n} be the group of units in k_{n} and d_{n} the order of $\operatorname{Cl}\left(\mathfrak{p}_{n}\right)$ (so the order of $\left.C l\left(\mathfrak{p}_{n}^{\prime}\right)\right)$ in the ideal class group of k_{n}. For each $m \geq n \geq 0$, we denote by $N_{m, n}$ the norm map from k_{m} to k_{n}. Fix an integer $r \geq 0$. Then we can choose $\beta_{r} \in k_{r}$ such that $\mathfrak{p}_{r}^{\prime d_{r}}=\left(\beta_{r}\right)$. We define the invariants $n_{0}^{(r)}, n_{2}^{(r)} \in \mathbb{N}$ for k and p by

$$
\mathfrak{p}^{n_{0}^{(r)}} \|\left(N_{r, 0}\left(\beta_{r}\right)^{p-1}-1\right), \quad p^{n_{2}^{(r)}}=p^{n_{2}}\left(E_{0}: N_{r, 0}\left(E_{r}\right)\right) .
$$

As in the case of $n_{1}, n_{0}^{(r)}$ is uniquely determined under the condition $n_{0}^{(r)} \leq$ $n_{2}^{(r)}$, though the choice of β_{r} is not unique. Here we note that $r+1 \leq n_{0}^{(r)}$ because k_{∞} / k is totally ramified at p. Furthermore, it is easy to see that

$$
n_{0}^{(r)} \leq n_{0}^{(r+1)} \leq n_{0}^{(r)}+1 \quad \text { and } \quad n_{2}^{(r)} \leq n_{2}^{(r+1)} \leq n_{2}^{(r)}+1
$$

for each $r \geq 0$. Put $n_{0}=n_{0}^{(0)}$ in particular. We then see that $n_{0} \leq n_{1} \leq n_{2}$.
Remark 1. By the definitions of $n_{0}^{(r)}$ and $n_{2}^{(r)}$, we see that $n_{0}^{(r)}$ is the maximal integer n such that $\mathfrak{p}^{n} \mid\left(N_{r, 0}\left(\beta_{r}\right)^{p-1}-1\right)$ for all elements β_{r} of k_{r} satisfying $\mathfrak{p}_{r}^{\prime d_{r}}=\left(\beta_{r}\right)$ and that $n_{2}^{(r)}$ is the maximal integer n such that $\mathfrak{p}^{n} \mid\left(N_{r, 0}\left(\varepsilon_{r}\right)^{p-1}-1\right)$ for all elements ε_{r} of E_{r}. Indeed, it follows from the definition of $n_{2}^{(r)}$ that $\mathfrak{p}_{2}^{n_{2}^{(r)}} \mid\left(N_{r, 0}\left(\varepsilon_{r}\right)^{p-1}-1\right)$ for all $\varepsilon_{r} \in E_{r}$. Moreover, there exists $\eta_{r} \in E_{r}$ such that $\varepsilon^{u_{r}}=N_{r, 0}\left(\eta_{r}\right)$, so that $\mathfrak{p}_{2}^{n_{2}^{(r)}} \|\left(N_{r, 0}\left(\eta_{r}\right)^{p-1}-1\right)$, where u_{r} denotes the integer such that $p^{u_{r}}=\left(E_{0}: N_{r, 0}\left(E_{r}\right)\right)$. Hence the second assertion follows. The first one immediately follows from the inequality $n_{0}^{(r)} \leq n_{2}^{(r)}$.

Remark 2. When we put $r=0$, we have

$$
n_{1}=\min \left\{n_{0}+v_{p}(h)-v_{p}\left(d_{0}\right), n_{2}\right\}
$$

where $v_{p}(a)$ denotes the exact power of p dividing a. Hence, if $A_{0}=D_{0}$, then $n_{0}=n_{1}$.

Let ζ_{p} be a primitive p th root of unity and $k^{*}=k\left(\zeta_{p}\right)$. For the $C M$ field k^{*}, let $\left(k^{*}\right)^{+}$be the maximal real subfield of k^{*} and put $\lambda_{p}^{-}\left(k^{*}\right)=$ $\lambda_{p}\left(k^{*}\right)-\lambda_{p}\left(\left(k^{*}\right)^{+}\right)$. Our main theorems are as follows.

Theorem 1 (Generalization of Proposition in [3] and Theorem 2 in [12]). Let k be a real quadratic field and p an odd prime number which splits in k. Assume that
(i) $\lambda_{p}^{-}\left(k^{*}\right)=1$ and
(ii) $n_{0}^{(r)} \neq n_{2}^{(r)}$ for some $r \geq 0$.

Then $\lambda_{p}(k)=\mu_{p}(k)=0$.
Remark 3. Let χ be the non-trivial Dirichlet character associated with k and ω the Teichmüller character of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$. We denote by $\lambda_{p}\left(k^{*}\right)_{\omega \chi^{-1}}$ the $\omega \chi^{-1}$-component of $\lambda_{p}\left(k^{*}\right)$. Then we may replace assumption (i) of Theorem 1 by a weaker assumption that $\lambda_{p}\left(k^{*}\right)_{\omega \chi^{-1}}=1$ (cf. Proposition 1 in [9]).

Putting $r=0$ in Theorem 1, we obtain the following
Corollary 1 (cf. Theorem 2 in [6]). Let k and p be as in Theorem 1. If $\lambda_{p}^{-}\left(k^{*}\right)=1$ and $n_{0} \neq n_{2}$, then $\lambda_{p}(k)=\mu_{p}(k)=0$.

Theorem 2. Let k be a real quadratic field and p an odd prime number which splits in k. Assume that $A_{0}=D_{0}$. Then the following conditions are equivalent.
(i) $n_{0}^{(r)}=r+1$ for some $r \geq 0$.
(ii) $n_{0}^{(r)}=r+1$ for all sufficiently large r.
(iii) $n_{2}^{(r)}=r+1$ for some $r \geq 0$.
(iv) $n_{2}^{(r)}=r+1$ for all sufficiently large r.
(v) $A_{n}^{\Gamma}=D_{n}$ for all sufficiently large n.

In particular, one of these conditions holds if and only if $\lambda_{p}(k)=\mu_{p}(k)=0$.
Putting $r=0$ in the condition (i) of Theorem 2, we obtain the following.
Corollary 2 (cf. Theorem 1 in [6]). Let k and p be as in Theorem 2. If $A_{0}=D_{0}$ and $n_{0}=1$ (i.e., $n_{1}=1$), then $\lambda_{p}(k)=\mu_{p}(k)=0$.

Moreover, putting $r=n_{2}-1$ in condition (iii) of Theorem 2, we obtain the following by Lemma 8 (cf. Section 5).

Corollary 3 (cf. Theorem in [5] and Lemma in [7]). Let k and p be as in Theorem 2. If $A_{0}=D_{0}$ and $N_{n_{2}-1,0}\left(E_{n_{2}-1}\right)=E_{0}$, then $\lambda_{p}(k)=\mu_{p}(k)=0$.

The notation defined in this section will be used throughout this paper. We also denote by $\beta_{r} \in k_{r}$ a generator of $\mathfrak{p}_{r}^{\prime d_{r}}$ satisfying

$$
\mathfrak{p}^{n_{0}^{(r)}} \|\left(N_{r, 0}\left(\beta_{r}\right)^{p-1}-1\right) \quad \text { and } \quad n_{0}^{(r)} \leq n_{2}^{(r)}
$$

Namely, $\beta_{r} \in k_{r}$ is a generator of $\mathfrak{p}_{r}^{\prime d_{r}}$ which determines $n_{0}^{(r)}$. Since p splits in k, we have $k_{\mathfrak{p}} \simeq \mathbb{Q}_{p}$, where $k_{\mathfrak{p}}$ is the completion of k at \mathfrak{p}. So, by identifying $\mathfrak{p} \in k_{\mathfrak{p}}$ with $p \in \mathbb{Q}_{p}$, we may write $N_{r, 0}\left(\beta_{r}\right)^{p-1} \in k$ as in the following form of a p-adic integer:

$$
N_{r, 0}\left(\beta_{r}\right)^{p-1}=1+p^{n_{0}^{(r)}} x_{r}, \quad x_{r} \in \mathbb{Z}_{p}^{\times}
$$

3. Some fundamental lemmas. We first refer to the following three lemmas.

Lemma 1 (cf. Theorem 2 in [8]). Let k and p be as in Section 2. Then $A_{n}^{\Gamma}=D_{n}$ for all sufficiently large n if and only if $\lambda_{p}(k)=\mu_{p}(k)=0$.

Lemma 2 (cf. Proposition 1 in [6]). Let k and p be as in Section 2. Then

$$
\left|A_{n}^{\Gamma}\right|= \begin{cases}\left|A_{0}\right| p^{n} & \text { if } n<n_{2}-1 \\ \left|A_{0}\right| p^{n_{2}-1} & \text { if } n \geq n_{2}-1\end{cases}
$$

Lemma 3 (cf. Lemma 3 in [12]). Let k and p be as in Section 2. If A_{n} is cyclic for all $n \geq 0$ and if D_{r} is non-trivial for some $r \geq 0$, then $\lambda_{p}(k)=\mu_{p}(k)=0$.

Next we prove two more lemmas. Since $\mathfrak{p}_{r}=\mathfrak{p}_{r+1}^{p}$, we have $d_{r+1}=d_{r}$ or $p d_{r}$; in particular, $\left|D_{r+1}\right|=\left|D_{r}\right|$ or $p\left|D_{r}\right|$. If we write $d_{r}=c p^{j}$ with an integer c prime to p, then c is independent of r.

Lemma 4. Let r be a fixed non-negative integer. Assume that $\left|D_{r+1}\right|=$ $p\left|D_{r}\right|$. Then

$$
n_{0}^{(r+1)}= \begin{cases}n_{0}^{(r)} & \text { if } n_{0}^{(r)}=n_{2}^{(r)}=n_{2}^{(r+1)} \\ n_{0}^{(r)}+1 & \text { otherwise }\end{cases}
$$

Proof. Since $d_{r+1}=p d_{r}$, we have

$$
\mathfrak{p}_{r+1}^{\prime d_{r+1}}=\mathfrak{p}_{r+1}^{\prime p d_{r}}=\mathfrak{p}_{r}^{\prime d_{r}}=\left(\beta_{r}\right) \quad \text { in } k_{r+1} .
$$

Thus we may take β_{r} as a generator of $\mathfrak{p}_{r+1}^{\prime d_{r+1}}$. Then we obtain

$$
\begin{array}{rlr}
N_{r+1,0}\left(\beta_{r}\right)^{p-1} & =N_{r, 0}\left(\beta_{r}\right)^{p(p-1)} \\
& =\left(1+p^{n_{0}^{(r)}} x_{r}\right)^{p}, & x_{r} \in \mathbb{Z}_{p}^{\times}, \\
& =1+p^{n_{0}^{(r)}+1} x_{r}^{\prime}, & x_{r}^{\prime} \in \mathbb{Z}_{p}^{\times},
\end{array}
$$

therefore

$$
\mathfrak{p}^{n_{0}^{(r)}+1} \|\left(N_{r+1,0}\left(\beta_{r}\right)^{p-1}-1\right)
$$

Hence it follows from the definition of $n_{0}^{(r+1)}$ that

$$
n_{0}^{(r+1)}=\min \left\{n_{0}^{(r)}+1, n_{2}^{(r+1)}\right\}
$$

which yields the desired result.

Lemma 5. Let r be a fixed non-negative integer. Assume that $\left|D_{r}\right|=$ $\left|D_{r+1}\right|$. Then
(i) If $n_{0}^{(r)}<n_{2}^{(r)}$, then $n_{0}^{(r+1)}=n_{0}^{(r)}$.
(ii) If $n_{2}^{(r)}=n_{2}^{(r+1)}$, then $n_{0}^{(r+1)}=n_{0}^{(r)}$.

Proof. (i) Since $d_{r+1}=d_{r}$, we have

$$
\left(\beta_{r}\right)=\mathfrak{p}_{r}^{\prime d_{r}}=N_{r+1, r}\left(\mathfrak{p}_{r+1}^{\prime d_{r}}\right)=N_{r+1, r}\left(\mathfrak{p}_{r+1}^{\prime d_{r+1}}\right)=\left(N_{r+1, r}\left(\beta_{r+1}\right)\right) \quad \text { in } k_{r} .
$$

Hence $N_{r+1, r}\left(\beta_{r+1}\right)=\beta_{r} \varepsilon_{r}$ for some $\varepsilon_{r} \in E_{r}$. Taking the norm from k_{r} to k, we have $N_{r+1,0}\left(\beta_{r+1}\right)=N_{r, 0}\left(\beta_{r}\right) N_{r, 0}\left(\varepsilon_{r}\right)$. Therefore we obtain the following p-adic expansion:
(1) $1+p^{n_{0}^{(r+1)}} x_{r+1}=1+p^{n_{0}^{(r)}} x_{r}+p^{n_{2}^{(r)}} y_{r}+\ldots, \quad x_{r}, x_{r+1} \in \mathbb{Z}_{p}^{\times}, y_{r} \in \mathbb{Z}_{p}$.

This implies the desired result.
(ii) Suppose that $n_{0}^{(r+1)} \neq n_{0}^{(r)}$. Then it follows from (1) that $n_{0}^{(r)}=n_{2}^{(r)}$. Therefore $n_{0}^{(r+1)}>n_{0}^{(r)}=n_{2}^{(r)}=n_{2}^{(r+1)}$, which contradicts the definition of $n_{0}^{(r+1)}$. This completes the proof.

Remark 4. Lemmas 4 and 5 can be used for determining $n_{0}^{(r+1)}$ from $n_{0}^{(r)}, n_{2}^{(r)}$ and $n_{2}^{(r+1)}$. However, Lemma 5 does not work in the case where $n_{0}^{(r)}=n_{2}^{(r)}<n_{2}^{(r+1)}$. Actually, when $p=3$, we see that $n_{0}=n_{2}=2<$ $n_{2}^{(1)}=3$ and $n_{0}^{(1)}=2$ for $k=\mathbb{Q}(\sqrt{106})$, and that $n_{0}=n_{2}=2<n_{2}^{(1)}=3$ and $n_{0}^{(1)}=3$ for $k=\mathbb{Q}(\sqrt{295})$ (cf. Table 1). Hence, in this situation the practical calculation of β_{r+1} is necessary to the determination of $n_{0}^{(r+1)}$.
4. The proof of Theorem 1 and some examples. In order to prove Theorem 1, we need the following lemma.

Lemma 6. Let r be a fixed non-negative integer. If $n_{0}^{(r)} \neq n_{2}^{(r)}$, then $\left|D_{n}\right|>\left|D_{r}\right|$ for all $n \geq n_{0}^{(r)}$.

Proof. Suppose that $\left|D_{n}\right|=\left|D_{r}\right|$ for some $n \geq n_{0}^{(r)}$. Then since $d_{n}=d_{r}$, we have $N_{n, r}\left(\beta_{n}\right)=\beta_{r} \varepsilon_{r}$ for some $\varepsilon_{r} \in E_{r}$, as in the proof of Lemma 5 . Taking the norm and expanding it in the p-adic form, we obtain

$$
\begin{equation*}
1+p^{n_{0}^{(n)}} x_{n}=1+p^{n_{0}^{(r)}} x_{r}+p^{n_{2}^{(r)}} y_{r}+\ldots, \quad x_{r}, x_{n} \in \mathbb{Z}_{p}^{\times}, y_{r} \in \mathbb{Z}_{p} \tag{2}
\end{equation*}
$$

Since $n_{0}^{(n)} \geq n+1 \geq n_{0}^{(r)}+1>n_{0}^{(r)}$ for all $n \geq n_{0}^{(r)}$, it follows from (2) that $n_{0}^{(r)}=n_{2}^{(r)}$. This completes the proof.

By Lemma 2, $\left|A_{n}^{\Gamma}\right|$ remains bounded as n tends to infinity, hence so does $\left|D_{n}\right|$. Therefore we obtain the following as a corollary to Lemma 6 .

Corollary 4. Let k and p be as in Section 2. Then $n_{0}^{(r)}=n_{2}^{(r)}$ for all sufficiently large r.

Proof of Theorem 1. Let k_{n}^{*} be the nth layer of the cyclotomic \mathbb{Z}_{p}-extension k_{∞}^{*} / k^{*} and A_{n}^{*} the p-primary part of the ideal class group of k_{n}^{*}. Since k_{n}^{*} is a $C M$-field, we can define $\left(A_{n}^{*}\right)^{+}$by the p-primary part of the ideal class group of its maximal real subfield and $\left(A_{n}^{*}\right)^{-}$by the kernel of the norm map from A_{n}^{*} to $\left(A_{n}^{*}\right)^{+}$. The Ferrero-Washington theorem guarantees the vanishing of $\mu_{p}\left(k^{*}\right)$, hence, by assumption (i), $\left(A_{n}^{*}\right)^{-}$is cyclic for all $n \geq 0$. It follows from the reflection theorem that $\left(A_{n}^{*}\right)^{+}$is cyclic, hence so is A_{n} for all $n \geq 0$. By Lemma 6 , we also have the inequality $\left|D_{n}\right|>\left|D_{r}\right|$ under assumption (ii), hence $D_{n} \neq 1$, for all $n \geq n_{0}^{(r)}$. Therefore Theorem 1 immediately follows from Lemma 3.

Example 1 . Let $k=\mathbb{Q}(\sqrt{26893})$ and $p=3$, for which we could not verify that $\lambda_{3}(k)=\mu_{3}(k)=0$ in [13]. Then $n_{0}=n_{1}=n_{2}=4$, and moreover, $\lambda_{3}^{-}\left(k^{*}\right)=1$ and $n_{0}^{(1)}=4 \neq n_{2}^{(1)}=5$ (see Table 2 of [13]). Therefore it follows from Theorem 1 that $\lambda_{3}(k)=\mu_{3}(k)=0$.

Example 2. Let $k=\mathbb{Q}(\sqrt{4651})$ and $p=3$. Then $\lambda_{3}^{-}\left(k^{*}\right)=1$ and $n_{0}=1 \neq n_{1}=n_{2}=2$ (see Table 1). Therefore it follows from Theorem 1 that $\lambda_{3}(k)=\mu_{3}(k)=0$. Note that $\left|A_{0}\right|=3>1=\left|D_{0}\right|$. In order to conclude that $\lambda_{3}(k)=\mu_{3}(k)=0$ for this k, we needed the information on the initial layer k_{1} of k_{∞} / k before now (cf. [3], [7]). But we do not need such information now, therefore it seems that the invariant n_{0} is more useful than n_{1}.
5. The proof of Theorem 2. First, we prove the following lemma.

Lemma 7. Let r and s be fixed non-negative integers. If $\left|D_{r+s}\right|=p^{t}\left|D_{r}\right|$, then

$$
n_{0}^{(r)} \geq \min \left\{n_{0}^{(r+s)}-t, n_{2}^{(r)}-t\right\} .
$$

Proof. Note that $s \geq t$ and $d_{r+s}=p^{t} d_{r}$. Then we have

$$
\left(\beta_{r+s}^{p^{s-t}}\right)=\mathfrak{p}_{r+s}^{\prime p^{s-t} d_{r+s}}=\mathfrak{p}_{r+s}^{\prime p^{s} d_{r}}=\mathfrak{p}_{r}^{\prime d_{r}}=\left(\beta_{r}\right) \quad \text { in } k_{r+s},
$$

hence $\left(N_{r+s, r}\left(\beta_{r+s}\right)\right)^{p^{s-t}}=\left(\beta_{r}\right)^{p^{s}}$. So $\left(N_{r+s, r}\left(\beta_{r+s}\right)\right)=\left(\beta_{r}\right)^{p^{t}}$ in k_{r}. Therefore

$$
\beta_{r}^{p^{t}}=N_{r+s, r}\left(\beta_{r+s}\right) \varepsilon_{r} \quad \text { for some } \varepsilon_{r} \in E_{r} .
$$

Taking the norm and expanding it in the p-adic form, we obtain
$1+p^{n_{0}^{(r)}+t} x_{r}^{\prime}=1+p^{n_{0}^{(r+s)}} x_{r+s}+p^{n_{2}^{(r)}} y_{r}+\ldots, \quad x_{r}^{\prime}, x_{r+s} \in \mathbb{Z}_{p}^{\times}, y_{r} \in \mathbb{Z}_{p}$.
This immediately implies Lemma 7 .

From now on, we consider the case where $A_{0}=D_{0}$. Let \bar{A}_{n}^{Γ} be the subgroup of A_{n} consisting of ideal classes which contain an ideal invariant under the action of $\operatorname{Gal}\left(k_{n} / k\right)$. Then the genus formula (cf. [16]) says that

$$
\left|\bar{A}_{n}^{\Gamma}\right|=\left|A_{0}\right| \frac{p^{n}}{\left(E_{0}: N_{n, 0}\left(E_{n}\right)\right)}
$$

If $A_{0}=D_{0}$, then $\bar{A}_{n}^{\Gamma}=D_{n}$ for all $n \geq 0$ because $\bar{A}_{n}^{\Gamma}=i_{0, n}\left(A_{0}\right) D_{n}$, where $i_{0, n}$ denotes the natural map from the ideal group of k to the ideal group of k_{n} induced from the inclusion map. Hence we immediately obtain the following lemmas.

Lemma 8. Let r be a fixed non-negative integer. Assume that $A_{0}=D_{0}$. Then
(i) $\left|D_{r}\right|=\left|D_{0}\right| p^{r-u_{r}}=\left|D_{0}\right| p^{n_{2}+r-n_{2}^{(r)}}$,
(ii) $n_{2}^{(r)}=n_{2}+r-u$,
where u_{r} is the integer such that $p^{u_{r}}=\left(E_{0}: N_{r, 0}\left(E_{r}\right)\right)$ and u is the integer such that $\left|D_{r}\right|=p^{u}\left|D_{0}\right|$.

Lemma 9. Let r be a fixed non-negative integer. Assume that $A_{0}=D_{0}$. Then $\left|D_{r+1}\right|=p\left|D_{r}\right|$ if and only if $n_{2}^{(r+1)}=n_{2}^{(r)}$.

Proof. Let u_{r} be as in Lemma 8. Then $\left|D_{r+1}\right|=p\left|D_{r}\right|$ if and only if $u_{r+1}=u_{r}$. Hence the result follows from the definition of $n_{2}^{(r)}$.

Lemma 10. Let r be a fixed non-negative integer. Assume that $A_{0}=D_{0}$ and that $\left|D_{r+1}\right|=p\left|D_{r}\right|$. Then $n_{0}^{(r+1)}=n_{0}^{(r)}$ if and only if $n_{0}^{(r)}=n_{2}^{(r)}$. Namely, we have

$$
n_{0}^{(r+1)}= \begin{cases}n_{0}^{(r)} & \text { if } n_{0}^{(r)}=n_{2}^{(r)} \\ n_{0}^{(r)}+1 & \text { if } n_{0}^{(r)} \neq n_{2}^{(r)}\end{cases}
$$

Proof. This easily follows from Lemmas 4 and 9.
Proof of Theorem 2. (iv) \Rightarrow (iii) \Rightarrow (i) and (iv) \Rightarrow (ii) \Rightarrow (i) are trivial. Therefore it is sufficient to prove that $(\mathrm{i}) \Rightarrow(\mathrm{v}) \Rightarrow(\mathrm{iv})$.
$(\mathrm{i}) \Rightarrow(\mathrm{v})$. Let r be a non-negative integer such that $n_{0}^{(r)}=r+1$. Then $n_{0}^{(r+1)}=(r+1)+1$ because $(r+1)+1 \leq n_{0}^{(r+1)}$ and $n_{0}^{(r+1)} \leq n_{0}^{(r)}+1$. Repeating this process, we conclude that $n_{0}^{(r+s)}=r+s+1$ for all $s \geq 0$. We denote by u the integer such that $\left|D_{r}\right|=p^{u}\left|D_{0}\right|$. For $s \geq n_{2}-1-u$, we put

$$
\left|D_{r+s}\right|=p^{t}\left|D_{r}\right|=p^{t+u}\left|D_{0}\right| .
$$

Now suppose that $t+u<n_{2}-1$. Then we have

$$
\begin{aligned}
n_{0}^{(r+s)}-t & =r+s+1-t \geq r+n_{2}-u-t \geq r+2, \\
n_{2}^{(r)}-t & =n_{2}+r-u-t \geq r+2
\end{aligned}
$$

by Lemma 8(ii). It easily follows from Lemma 7 that

$$
n_{0}^{(r)} \geq \min \left\{n_{0}^{(r+s)}-t, n_{2}^{(r)}-t\right\} \geq r+2,
$$

which is a contradiction. Hence we must have $t+u=n_{2}-1$, so $\left|D_{r+s}\right|=$ $\left|D_{0}\right| p^{n_{2}-1}$ for all $s \geq n_{2}-1-u$. Therefore Lemma 2 implies that $A_{n}^{\Gamma}=D_{n}$ for all $n \geq n_{2}^{(r)}-1$.
(v) \Rightarrow (iv). By Lemma 2, we have

$$
\left|D_{r}\right|=\left|A_{r}^{\Gamma}\right|=\left|A_{0}\right| p^{n_{2}-1}=\left|D_{0}\right| p^{n_{2}-1}
$$

for all sufficiently large r. Hence Lemma 8(i) shows that

$$
\left|D_{0}\right| p^{n_{2}+r-n_{2}^{(r)}}=\left|D_{0}\right| p^{n_{2}-1}
$$

which means that $n_{2}^{(r)}=r+1$ for all sufficiently large r.
The last assertion immediately follows from Lemma 1. This completes the proof of Theorem 2.
6. Other useful results and some examples. In this section we shall give a few of easy results, which are useful when we cannot apply Theorems 1 and 2 . First we prove the following.

Lemma 11. If there exists an integer r_{0} such that $\left|A_{r_{0}}^{\Gamma}\right|=\left|D_{r_{0}}\right|$ and $r_{0} \geq n_{2}-1$, then $A_{n} \simeq A_{r_{0}}$ for all $n \geq r_{0}$.

Proof. Note that $N_{m, n}: A_{m} \rightarrow A_{n}$ and $N_{m, n}: D_{m} \rightarrow D_{n}$ are surjective for all $m \geq n \geq 0$ because k_{∞} / k is totally ramified at p. It follows from the assumption and Lemma 2 that $N_{m, n}: A_{m}^{\Gamma} \rightarrow A_{n}^{\Gamma}$ is isomorphic for all $m \geq n \geq r_{0}$. Hence, $N_{m, n}: A_{m} \rightarrow A_{n}$ is also isomorphic for all $m \geq n \geq r_{0}$. This completes the proof.

Proposition 1. Let k and p be as in Section 2. If $\left|D_{r}\right|=\left|A_{0}\right| p^{n_{2}-2}$ and $n_{0}^{(r)} \neq n_{2}^{(r)}$ for some $r \geq 0$, then $A_{n} \simeq A_{n_{0}^{(r)}}$ for all $n \geq n_{0}^{(r)}$, hence in particular $\lambda_{p}(k)=\mu_{p}(k)=0$.

Proof. It follows from Lemma 6 that $\left|D_{n}\right|>\left|D_{r}\right|=\left|A_{0}\right| p^{n_{2}-2}$ for all $n \geq n_{0}^{(r)}$. Hence $\left|A_{n}^{\Gamma}\right|=\left|A_{0}\right| p^{n_{2}-1}=\left|D_{n}\right|$ for all $n \geq n_{0}^{(r)}$ by Lemma 2. Since $n_{0}^{(r)} \geq n_{2}-1$, the assertion immediately follows from Lemma 11.

Example 3. Let $k=\mathbb{Q}(\sqrt{7753})$ and $p=3$. Then $n_{0}=1 \neq n_{1}=n_{2}=2$, $\lambda_{3}^{-}\left(k^{*}\right)=2$ and $\left|A_{0}\right|=3>1=\left|D_{0}\right|$. Hence Theorems 1 and 2 cannot be applied to this k. However, $\left|D_{1}\right|=3=\left|A_{0}\right|$ and $n_{0}^{(1)}=2 \neq n_{2}^{(1)}=3$ (see

Table 1). Therefore it follows from Proposition 1 that $A_{n} \simeq A_{2}$ for all $n \geq 2$, in particular $\lambda_{3}(k)=\mu_{3}(k)=0$.

Lemma 6 asserts that $n_{0}^{(r)} \neq n_{2}^{(r)}$ implies $\left|D_{r}\right|<\left|D_{n_{0}^{(r)}}\right|$. However, the converse does not always hold (cf. Example 4). Thus the following proposition is sometimes useful. Here we note that, if A_{n} is cyclic for all $n \geq 0$ and if A_{0} is trivial, then the converse is also true. In fact, for a fixed non-negative integer r, we see that $n_{0}^{(r)}=r+s$ if and only if $\left|D_{r}\right|=\ldots=\left|D_{r+s-1}\right|<\left|D_{r+s}\right|$ for $1 \leq s \leq n_{2}^{(r)}-r-1$ in this situation (cf. Theorem 1 of [12]).

Proposition 2. Let k and p be as in Section 2. If $\lambda_{p}^{-}\left(k^{*}\right)=1$, and $D_{r} \neq 1$ for some $r \geq 0$, then $\lambda_{p}(k)=\mu_{p}(k)=0$.

Proof. This immediately follows from the proof of Theorem 1 (or Lemma 3).

Example 4. Let $k=\mathbb{Q}(\sqrt{1129})$ and $p=3$. Then $n_{0}=n_{1}=n_{2}=1$, $n_{0}^{(1)}=n_{2}^{(1)}=2$ and $\left|A_{0}\right|=9>3=\left|D_{0}\right|$ (see Table 1). Hence Theorem 1 for $r=0,1$ and Theorem 2 cannot be applied to this k. But, since $\lambda_{3}^{-}\left(k^{*}\right)=1$, it follows from Proposition 2 that $\lambda_{3}(k)=\mu_{3}(k)=0$. Now, by Table 1 and Lemma 2, we see that $\left|A_{1}^{\Gamma}\right|=9=\left|D_{1}\right|$, so $\left|A_{n}^{\Gamma}\right|=\left|D_{n}\right|=\left|D_{1}\right|$ for all $n \geq 1$. Therefore Lemma 6 implies that $n_{0}^{(r)}=n_{2}^{(r)}=r+1$ for all $r \geq 1$, so all $r \geq 0$. Hence we cannot apply Theorem 1 for all $r \geq 0$ to this k.

Finally we note that there exist some examples of k to which we cannot apply our theorems and propositions, but nevertheless we can verify Greenberg's conjecture for them by Lemma 11 . Such examples are $k=\mathbb{Q}(\sqrt{6} 601)$, $k=\mathbb{Q}(\sqrt{6901})$ and so on.
7. Tables of basic numerical data of $k=\mathbb{Q}(\sqrt{m})$ for $p=3$. We shall give a table of the fundamental data of $k=\mathbb{Q}(\sqrt{m})$ for $p=3$ and positive square-free integers m 's less than 10000 satisfying $m \equiv 1(\bmod 3)$. The total number of such m 's is exactly 2279 . We find that there exist exactly 2042 m 's which satisfy $A_{0}=D_{0}$ and $n_{0}=1$. Greenberg's conjecture is valid for these k 's by Corollary 2 to Theorem 2. Table 1 gives several useful data for 237 remaining m 's. We can verify Greenberg's conjecture for $185 k$'s in Table 1 by applying our results. The asterisks in the column of $\lambda_{3}(k)$, the number of which is exactly 52 , mean that Greenberg's conjecture cannot be verified by these data.

Concerning our method of computation, we refer to [11] and [13] for $n_{0}^{(1)}, n_{2}^{(1)},\left|A_{1}\right|$ and $\left|D_{1}\right|$, to [14] for the 3-primary part A_{0}^{*-} of the ideal class group of $\mathbb{Q}(\sqrt{-3 m})$, and to [4] for $\lambda_{3}^{-}\left(k^{*}\right)$. Note that $\lambda_{3}^{-}\left(k^{*}\right)=$ $\lambda_{3}(\mathbb{Q}(\sqrt{-3 m}))$. The rest is easily computed.

Addendum. Recently, after we have written this paper, we heard from H. Sumida that he verified Greenberg's conjecture for $p=3$ and $m=$ 727, 2794, 4279, 4741, 5533, 7429, 7465, 7642, 9634 and 9691 , which are marked with the asterisks in Table 1, by computing the Iwasawa polynomials associated with p-adic L-functions. He is now preparing the paper entitled "Greenberg's conjecture and the Iwasawa polynomial".

Table 1. All m 's satisfying $A_{0} \neq D_{0}$ or $n_{0}>1: 1 \leq m \leq 10000$

m	n_{0}	n_{1}	n_{2}	$n_{0}^{(1)}$	$n_{2}^{(1)}$	$\lambda_{3}^{-}\left(k^{*}\right)$	A_{0}^{*-}	$\left\|D_{0}\right\|$	$\left\|A_{0}\right\|$	$\left\|D_{1}\right\|$	$\left\|A_{1}\right\|$	$\lambda_{3}(k)$
67	2	2	3	2	4	1	(3)	1	1	1	3	0
103	2	2	2	2	2	2	(3)	1	1	3	9	0
106	2	2	2	2	3	1	(3)	1	1	1	3	0
139	2	2	2	2	2	2	(3)	1	1	3	9	0
238	2	2	3	2	4	1	(3)	1	1	1	3	0
253	2	2	2	2	3	1	(3)	1	1	1	3	0
295	2	2	2	3	3	1	(3)	1	1	1	3	$*$
397	2	2	2	3	3	1	(3)	1	1	1	3	$*$
418	2	2	2	2	2	2	(3)	1	1	3	9	0
454	2	2	2	2	3	1	(3)	1	1	1	3	0
505	2	2	2	2	3	1	(3)	1	1	1	3	0
607	2	2	2	2	3	1	(9)	1	1	1	3	0
610	2	2	4	2	5	1	(3)	1	1	1	3	0
679	2	2	2	2	2	2	(3)	1	1	3	9	0
727	2	2	3	3	3	2	(9)	1	1	3	9	$*$
745	2	2	2	3	3	1	(3)	1	1	1	3	$*$
787	2	2	2	2	3	1	(9)	1	1	1	3	0
790	2	2	2	2	2	2	(3)	1	1	3	9	0
886	2	2	2	2	3	1	(3)	1	1	1	3	0
994	2	2	2	2	3	1	(3)	1	1	1	3	0
1102	2	2	2	2	3	1	(3)	1	1	1	3	0
1129	1	1	1	2	2	1	(3)	3	9	9	27	0
1153	2	2	2	2	2	2	(3)	1	1	3	9	0
1261	2	2	2	2	2	2	(3)	1	1	3	9	0
1294	2	2	2	2	3	1	(3)	1	1	1	3	0
1318	2	2	2	2	3	1	(3)	1	1	1	3	0
1333	2	2	2	2	3	1	(3)	1	1	1	3	0
1390	3	3	4	3	5	1	(3)	1	1	1	3	0
1462	2	2	2	2	3	1	(3)	1	1	1	3	0
1609	2	2	2	2	2	4	(3)	1	1	3	9	0
1642	2	2	2	2	2	2	(3)	1	1	3	27	0
1654	1	1	1	2	2	1	(3)	3	9	9	27	0
1669	2	2	2	2	3	1	(9)	1	1	1	3	0
1714	2	2	2	3	3	4	$(3,3)$	3	3	3	9	$*$
1726	2	2	2	2	2	2	(3)	1	1	3	27	0
1738	2	2	2	3	3	1	(9)	1	1	1	3	$*$
1753	2	2	2	2	3	1	(3)	1	1	1	3	0
1810	2	2	2	2	3	1	(9)	1	1	1	3	0

Table 1 (cont.)

m	n_{0}	n_{1}	n_{2}	$n_{0}^{(1)}$	$\overline{n_{2}^{(1)}}$	$\lambda_{3}^{-}\left(k^{*}\right)$	A_{0}^{*-}	$\left\|D_{0}\right\|$	$\left\|A_{0}\right\|$	$\left\|D_{1}\right\|$	$\left\|A_{1}\right\|$	$\lambda_{3}(k)$
1867	2	2	6	2	7	1	(3)	1	1	1	3	0
1894	2	2	3	2	4	1	(3)	1	1	1	3	0
1954	1	1	1	2	2	1	(3)	1	3	3	9	0
2029	2	2	2	3	3	1	(9)	1	1	1	3	*
2059	3	3	3	4	4	1	(3)	1	1	1	3	*
2122	2	2	2	2	3	2	(3)	1	1	1	9	0
2149	4	4	4	5	5	1	(3)	1	1	1	3	*
2158	2	2	2	2	3	1	(3)	1	1	1	3	0
2221	2	2	3	2	4	1	(3)	1	1	1	3	0
2230	2	2	2	2	3	2	$(3,3)$	3	3	3	9	0
2263	2	2	2	2	3	2	$(3,3)$	3	3	3	9	0
2371	2	2	2	2	3	1	(9)	1	1	1	3	0
2410	2	2	3	2	4	1	(3)	1	1	1	3	0
2419	1	1	1	2	2	1	(9)	1	3	3	9	0
2431	2	2	2	2	2	3	(3)	1	1	3	9	0
2515	2	2	2	2	3	1	(9)	1	1	1	3	0
2521	2	2	3	2	4	1	(3)	1	1	1	3	0
2593	2	2	3	2	4	1	(3)	1	1	1	3	0
2659	2	2	3	2	4	2	$(3,3)$	3	3	3	9	0
2701	3	3	5	3	6	1	(3)	1	1	1	3	0
2713	1	1	1	2	2	1	(9)	1	3	1	9	*
2737	2	2	2	2	3	1	(3)	1	1	1	3	0
2743	2	2	3	2	4	1	(3)	1	1	1	3	0
2794	2	2	3	3	3	2	(9)	1	1	3	9	*
2917	3	3	3	4	4	3	$(3,3)$	3	3	3	9	*
2971	1	1	1	2	2	1	(9)	1	3	3	9	0
3001	2	2	2	2	2	2	(3)	1	1	3	9	0
3094	2	2	2	2	2	2	(3)	1	1	3	9	0
3133	3	3	5	3	6	1	(3)	1	1	1	3	0
3190	2	2	2	2	3	1	(3)	1	1	1	3	0
3199	2	2	2	2	3	1	(3)	1	1	1	3	0
3226	2	2	2	2	3	1	(9)	1	1	1	3	0
3235	2	2	2	2	3	1	(9)	1	1	1	3	0
3277	2	2	2	2	3	1	(27)	1	1	1	3	0
3355	2	2	2	2	2	3	(3)	1	1	3	9	0
3391	2	2	4	2	5	2	$(3,3)$	3	3	3	9	0
3469	2	2	2	3	3	2	(3)	1	1	1	9	*
3490	2	2	2	3	3	1	(9)	1	1	1	3	*
3571	2	2	2	2	3	1	(3)	1	1	1	3	0
3667	2	2	2	2	3	2	$(3,3)$	3	3	3	9	0
3673	2	2	4	2	5	1	(3)	1	1	1	3	0
3739	2	2	2	3	3	1	(3)	1	3	1	9	*
3781	2	2	2	2	3	1	(9)	1	1	1	3	0
3787	2	2	2	2	2	2	(3)	1	1	3	9	0
3847	2	2	2	2	2	2	(3)	1	1	3	9	0
3895	2	2	3	2	4	1	(3)	1	1	1	3	0

Table 1 (cont.)

m	n_{0}	n_{1}	n_{2}	$n_{0}^{(1)}$	$n_{2}^{(1)}$	$\lambda_{3}^{-}\left(k^{*}\right)$	A_{0}^{*-}	$\left\|D_{0}\right\|$	$\left\|A_{0}\right\|$	$\left\|D_{1}\right\|$	$\left\|A_{1}\right\|$	$\lambda_{3}(k)$
3979	2	2	3	2	4	1	(3)	1	1	1	3	0
3997	2	2	2	2	3	1	(9)	1	1	1	3	0
4081	3	3	3	4	4	1	(3)	1	1	1	3	*
4099	2	2	2	2	3	2	(3)	1	1	1	27	0
4207	2	2	2	2	3	1	(9)	1	1	1	3	0
4210	2	2	2	2	3	1	(9)	1	1	1	3	0
4222	2	2	2	2	2	2	(3)	1	1	3	9	0
4237	2	2	2	2	3	1	(3)	1	1	1	3	0
4279	3	3	3	3	3	2	$(3,3)$	3	3	9	27	*
4447	2	2	2	2	3	2	(3)	1	1	1	9	0
4471	1	1	1	2	2	1	(3)	1	3	3	9	0
4498	2	2	2	2	3	1	(3)	1	1	1	3	0
4519	2	2	2	2	3	1	(3)	1	1	1	3	0
4603	2	2	2	2	3	1	(27)	1	1	1	3	0
4615	2	2	3	2	4	1	(3)	1	1	1	3	0
4618	2	2	4	2	5	1	(3)	1	1	1	3	0
4651	1	2	2	2	3	1	(3)	1	3	3	9	0
4654	2	2	2	3	3	1	(3)	1	1	1	3	*
4681	2	2	2	2	3	1	(3)	1	1	1	3	0
4687	2	2	2	2	2	3	(3)	1	1	3	9	0
4711	2	2	2	2	3	1	(3)	1	1	1	3	0
4741	2	2	3	3	3	3	(9)	1	1	3	9	*
4789	2	2	2	3	3	1	(9)	1	1	1	3	*
4837	2	2	2	2	2	3	(3)	1	1	3	9	0
4867	2	2	2	2	3	1	(3)	1	1	1	3	0
4870	2	2	2	2	3	1	(9)	1	1	1	3	0
4954	1	1	1	2	2	1	(3)	3	9	9	27	0
4963	2	2	3	2	4	1	(3)	1	1	1	3	0
5005	2	2	2	2	2	2	(3)	1	1	3	9	0
5062	3	3	3	3	4	1	(3)	1	1	1	3	0
5083	2	2	2	2	3	1	(3)	1	1	1	3	0
5113	2	2	2	2	3	1	(3)	1	1	1	3	0
5149	2	2	2	2	3	1	(9)	1	1	1	3	0
5161	2	2	2	2	2	2	(3)	1	1	3	9	0
5182	2	2	2	2	3	1	(3)	1	1	1	3	0
5185	2	2	2	3	3	1	(3)	1	1	1	3	*
5365	2	2	2	2	2	2	(3)	1	1	3	9	0
5386	2	2	2	2	2	2	(3)	1	1	3	9	0
5407	2	2	2	2	2	2	(3)	1	1	3	27	0
5437	2	2	2	2	2	2	(3)	1	1	3	9	0
5458	2	2	2	2	2	2	(3)	1	1	3	9	0
5494	2	2	2	2	3	1	(3)	1	1	1	3	0
5530	2	2	2	3	3	2	(3)	1	1	1	9	*
5533	2	2	3	3	3	2	(9)	1	1	3	9	*
5611	3	3	3	3	3	3	(9)	1	1	3	9	*
5617	2	2	2	2	3	1	(9)	1	1	1	3	0

Table 1 (cont.)

m	n_{0}	n_{1}	n_{2}	$n_{0}^{(1)}$	$\overline{n_{2}^{(1)}}$	$\lambda_{3}^{-}\left(k^{*}\right)$	A_{0}^{*-}	$\left\|D_{0}\right\|$	$\left\|A_{0}\right\|$	$\left\|D_{1}\right\|$	$\left\|A_{1}\right\|$	$\lambda_{3}(k)$
5647	2	2	3	2	4	1	(3)	1	1	1	3	0
5749	2	2	2	2	3	1	(27)	1	1	1	3	0
5902	2	2	2	2	3	1	(9)	1	1	1	3	0
5938	1	1	1	2	2	1	(27)	1	3	1	9	*
5971	2	2	3	3	3	3	(9)	1	1	3	27	*
6001	2	2	2	2	3	1	(9)	1	1	1	3	0
6169	2	2	2	3	3	1	(3)	1	1	1	3	*
6187	2	2	2	3	3	3	(3)	1	1	1	9	*
6202	2	2	2	3	3	1	(3)	1	1	1	3	*
6238	1	1	1	2	2	1	(3)	1	3	3	9	0
6271	2	2	2	3	3	1	(3)	1	1	1	3	*
6286	2	2	2	3	3	1	(9)	1	1	1	3	*
6295	2	2	2	2	2	2	(3)	1	1	3	9	0
6355	2	2	2	2	3	1	(3)	1	1	1	3	0
6403	2	2	2	2	3	1	(9)	1	1	1	3	0
6430	2	2	2	2	2	3	(3)	1	1	3	9	0
6451	2	2	2	2	2	2	(3)	1	1	3	27	0
6502	2	2	2	2	3	1	(9)	1	1	1	3	0
6559	2	2	4	3	4	2	$(3,3)$	9	9	27	81	*
6601	1	1	1	2	2	2	(3)	1	3	3	9	0
6691	2	2	2	2	3	1	(3)	1	1	1	3	0
6730	2	2	2	2	3	1	(9)	1	1	1	3	0
6799	2	2	2	2	2	2	(3)	1	1	3	9	0
6871	2	2	2	3	3	1	(27)	1	1	1	3	*
6901	1	1	1	2	2	2	(3)	1	3	3	9	0
6907	2	2	2	2	3	1	(3)	1	1	1	3	0
6934	2	2	2	3	3	1	(9)	1	1	1	3	*
6949	2	2	2	2	2	2	(3)	1	1	3	9	0
6955	3	3	4	3	5	1	(3)	1	1	1	3	0
7006	3	3	3	3	4	3	$(3,3)$	3	3	3	9	*
7051	2	2	2	2	3	1	(9)	1	1	1	3	0
7078	2	2	4	2	5	1	(3)	1	1	1	3	0
7234	1	1	1	2	2	2	(3)	1	3	3	9	0
7246	2	2	3	2	4	2	(9)	1	1	1	9	0
7294	2	2	2	2	3	1	(9)	1	1	1	3	0
7303	2	2	2	2	2	3	(3)	1	1	3	9	0
7309	2	2	2	3	3	1	(9)	1	1	1	3	*
7315	2	2	2	2	3	2	(3)	1	1	1	9	0
7321	2	2	2	3	3	1	(3)	1	1	1	3	*
7387	1	1	1	2	2	1	(9)	1	3	3	9	0
7429	2	2	3	3	3	2	(9)	1	1	3	9	*
7465	3	3	3	3	4	2	$(3,3)$	9	9	9	27	*
7522	2	2	2	2	3	1	(3)	1	1	1	3	0
7582	2	2	2	3	3	1	(3)	1	1	1	3	*
7603	2	2	2	2	3	1	(27)	1	1	1	3	0
7621	2	2	2	2	3	1	(3)	1	1	1	3	0

Table 1 (cont.)

m	n_{0}	n_{1}	n_{2}	$n_{0}^{(1)}$	$n_{2}^{(1)}$	$\lambda_{3}^{-}\left(k^{*}\right)$	A_{0}^{*-}	$\left\|D_{0}\right\|$	$\left\|A_{0}\right\|$	$\left\|D_{1}\right\|$	$\left\|A_{1}\right\|$	$\lambda_{3}(k)$
7633	2	2	2	2	3	1	(9)	1	1	1	3	0
7639	1	1	1	2	2	1	(3)	1	3	3	9	0
7642	2	2	3	3	3	2	(27)	1	1	3	9	*
7705	2	2	2	2	2	2	(3)	1	1	3	9	0
7711	1	2	2	2	3	1	(3)	1	3	3	9	0
7726	2	2	2	2	3	3	$(3,3)$	1	3	1	81	*
7753	1	2	2	2	3	2	(9)	1	3	3	27	0
7906	2	2	2	2	3	1	(9)	1	1	1	3	0
7951	2	2	3	2	4	1	(3)	1	1	1	3	0
7954	2	2	3	2	4	2	$(3,3)$	3	3	3	9	0
7957	2	2	2	3	3	1	(3)	1	1	1	3	*
7969	3	3	3	3	4	1	(3)	1	1	1	3	0
7978	2	2	2	2	2	2	(3)	1	1	3	9	0
8011	2	2	2	2	3	1	(3)	1	1	1	3	0
8017	1	1	1	2	2	1	(3)	1	3	1	9	*
8095	2	2	2	2	3	1	(3)	1	1	1	3	0
8101	2	2	2	3	3	1	(3)	1	1	1	3	*
8137	2	2	2	2	3	2	(3)	1	1	1	27	0
8155	2	2	2	3	3	1	(3)	1	1	1	3	*
8194	2	2	2	2	2	4	(3)	1	1	3	9	0
8203	2	2	2	2	3	1	(3)	1	1	1	3	0
8209	2	2	2	2	2	2	(3)	1	1	3	9	0
8245	2	2	2	2	3	1	(3)	1	1	1	3	0
8365	2	2	2	2	3	1	(9)	1	1	1	3	0
8374	2	2	3	2	4	3	$(3,3)$	3	3	3	27	0
8422	2	2	2	2	3	1	(3)	1	1	1	3	0
8545	1	1	1	2	2	1	(9)	1	3	3	9	0
8569	2	2	2	3	3	1	(3)	1	1	1	3	*
8599	2	2	2	2	3	1	(3)	1	1	1	3	0
8626	2	2	2	2	3	1	(3)	1	1	1	3	0
8713	2	2	3	2	4	2	$(3,3)$	3	3	3	9	0
8755	2	2	2	2	3	1	(3)	1	1	1	3	0
8758	2	2	2	2	2	4	(3)	1	1	3	9	0
8782	1	1	1	2	2	1	(9)	1	3	1	9	*
8785	2	2	3	2	4	1	(3)	1	1	1	3	0
8809	2	2	4	2	5	1	(3)	1	1	1	3	0
8821	2	2	4	2	5	1	(3)	1	1	1	3	0
8854	1	1	1	2	2	2	(3)	1	3	3	9	0
8863	1	2	2	2	3	1	(3)	1	3	3	9	0
8893	2	2	2	2	2	2	(3)	1	1	3	9	0
8965	3	3	3	3	4	1	(3)	1	1	1	3	0
9019	2	2	2	2	3	1	(9)	1	1	1	3	0
9034	1	1	1	2	2	1	(27)	1	3	3	9	0
9058	2	2	2	3	3	1	(9)	1	1	1	3	*
9097	2	2	2	2	2	2	(3)	1	1	3	27	0
9103	2	2	2	2	3	1	(27)	1	1	1	3	0

Table 1 (cont.)

m	n_{0}	n_{1}	n_{2}	$n_{0}^{(1)}$	$n_{2}^{(1)}$	$\lambda_{3}^{-}\left(k^{*}\right)$	A_{0}^{*-}	$\left\|D_{0}\right\|$	$\left\|A_{0}\right\|$	$\left\|D_{1}\right\|$	$\left\|A_{1}\right\|$	$\lambda_{3}(k)$
9115	2	2	3	2	4	1	(3)	1	1	1	3	0
9145	2	2	2	2	3	1	(3)	1	1	1	3	0
9202	2	2	2	2	3	1	(3)	1	1	1	3	0
9274	4	4	5	4	6	1	(3)	1	1	1	3	0
9427	2	2	2	2	3	3	(3)	1	1	1	9	0
9463	2	2	3	2	4	1	(3)	1	1	1	3	0
9586	1	1	1	2	2	3	(3)	1	3	3	9	0
9634	3	3	4	3	5	2	$(9,3)$	3	3	3	9	$*$
9679	4	4	6	4	7	1	(3)	1	1	1	3	0
9691	2	2	3	3	3	2	(9)	1	1	3	9	$*$
9754	2	2	4	2	5	1	(3)	1	1	1	3	0
9766	1	1	1	2	2	1	(3)	1	3	3	9	0
9790	2	2	2	2	3	4	$(3,3)$	3	3	3	27	0
9814	4	4	4	5	5	1	(3)	1	1	1	3	$*$
9895	3	3	3	3	4	1	(3)	1	1	1	3	0

References

[1] A. Candiotti, Computations of Iwasawa invariants and K_{2}, Compositio Math. 29 (1974), 89-111.
[2] B. Ferrero and L. C. Washington, The Iwasawa invariant μ_{p} vanishes for abelian number fields, Ann. of Math. 109 (1979), 377-395.
[3] T. Fukuda, Iwasawa λ-invariants of certain real quadratic fields, Proc. Japan Acad. 65A (1989), 260-262.
[4] -, Iwasawa λ-invariants of imaginary quadratic fields, J. College Industrial Technology Nihon Univ. 27 (1994), 35-88. (Corrigendum; to appear ibid.)
[5] T. Fukuda and K. Komatsu, On the λ invariants of \mathbb{Z}_{p}-extensions of real quadratic fields, J. Number Theory 23 (1986), 238-242.
[6] —, 一, On \mathbb{Z}_{p}-extensions of real quadratic fields, J. Math. Soc. Japan 38 (1986), 95-102.
[7] T. Fukuda, K. Komatsu and H. Wada, A remark on the λ-invariants of real quadratic fields, Proc. Japan Acad. 62A (1986), 318-319.
[8] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
[9] —, On p-adic L-functions and cyclotomic fields II, Nagoya Math. J. 67 (1977), 139-158.
[10] K. Iwasawa, On \mathbb{Z}_{l}-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.
[11] S. Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Math. 797, Springer, Berlin, 1980.
[12] H. T a y a, On the Iwasawa λ-invariants of real quadratic fields, Tokyo J. Math. 16 (1993), 121-130.
[13] -, Computation of \mathbb{Z}_{3}-invariants of real quadratic fields, preprint series, Waseda Univ. Technical Report No. 93-13, 1993.
[14] H. Wada and M. Saito, A table of ideal class groups of imaginary quadratic fields, Sophia Kôkyuroku in Math. 28, Depart. of Math., Sophia Univ. Tokyo, 1988.
[15] L. C. W ashington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer, New York, 1982.
[16] H. Yokoi, On the class number of a relatively cyclic number field, Nagoya Math. J. 29 (1967), 31-44.

DEPARTMENT OF MATHEMATICS
COLLEGE OF INDUSTRIAL TECHNOLOGY
NIHON UNIVERSITY
2-11-1, SHIN-EI NARASHINO-SHI
CHIBA, 275 JAPAN
E-mail: FUKUDA@MATH.CIT.NIHON-U.AC.JP

DEPARTMENT OF MATHEMATICS SCHOOL OF SCIENCE AND ENGINEERING

WASEDA UNIVERSITY
3-4-1, OKUBO SHINJUKU-KU TOKYO, 169 JAPAN
E-mail: TAYA@CFI.WASEDA.AC.JP

Received on 28.3.1994
and in revised form on 5.6.1994

[^0]: 1991 Mathematics Subject Classification: 11R23, 11R11, 11R27, 11Y40

