The Iwasawa λ -invariants of \mathbb{Z}_p -extensions of real quadratic fields

by

TAKASHI FUKUDA (Chiba) and HISAO TAYA (Tokyo)

1. Introduction. Let k be a totally real number field. Let p be a fixed prime number and \mathbb{Z}_p the ring of all p-adic integers. We denote by $\lambda = \lambda_p(k)$, $\mu = \mu_p(k)$ and $\nu = \nu_p(k)$ the Iwasawa invariants of the cyclotomic \mathbb{Z}_p -extension k_{∞} of k for p (cf. [10]).

Then Greenberg's conjecture states that both $\lambda_p(k)$ and $\mu_p(k)$ always vanish (cf. [8]). In other words, the order of the *p*-primary part of the ideal class group of k_n remains bounded as *n* tends to infinity, where k_n is the *n*th layer of k_{∞}/k . We know by the Ferrero–Washington theorem (cf. [2], [15]) that $\mu_p(k)$ always vanishes when *k* is an abelian (not necessarily totally real) number field. However, the conjecture remains unsolved up to now except for some special cases (cf. [1], [3], [5]–[8], [13]).

This paper is a continuation of our previous papers [3], [5]–[7] and [12], that is to say, we investigate Greenberg's conjecture when k is a real quadratic field and p is an odd prime number which splits in k. The purpose of this paper is to extend our previous results, and to give basic numerical data of $k = \mathbb{Q}(\sqrt{m})$ for $0 \le m \le 10000$ and p = 3. On the basis of these data, we can verify Greenberg's conjecture for most of these k's.

2. Notation and statement of the results. Let k be a real quadratic field with class number h and ε the fundamental unit of k. Let p be an odd prime number which splits in k, namely, $(p) = \mathfrak{p}\mathfrak{p}'$ in k where $\mathfrak{p} \neq \mathfrak{p}'$. Then we can choose $\alpha \in k$ such that $\mathfrak{p}'^h = (\alpha)$. In [6], we defined two invariants $n_1, n_2 \in \mathbb{N}$ for k and p by

$$\mathfrak{p}^{n_1} \| (\alpha^{p-1} - 1), \quad \mathfrak{p}^{n_2} \| (\varepsilon^{p-1} - 1).$$

Here $\mathfrak{p}^n || \mathfrak{a}$ means that $\mathfrak{p}^n || \mathfrak{a}$ and $\mathfrak{p}^{n+1} \nmid \mathfrak{a}$ for an ideal \mathfrak{a} of k. In spite of ambiguity of α , n_1 is uniquely determined under the condition $n_1 \leq n_2$.

1991 Mathematics Subject Classification: 11R23, 11R11, 11R27, 11Y40.

[277]

For the cyclotomic \mathbb{Z}_p -extension

$$k = k_0 \subset k_1 \subset \ldots \subset k_n \subset \ldots \subset k_\infty = \bigcup_{n=1}^{\infty} k_n$$

with Galois group $\Gamma = \text{Gal}(k_{\infty}/k)$, let A_n be the *p*-primary part of the ideal class group of k_n , and \mathfrak{p}_n (resp. \mathfrak{p}'_n) the unique prime ideal of k_n lying above \mathfrak{p} (resp. \mathfrak{p}'). We put

$$A_n^{\Gamma} = \{ a \in A_n \mid a^{\sigma} = a \text{ for all } \sigma \in \Gamma \} \quad \text{and} \quad D_n = \langle Cl(\mathfrak{p}_n) \rangle \cap A_n,$$

where $Cl(\mathfrak{p}_n)$ denotes the ideal class represented by \mathfrak{p}_n . Then we have $A_n^{\Gamma} \supset D_n$. These groups are closely related to Greenberg's conjecture (cf. Theorem 2 in [8]).

Moreover, we introduce two other invariants $n_0^{(r)}$ and $n_2^{(r)}$ following [13]. Let E_n be the group of units in k_n and d_n the order of $Cl(\mathfrak{p}_n)$ (so the order of $Cl(\mathfrak{p}'_n)$) in the ideal class group of k_n . For each $m \ge n \ge 0$, we denote by $N_{m,n}$ the norm map from k_m to k_n . Fix an integer $r \ge 0$. Then we can choose $\beta_r \in k_r$ such that $\mathfrak{p}'^{d_r} = (\beta_r)$. We define the invariants $n_0^{(r)}, n_2^{(r)} \in \mathbb{N}$ for k and p by

$$\mathfrak{p}^{n_0^{(r)}} \parallel (N_{r,0}(\beta_r)^{p-1} - 1), \quad p^{n_2^{(r)}} = p^{n_2}(E_0 : N_{r,0}(E_r)).$$

As in the case of n_1 , $n_0^{(r)}$ is uniquely determined under the condition $n_0^{(r)} \leq n_2^{(r)}$, though the choice of β_r is not unique. Here we note that $r + 1 \leq n_0^{(r)}$ because k_{∞}/k is totally ramified at p. Furthermore, it is easy to see that

$$n_0^{(r)} \le n_0^{(r+1)} \le n_0^{(r)} + 1$$
 and $n_2^{(r)} \le n_2^{(r+1)} \le n_2^{(r)} + 1$

for each $r \ge 0$. Put $n_0 = n_0^{(0)}$ in particular. We then see that $n_0 \le n_1 \le n_2$.

R e m a r k 1. By the definitions of $n_0^{(r)}$ and $n_2^{(r)}$, we see that $n_0^{(r)}$ is the maximal integer n such that $\mathfrak{p}^n | (N_{r,0}(\beta_r)^{p-1} - 1)$ for all elements β_r of k_r satisfying $\mathfrak{p}_r^{\prime d_r} = (\beta_r)$ and that $n_2^{(r)}$ is the maximal integer n such that $\mathfrak{p}^n | (N_{r,0}(\varepsilon_r)^{p-1} - 1)$ for all elements ε_r of E_r . Indeed, it follows from the definition of $n_2^{(r)}$ that $\mathfrak{p}^{n_2^{(r)}} | (N_{r,0}(\varepsilon_r)^{p-1} - 1)$ for all $\varepsilon_r \in E_r$. Moreover, there exists $\eta_r \in E_r$ such that $\varepsilon^{u_r} = N_{r,0}(\eta_r)$, so that $\mathfrak{p}^{n_2^{(r)}} | (N_{r,0}(\eta_r)^{p-1} - 1)$, where u_r denotes the integer such that $p^{u_r} = (E_0 : N_{r,0}(E_r))$. Hence the second assertion follows. The first one immediately follows from the inequality $n_0^{(r)} \leq n_2^{(r)}$.

 $\operatorname{Remark} 2$. When we put r = 0, we have

$$n_1 = \min\{n_0 + v_p(h) - v_p(d_0), n_2\}$$

where $v_p(a)$ denotes the exact power of p dividing a. Hence, if $A_0 = D_0$, then $n_0 = n_1$.

Let ζ_p be a primitive *p*th root of unity and $k^* = k(\zeta_p)$. For the *CM*field k^* , let $(k^*)^+$ be the maximal real subfield of k^* and put $\lambda_p^-(k^*) =$ $\lambda_p(k^*) - \lambda_p((k^*)^+)$. Our main theorems are as follows.

THEOREM 1 (Generalization of Proposition in [3] and Theorem 2 in [12]). Let k be a real quadratic field and p an odd prime number which splits in k. Assume that

(i) $\lambda_p^-(k^*) = 1$ and (ii) $n_0^{(r)} \neq n_2^{(r)}$ for some $r \ge 0$.

Then $\lambda_p(k) = \mu_p(k) = 0.$

 $\operatorname{Remark} 3$. Let χ be the non-trivial Dirichlet character associated with k and ω the Teichmüller character of $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$. We denote by $\lambda_p(k^*)_{\omega\chi^{-1}}$ the $\omega \chi^{-1}$ -component of $\lambda_p(k^*)$. Then we may replace assumption (i) of Theorem 1 by a weaker assumption that $\lambda_p(k^*)_{\omega\chi^{-1}} = 1$ (cf. Proposition 1 in [9]).

Putting r = 0 in Theorem 1, we obtain the following

COROLLARY 1 (cf. Theorem 2 in [6]). Let k and p be as in Theorem 1. If $\lambda_p^-(k^*) = 1$ and $n_0 \neq n_2$, then $\lambda_p(k) = \mu_p(k) = 0$.

THEOREM 2. Let k be a real quadratic field and p an odd prime number which splits in k. Assume that $A_0 = D_0$. Then the following conditions are equivalent.

- (i) $n_0^{(r)} = r + 1$ for some $r \ge 0$. (ii) $n_0^{(r)} = r + 1$ for all sufficiently large r. (iii) $n_2^{(r)} = r + 1$ for some $r \ge 0$. (iv) $n_2^{(r)} = r + 1$ for all sufficiently large r. (v) $A_n^{\Gamma} = D_n$ for all sufficiently large n.

In particular, one of these conditions holds if and only if $\lambda_p(k) = \mu_p(k) = 0$.

Putting r = 0 in the condition (i) of Theorem 2, we obtain the following.

COROLLARY 2 (cf. Theorem 1 in [6]). Let k and p be as in Theorem 2. If $A_0 = D_0$ and $n_0 = 1$ (i.e., $n_1 = 1$), then $\lambda_p(k) = \mu_p(k) = 0$.

Moreover, putting $r = n_2 - 1$ in condition (iii) of Theorem 2, we obtain the following by Lemma 8 (cf. Section 5).

COROLLARY 3 (cf. Theorem in [5] and Lemma in [7]). Let k and p be as in Theorem 2. If $A_0 = D_0$ and $N_{n_2-1,0}(E_{n_2-1}) = E_0$, then $\lambda_p(k) = \mu_p(k) = 0$.

The notation defined in this section will be used throughout this paper. We also denote by $\beta_r \in k_r$ a generator of $\mathfrak{p}_r^{\prime d_r}$ satisfying

 $\mathfrak{p}^{n_0^{(r)}} \parallel (N_{r,0}(\beta_r)^{p-1} - 1)$ and $n_0^{(r)} < n_2^{(r)}$.

Namely, $\beta_r \in k_r$ is a generator of $\mathfrak{p}_r^{\prime d_r}$ which determines $n_0^{(r)}$. Since p splits in k, we have $k_{\mathfrak{p}} \simeq \mathbb{Q}_p$, where $k_{\mathfrak{p}}$ is the completion of k at \mathfrak{p} . So, by identifying $\mathfrak{p} \in k_{\mathfrak{p}}$ with $p \in \mathbb{Q}_p$, we may write $N_{r,0}(\beta_r)^{p-1} \in k$ as in the following form of a p-adic integer:

$$N_{r,0}(\beta_r)^{p-1} = 1 + p^{n_0^{(r)}} x_r, \qquad x_r \in \mathbb{Z}_p^{\times}.$$

3. Some fundamental lemmas. We first refer to the following three lemmas.

LEMMA 1 (cf. Theorem 2 in [8]). Let k and p be as in Section 2. Then $A_n^{\Gamma} = D_n$ for all sufficiently large n if and only if $\lambda_p(k) = \mu_p(k) = 0$.

LEMMA 2 (cf. Proposition 1 in [6]). Let k and p be as in Section 2. Then

$$|A_n^{\Gamma}| = \begin{cases} |A_0|p^n & \text{if } n < n_2 - 1, \\ |A_0|p^{n_2 - 1} & \text{if } n \ge n_2 - 1. \end{cases}$$

LEMMA 3 (cf. Lemma 3 in [12]). Let k and p be as in Section 2. If A_n is cyclic for all $n \ge 0$ and if D_r is non-trivial for some $r \ge 0$, then $\lambda_p(k) = \mu_p(k) = 0$.

Next we prove two more lemmas. Since $\mathfrak{p}_r = \mathfrak{p}_{r+1}^p$, we have $d_{r+1} = d_r$ or pd_r ; in particular, $|D_{r+1}| = |D_r|$ or $p|D_r|$. If we write $d_r = cp^j$ with an integer c prime to p, then c is independent of r.

LEMMA 4. Let r be a fixed non-negative integer. Assume that $|D_{r+1}| = p|D_r|$. Then

$$n_0^{(r+1)} = \begin{cases} n_0^{(r)} & \text{if } n_0^{(r)} = n_2^{(r)} = n_2^{(r+1)}, \\ n_0^{(r)} + 1 & \text{otherwise.} \end{cases}$$

Proof. Since $d_{r+1} = pd_r$, we have

$$\mathfrak{p}_{r+1}^{\prime d_{r+1}} = \mathfrak{p}_{r+1}^{\prime p d_r} = \mathfrak{p}_r^{\prime d_r} = (\beta_r) \quad \text{ in } k_{r+1}.$$

Thus we may take β_r as a generator of $\mathfrak{p}_{r+1}^{\prime d_{r+1}}$. Then we obtain

$$N_{r+1,0}(\beta_r)^{p-1} = N_{r,0}(\beta_r)^{p(p-1)}$$

= $(1 + p^{n_0^{(r)}} x_r)^p, \quad x_r \in \mathbb{Z}_p^{\times},$
= $1 + p^{n_0^{(r)} + 1} x'_r, \quad x'_r \in \mathbb{Z}_p^{\times},$

therefore

$$\mathfrak{p}^{n_0^{(r)}+1} \parallel (N_{r+1,0}(\beta_r)^{p-1}-1).$$

Hence it follows from the definition of $n_0^{(r+1)}$ that

$$n_0^{(r+1)} = \min\{n_0^{(r)} + 1, n_2^{(r+1)}\},\$$

which yields the desired result. \blacksquare

LEMMA 5. Let r be a fixed non-negative integer. Assume that $|D_r| = |D_{r+1}|$. Then

(i) If $n_0^{(r)} < n_2^{(r)}$, then $n_0^{(r+1)} = n_0^{(r)}$. (ii) If $n_2^{(r)} = n_2^{(r+1)}$, then $n_0^{(r+1)} = n_0^{(r)}$

Proof. (i) Since $d_{r+1} = d_r$, we have

$$(\beta_r) = \mathfrak{p}_r^{\prime d_r} = N_{r+1,r}(\mathfrak{p}_{r+1}^{\prime d_r}) = N_{r+1,r}(\mathfrak{p}_{r+1}^{\prime d_{r+1}}) = (N_{r+1,r}(\beta_{r+1})) \quad \text{in } k_r.$$

Hence $N_{r+1,r}(\beta_{r+1}) = \beta_r \varepsilon_r$ for some $\varepsilon_r \in E_r$. Taking the norm from k_r to k, we have $N_{r+1,0}(\beta_{r+1}) = N_{r,0}(\beta_r)N_{r,0}(\varepsilon_r)$. Therefore we obtain the following *p*-adic expansion:

(1)
$$1 + p^{n_0^{(r+1)}} x_{r+1} = 1 + p^{n_0^{(r)}} x_r + p^{n_2^{(r)}} y_r + \dots, \quad x_r, x_{r+1} \in \mathbb{Z}_p^{\times}, \ y_r \in \mathbb{Z}_p.$$

This implies the desired result.

(ii) Suppose that $n_0^{(r+1)} \neq n_0^{(r)}$. Then it follows from (1) that $n_0^{(r)} = n_2^{(r)}$. Therefore $n_0^{(r+1)} > n_0^{(r)} = n_2^{(r)} = n_2^{(r+1)}$, which contradicts the definition of $n_0^{(r+1)}$. This completes the proof. \bullet

Remark 4. Lemmas 4 and 5 can be used for determining $n_0^{(r+1)}$ from $n_0^{(r)}$, $n_2^{(r)}$ and $n_2^{(r+1)}$. However, Lemma 5 does not work in the case where $n_0^{(r)} = n_2^{(r)} < n_2^{(r+1)}$. Actually, when p = 3, we see that $n_0 = n_2 = 2 < n_2^{(1)} = 3$ and $n_0^{(1)} = 2$ for $k = \mathbb{Q}(\sqrt{106})$, and that $n_0 = n_2 = 2 < n_2^{(1)} = 3$ and $n_0^{(1)} = 3$ for $k = \mathbb{Q}(\sqrt{295})$ (cf. Table 1). Hence, in this situation the practical calculation of β_{r+1} is necessary to the determination of $n_0^{(r+1)}$.

4. The proof of Theorem 1 and some examples. In order to prove Theorem 1, we need the following lemma.

LEMMA 6. Let r be a fixed non-negative integer. If $n_0^{(r)} \neq n_2^{(r)}$, then $|D_n| > |D_r|$ for all $n \ge n_0^{(r)}$.

Proof. Suppose that $|D_n| = |D_r|$ for some $n \ge n_0^{(r)}$. Then since $d_n = d_r$, we have $N_{n,r}(\beta_n) = \beta_r \varepsilon_r$ for some $\varepsilon_r \in E_r$, as in the proof of Lemma 5. Taking the norm and expanding it in the *p*-adic form, we obtain

(2) $1 + p^{n_0^{(n)}} x_n = 1 + p^{n_0^{(r)}} x_r + p^{n_2^{(r)}} y_r + \dots, \quad x_r, x_n \in \mathbb{Z}_p^{\times}, \ y_r \in \mathbb{Z}_p.$ Since $n_0^{(n)} \ge n + 1 \ge n_0^{(r)} + 1 > n_0^{(r)}$ for all $n \ge n_0^{(r)}$, it follows from (2) that $n_0^{(r)} = n_2^{(r)}$. This completes the proof. \blacksquare

By Lemma 2, $|A_n^{\Gamma}|$ remains bounded as *n* tends to infinity, hence so does $|D_n|$. Therefore we obtain the following as a corollary to Lemma 6.

COROLLARY 4. Let k and p be as in Section 2. Then $n_0^{(r)} = n_2^{(r)}$ for all sufficiently large r.

Proof of Theorem 1. Let k_n^* be the *n*th layer of the cyclotomic \mathbb{Z}_p -extension k_{∞}^*/k^* and A_n^* the *p*-primary part of the ideal class group of k_n^* . Since k_n^* is a *CM*-field, we can define $(A_n^*)^+$ by the *p*-primary part of the ideal class group of its maximal real subfield and $(A_n^*)^-$ by the kernel of the norm map from A_n^* to $(A_n^*)^+$. The Ferrero–Washington theorem guarantees the vanishing of $\mu_p(k^*)$, hence, by assumption (i), $(A_n^*)^-$ is cyclic for all $n \geq 0$. It follows from the reflection theorem that $(A_n^*)^+$ is cyclic, hence so is A_n for all $n \geq 0$. By Lemma 6, we also have the inequality $|D_n| > |D_r|$ under assumption (ii), hence $D_n \neq 1$, for all $n \geq n_0^{(r)}$. Therefore Theorem 1 immediately follows from Lemma 3.

EXAMPLE 1. Let $k = \mathbb{Q}(\sqrt{26893})$ and p = 3, for which we could not verify that $\lambda_3(k) = \mu_3(k) = 0$ in [13]. Then $n_0 = n_1 = n_2 = 4$, and moreover, $\lambda_3^-(k^*) = 1$ and $n_0^{(1)} = 4 \neq n_2^{(1)} = 5$ (see Table 2 of [13]). Therefore it follows from Theorem 1 that $\lambda_3(k) = \mu_3(k) = 0$.

EXAMPLE 2. Let $k = \mathbb{Q}(\sqrt{4651})$ and p = 3. Then $\lambda_3^-(k^*) = 1$ and $n_0 = 1 \neq n_1 = n_2 = 2$ (see Table 1). Therefore it follows from Theorem 1 that $\lambda_3(k) = \mu_3(k) = 0$. Note that $|A_0| = 3 > 1 = |D_0|$. In order to conclude that $\lambda_3(k) = \mu_3(k) = 0$ for this k, we needed the information on the initial layer k_1 of k_{∞}/k before now (cf. [3], [7]). But we do not need such information now, therefore it seems that the invariant n_0 is more useful than n_1 .

5. The proof of Theorem 2. First, we prove the following lemma.

LEMMA 7. Let r and s be fixed non-negative integers. If $|D_{r+s}| = p^t |D_r|$, then

$$n_0^{(r)} \ge \min\{n_0^{(r+s)} - t, n_2^{(r)} - t\}.$$

Proof. Note that $s \ge t$ and $d_{r+s} = p^t d_r$. Then we have

$$(\beta_{r+s}^{p^{s-t}}) = \mathfrak{p}_{r+s}^{\prime p^{s-t}d_{r+s}} = \mathfrak{p}_{r+s}^{\prime p^{s}d_{r}} = \mathfrak{p}_{r}^{\prime d_{r}} = (\beta_{r}) \quad \text{in } k_{r+s},$$

hence $(N_{r+s,r}(\beta_{r+s}))^{p^{s-t}} = (\beta_r)^{p^s}$. So $(N_{r+s,r}(\beta_{r+s})) = (\beta_r)^{p^t}$ in k_r . Therefore

$$\beta_r^{p^t} = N_{r+s,r}(\beta_{r+s})\varepsilon_r$$
 for some $\varepsilon_r \in E_r$.

Taking the norm and expanding it in the p-adic form, we obtain

 $1 + p^{n_0^{(r)} + t} x'_r = 1 + p^{n_0^{(r+s)}} x_{r+s} + p^{n_2^{(r)}} y_r + \dots, \quad x'_r, x_{r+s} \in \mathbb{Z}_p^{\times}, \ y_r \in \mathbb{Z}_p.$ This immediately implies Lemma 7. \bullet From now on, we consider the case where $A_0 = D_0$. Let \overline{A}_n^T be the subgroup of A_n consisting of ideal classes which contain an ideal invariant under the action of $\operatorname{Gal}(k_n/k)$. Then the genus formula (cf. [16]) says that

$$|\overline{A}_{n}^{\Gamma}| = |A_{0}| \frac{p^{n}}{(E_{0}: N_{n,0}(E_{n}))}.$$

If $A_0 = D_0$, then $\overline{A}_n^{\Gamma} = D_n$ for all $n \ge 0$ because $\overline{A}_n^{\Gamma} = i_{0,n}(A_0)D_n$, where $i_{0,n}$ denotes the natural map from the ideal group of k to the ideal group of k_n induced from the inclusion map. Hence we immediately obtain the following lemmas.

LEMMA 8. Let r be a fixed non-negative integer. Assume that $A_0 = D_0$. Then

(i) $|D_r| = |D_0|p^{r-u_r} = |D_0|p^{n_2+r-n_2^{(r)}},$ (ii) $n_2^{(r)} = n_2 + r - u,$

where u_r is the integer such that $p^{u_r} = (E_0 : N_{r,0}(E_r))$ and u is the integer such that $|D_r| = p^u |D_0|$.

LEMMA 9. Let r be a fixed non-negative integer. Assume that $A_0 = D_0$. Then $|D_{r+1}| = p|D_r|$ if and only if $n_2^{(r+1)} = n_2^{(r)}$.

Proof. Let u_r be as in Lemma 8. Then $|D_{r+1}| = p|D_r|$ if and only if $u_{r+1} = u_r$. Hence the result follows from the definition of $n_2^{(r)}$.

LEMMA 10. Let r be a fixed non-negative integer. Assume that $A_0 = D_0$ and that $|D_{r+1}| = p|D_r|$. Then $n_0^{(r+1)} = n_0^{(r)}$ if and only if $n_0^{(r)} = n_2^{(r)}$. Namely, we have

$$n_0^{(r+1)} = \begin{cases} n_0^{(r)} & \text{if } n_0^{(r)} = n_2^{(r)} \\ n_0^{(r)} + 1 & \text{if } n_0^{(r)} \neq n_2^{(r)} \end{cases}$$

Proof. This easily follows from Lemmas 4 and 9.

Proof of Theorem 2. $(iv) \Rightarrow (ii) \Rightarrow (i)$ and $(iv) \Rightarrow (ii) \Rightarrow (i)$ are trivial. Therefore it is sufficient to prove that $(i) \Rightarrow (v) \Rightarrow (iv)$.

(i) \Rightarrow (v). Let r be a non-negative integer such that $n_0^{(r)} = r + 1$. Then $n_0^{(r+1)} = (r+1) + 1$ because $(r+1) + 1 \le n_0^{(r+1)}$ and $n_0^{(r+1)} \le n_0^{(r)} + 1$. Repeating this process, we conclude that $n_0^{(r+s)} = r + s + 1$ for all $s \ge 0$. We denote by u the integer such that $|D_r| = p^u |D_0|$. For $s \ge n_2 - 1 - u$, we put

$$|D_{r+s}| = p^t |D_r| = p^{t+u} |D_0|.$$

Now suppose that $t + u < n_2 - 1$. Then we have

$$n_0^{(r+s)} - t = r + s + 1 - t \ge r + n_2 - u - t \ge r + 2,$$

$$n_2^{(r)} - t = n_2 + r - u - t \ge r + 2$$

by Lemma 8(ii). It easily follows from Lemma 7 that

$$n_0^{(r)} \ge \min\{n_0^{(r+s)} - t, n_2^{(r)} - t\} \ge r+2,$$

which is a contradiction. Hence we must have $t + u = n_2 - 1$, so $|D_{r+s}| = |D_0|p^{n_2-1}$ for all $s \ge n_2 - 1 - u$. Therefore Lemma 2 implies that $A_n^{\Gamma} = D_n$ for all $n \ge n_2^{(r)} - 1$.

 $(v) \Rightarrow (iv)$. By Lemma 2, we have

$$|D_r| = |A_r^{\Gamma}| = |A_0|p^{n_2 - 1} = |D_0|p^{n_2 - 1}$$

for all sufficiently large r. Hence Lemma 8(i) shows that

$$|D_0|p^{n_2+r-n_2^{(r)}} = |D_0|p^{n_2-1},$$

which means that $n_2^{(r)} = r + 1$ for all sufficiently large r.

The last assertion immediately follows from Lemma 1. This completes the proof of Theorem 2. \blacksquare

6. Other useful results and some examples. In this section we shall give a few of easy results, which are useful when we cannot apply Theorems 1 and 2. First we prove the following.

LEMMA 11. If there exists an integer r_0 such that $|A_{r_0}^{\Gamma}| = |D_{r_0}|$ and $r_0 \ge n_2 - 1$, then $A_n \simeq A_{r_0}$ for all $n \ge r_0$.

Proof. Note that $N_{m,n}: A_m \to A_n$ and $N_{m,n}: D_m \to D_n$ are surjective for all $m \ge n \ge 0$ because k_{∞}/k is totally ramified at p. It follows from the assumption and Lemma 2 that $N_{m,n}: A_m^{\Gamma} \to A_n^{\Gamma}$ is isomorphic for all $m \ge n \ge r_0$. Hence, $N_{m,n}: A_m \to A_n$ is also isomorphic for all $m \ge n \ge r_0$. This completes the proof. \blacksquare

PROPOSITION 1. Let k and p be as in Section 2. If $|D_r| = |A_0|p^{n_2-2}$ and $n_0^{(r)} \neq n_2^{(r)}$ for some $r \ge 0$, then $A_n \simeq A_{n_0^{(r)}}$ for all $n \ge n_0^{(r)}$, hence in particular $\lambda_p(k) = \mu_p(k) = 0$.

Proof. It follows from Lemma 6 that $|D_n| > |D_r| = |A_0|p^{n_2-2}$ for all $n \ge n_0^{(r)}$. Hence $|A_n^{\Gamma}| = |A_0|p^{n_2-1} = |D_n|$ for all $n \ge n_0^{(r)}$ by Lemma 2. Since $n_0^{(r)} \ge n_2 - 1$, the assertion immediately follows from Lemma 11.

EXAMPLE 3. Let $k = \mathbb{Q}(\sqrt{7753})$ and p = 3. Then $n_0 = 1 \neq n_1 = n_2 = 2$, $\lambda_3^-(k^*) = 2$ and $|A_0| = 3 > 1 = |D_0|$. Hence Theorems 1 and 2 cannot be applied to this k. However, $|D_1| = 3 = |A_0|$ and $n_0^{(1)} = 2 \neq n_2^{(1)} = 3$ (see

Table 1). Therefore it follows from Proposition 1 that $A_n \simeq A_2$ for all $n \ge 2$, in particular $\lambda_3(k) = \mu_3(k) = 0$.

Lemma 6 asserts that $n_0^{(r)} \neq n_2^{(r)}$ implies $|D_r| < |D_{n_0^{(r)}}|$. However, the converse does not always hold (cf. Example 4). Thus the following proposition is sometimes useful. Here we note that, if A_n is cyclic for all $n \geq 0$ and if A_0 is trivial, then the converse is also true. In fact, for a fixed non-negative integer r, we see that $n_0^{(r)} = r + s$ if and only if $|D_r| = \ldots = |D_{r+s-1}| < |D_{r+s}|$ for $1 \leq s \leq n_2^{(r)} - r - 1$ in this situation (cf. Theorem 1 of [12]).

PROPOSITION 2. Let k and p be as in Section 2. If $\lambda_p^-(k^*) = 1$, and $D_r \neq 1$ for some $r \geq 0$, then $\lambda_p(k) = \mu_p(k) = 0$.

Proof. This immediately follows from the proof of Theorem 1 (or Lemma 3). \blacksquare

EXAMPLE 4. Let $k = \mathbb{Q}(\sqrt{1129})$ and p = 3. Then $n_0 = n_1 = n_2 = 1$, $n_0^{(1)} = n_2^{(1)} = 2$ and $|A_0| = 9 > 3 = |D_0|$ (see Table 1). Hence Theorem 1 for r = 0, 1 and Theorem 2 cannot be applied to this k. But, since $\lambda_3^-(k^*) = 1$, it follows from Proposition 2 that $\lambda_3(k) = \mu_3(k) = 0$. Now, by Table 1 and Lemma 2, we see that $|A_1^{\Gamma}| = 9 = |D_1|$, so $|A_n^{\Gamma}| = |D_n| = |D_1|$ for all $n \ge 1$. Therefore Lemma 6 implies that $n_0^{(r)} = n_2^{(r)} = r + 1$ for all $r \ge 1$, so all $r \ge 0$. Hence we cannot apply Theorem 1 for all $r \ge 0$ to this k.

Finally we note that there exist some examples of k to which we cannot apply our theorems and propositions, but nevertheless we can verify Greenberg's conjecture for them by Lemma 11. Such examples are $k = \mathbb{Q}(\sqrt{6601})$, $k = \mathbb{Q}(\sqrt{6901})$ and so on.

7. Tables of basic numerical data of $k = \mathbb{Q}(\sqrt{m})$ for p = 3. We shall give a table of the fundamental data of $k = \mathbb{Q}(\sqrt{m})$ for p = 3 and positive square-free integers m's less than 10000 satisfying $m \equiv 1 \pmod{3}$. The total number of such m's is exactly 2279. We find that there exist exactly 2042 m's which satisfy $A_0 = D_0$ and $n_0 = 1$. Greenberg's conjecture is valid for these k's by Corollary 2 to Theorem 2. Table 1 gives several useful data for 237 remaining m's. We can verify Greenberg's conjecture for 185 k's in Table 1 by applying our results. The asterisks in the column of $\lambda_3(k)$, the number of which is exactly 52, mean that Greenberg's conjecture cannot be verified by these data.

Concerning our method of computation, we refer to [11] and [13] for $n_0^{(1)}, n_2^{(1)}, |A_1|$ and $|D_1|$, to [14] for the 3-primary part A_0^{*-} of the ideal class group of $\mathbb{Q}(\sqrt{-3m})$, and to [4] for $\lambda_3^-(k^*)$. Note that $\lambda_3^-(k^*) = \lambda_3(\mathbb{Q}(\sqrt{-3m}))$. The rest is easily computed.

Addendum. Recently, after we have written this paper, we heard from H. Sumida that he verified Greenberg's conjecture for p = 3 and m = 727, 2794, 4279, 4741, 5533, 7429, 7465, 7642, 9634 and 9691, which are marked with the asterisks in Table 1, by computing the Iwasawa polynomials associated with *p*-adic *L*-functions. He is now preparing the paper entitled "Greenberg's conjecture and the Iwasawa polynomial".

m	n_0	n_1	n_2	$n_0^{(1)}$	$n_2^{(1)}$	$\lambda_3^-(k^*)$	A_0^{*-}	$ D_0 $	$ A_0 $	$ D_1 $	$ A_1 $	$\lambda_3(k)$
67	2	2	3	2	4	1	(3)	1	1	1	3	0
103	2	2	2	2	2	2	(3)	1	1	3	9	0
106	2	2	2	2	3	1	(3)	1	1	1	3	0
139	2	2	2	2	2	2	(3)	1	1	3	9	0
238	2	2	3	2	4	1	(3)	1	1	1	3	0
253	2	2	2	2	3	1	(3)	1	1	1	3	0
295	2	2	2	3	3	1	(3)	1	1	1	3	*
397	2	2	2	3	3	1	(3)	1	1	1	3	*
418	2	2	2	2	2	2	(3)	1	1	3	9	0
454	2	2	2	2	3	1	(3)	1	1	1	3	0
505	2	2	2	2	3	1	(3)	1	1	1	3	0
607	2	2	2	2	3	1	(9)	1	1	1	3	0
610	2	2	4	2	5	1	(3)	1	1	1	3	0
679	2	2	2	2	2	2	(3)	1	1	3	9	0
727	2	2	3	3	3	2	(9)	1	1	3	9	*
745	2	2	2	3	3	1	(3)	1	1	1	3	*
787	2	2	2	2	3	1	(9)	1	1	1	3	0
790	2	2	2	2	2	2	(3)	1	1	3	9	0
886	2	2	2	2	3	1	(3)	1	1	1	3	0
994	2	2	2	2	3	1	(3)	1	1	1	3	0
1102	2	2	2	2	3	1	(3)	1	1	1	3	0
1129	1	1	1	2	2	1	(3)	3	9	9	27	0
1153	2	2	2	2	2	2	(3)	1	1	3	9	0
1261	2	2	2	2	2	2	(3)	1	1	3	9	0
1294	2	2	2	2	3	1	(3)	1	1	1	3	0
1318	2	2	2	2	3	1	(3)	1	1	1	3	0
1333	2	2	2	2	3	1	(3)	1	1	1	3	0
1390	3	3	4	3	5	1	(3)	1	1	1	3	0
1462	2	2	2	2	3	1	(3)	1	1	1	3	0
1609	2	2	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	2	2	4	(3)	1	1	3	9	0
1642	2	2	2	2	2	2	(3)	1	1	3	27	0
1654	1	1	1	2	2	1	(3)	3	9	9	27	0
1669	2	2	$\begin{vmatrix} 2 \\ 0 \end{vmatrix}$	2	3	1	(9)	1	1	1	3	0
1714	2	2	2	3	3	4	(3,3)	3	3	3	9	*
1726	2	2	2	2	2	2	(3)	1	1	3	27	0
1738	2	2	2	3	3	1	(9)	1	1	1	3	*
1753	2	2	2	2	3	1	(3)	1	1	1	3	0
1810	2	2	2	2	3	1	(9)	1	1	1	3	0

Table 1. All *m*'s satisfying $A_0 \neq D_0$ or $n_0 > 1$: $1 \le m \le 10000$

Table 1 (cont.)

m	n_0	n_1	n_2	$n_0^{(1)}$	$n_2^{(1)}$	$\lambda_3^-(k^*)$	A_0^{*-}	$ D_0 $	$ A_0 $	$ D_1 $	$ A_1 $	$\lambda_3(k)$
1867	2	2	6	2	7	1	(3)	1	1	1	3	0
1894	2	2	3	2	4	1	(3)	1	1	1	3	0
1954	1	1	1	2	2	1	(3)	1	3	3	9	0
2029	2	2	2	3	3	1	(9)	1	1	1	3	*
2059	3	3	3	4	4	1	(3)	1	1	1	3	*
2122	2	2	2	2	3	2	(3)	1	1	1	9	0
2149	4	4	4	5	5	1	(3)	1	1	1	3	*
2158	2	2	2	2	3	1	(3)	1	1	1	3	0
2221	2	2	3	2	4	1	(3)	1	1	1	3	0
2230	2	2	2	2	3	2	(3, 3)	3	3	3	9	0
2263	2	2	2	2	3	2	(3, 3)	3	3	3	9	0
2371	2	2	2	2	3	1	(9)	1	1	1	3	0
2410	2	2	3	2	4	1	(3)	1	1	1	3	0
2419	1	1	1	2	2	1	(9)	1	3	3	9	0
2431	2	2	2	2	2	3	(3)	1	1	3	9	0
2515	2	2	2	2	3	1	(9)	1	1	1	3	0
2521	2	2	3	2	4	1	(3)	1	1	1	3	0
2593	2	2	3	2	4	1	(3)	1	1	1	3	0
2659	2	2	3	2	4	2	(3, 3)	3	3	3	9	0
2701	3	3	5	3	6	1	(3)	1	1	1	3	0
2713	1	1	1	2	2	1	(9)	1	3	1	9	*
2737	2	2	2	2	3	1	(3)	1	1	1	3	0
2743	2	2	3	2	4	1	(3)	1	1	1	3	0
2794	2	2	3	3	3	2	(9)	1	1	3	9	*
2917	3	3	3	4	4	3	(3,3)	3	3	3	9	*
2971	1	1	1	2	2	1	(9)	1	3	3	9	0
3001	2	2	2	2	2	2	(3)	1	1	3	9	0
3094	2	2	2	2	2	2	(3)	1	1	3	9	0
3133	3	3	5	3	6	1	(3)	1	1	1	3	0
3190	2	2	2	2	3	1	(3)	1	1	1	3	0
3199	2	2	2	2	3	1	(3)	1	1	1	3	0
3226	2	2	2	2	3	1	(9)	1	1	1	3	0
3235	2	2	2	2	3	1	(9)	1	1	1	3	0
3277	$\frac{2}{2}$	$\frac{2}{2}$	$\begin{array}{c} 2\\ 2\end{array}$	2	$\frac{3}{2}$	$\frac{1}{3}$	(27)	1	1	$\frac{1}{3}$	3 9	0
3355	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{2}{4}$	$\begin{array}{c} 2\\ 2\end{array}$	2 5	$\frac{3}{2}$	(3)	$\frac{1}{3}$	1 3	3	-	0
$3391 \\ 3469$	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{4}{2}$	$\frac{2}{3}$	5 3	$\frac{2}{2}$	(3,3)			1	9	0
$3409 \\ 3490$	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{2}{2}$	3	3	2 1	(3)	1 1	1 1	1	9	*
$3490 \\ 3571$	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{2}{2}$	$\begin{vmatrix} 3\\2 \end{vmatrix}$	3	1	(9)	1	1	1	3	*
3667	2	2	2	2	3	$\frac{1}{2}$	$(3) \\ (3,3)$	1 3	3	3	9 9	0
3673	2	2	2 4	2	э 5	2 1	(3, 3) (3)		3 1	3 1	9 3	0
3739	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{4}{2}$	$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	3	1	(3)	1 1	3	1	9 9	
3739	2	2	2	$\frac{3}{2}$	3	1	(3) (9)	1	3 1	1	9 3	* 0
3781	$\frac{2}{2}$	2	2	$\frac{2}{2}$	$\frac{3}{2}$	$\frac{1}{2}$	(3)	1	1	3	9 9	0
3847	2	2	2	2	$\frac{2}{2}$	$\frac{2}{2}$	(3)	1	1	3	9	0
3895	2	2	$\frac{2}{3}$	$\frac{2}{2}$	$\frac{2}{4}$	1	(3)	1	1	1	3	0
0090	4	4	5		-+	1	(9)	1	1	1	5	0

T. Fukuda and H. Taya

Table 1 (cont.)

m	n_0	n_1	n_2	$n_0^{(1)}$	$n_2^{(1)}$	$\lambda_3^-(k^*)$	A_0^{*-}	$ D_0 $	$ A_0 $	$ D_1 $	$ A_1 $	$\lambda_3(k)$
3979	2	2	3	2	4	1	(3)	1	1	1	3	0
3997	2	2	2	2	3	1	(9)	1	1	1	3	0
4081	3	3	3	4	4	1	(3)	1	1	1	3	*
4099	2	2	2	2	3	2	(3)	1	1	1	27	0
4207	2	2	2	2	3	1	(9)	1	1	1	3	0
4210	2	2	2	2	3	1	(9)	1	1	1	3	0
4222	2	2	2	2	2	2	(3)	1	1	3	9	0
4237	2	2	2	2	3	1	(3)	1	1	1	3	0
4279	3	3	3	3	3	2	(3,3)	3	3	9	27	*
4447	2	2	2	2	3	2	(3)	1	1	1	9	0
4471	1	1	1	2	2	1	(3)	1	3	3	9	0
4498	2	2	2	2	3	1	(3)	1	1	1	3	0
4519	2	2	2	2	3	1	(3)	1	1	1	3	0
4603	2	2	2	2	3	1	(27)	1	1	1	3	0
4615	2	2	3	2	4	1	(3)	1	1	1	3	0
4618	2	2	4	2	5	1	(3)	1	1	1	3	0
4651	1	2	2	2	3	1	(3)	1	3	3	9	0
4654	2	2	2	3	3	1	(3)	1	1	1	3	*
4681	2	2	2	2	3	1	(3)	1	1	1	3	0
4687	2	2	2	2	2	3	(3)	1	1	3	9	0
4711	2	2	2	2	3	1	(3)	1	1	1	3	0
4741	2	2	3	3	3	3	(9)	1	1	3	9	*
4789	2	2	2	3	3	1	(9)	1	1	1	3	*
4837	2	2	2	2	2	3	(3)	1	1	3	9	0
4867	2	2	2	2	3	1	(3)	1	1	1	3	0
4870	2	2	2	2	3	1	(9)	1	1	1	3	0
4954	1	1	1	2	2	1	(3)	3	9	9	27	0
4963	2	2	3	2	4	1	(3)	1	1	1	3	0
5005	2	2	2	2	2	2	(3)	1	1	3	9	0
5062	3	3	3	3	4	1	(3)	1	1	1	3	0
5083	2	2	2	2	3	1	(3)	1	1	1	3	0
5113	2	2	2	2	3	1	(3)	1	1	1	3	0
5149	2	2	2	2	3	1	(9)	1	1	1	3	0
5161	2	2	2	2	2	2	(3)	1	1	3	9	0
5182	2	2	2	2	3	1	(3)	1	1	1	3	0
5185	2	2	2	3	3	1	(3)	1	1	1	3	*
5365	2	2	2	2	2	2	(3)	1	1	3	9	0
5386	2	2	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	2	2	2	(3)	1	1	3	9	0
5407	2	2	2	2	2	2	(3)	1	1	3	27	0
5437	2	2	2	2	2	2	(3)	1	1	3	9	0
5458	2	2	2	2	2	2	(3)	1	1	3	9	0
5494	2	2	2	2	3	1	(3)	1	1	1	3	0
5530	2	2	2	3	3	2	(3)	1	1	1	9	*
5533	2	2	3	3	3	2	(9)	1	1	3	9	*
5611	3	3	3	3	3	3	(9)	1	1	3	9	*
5617	2	2	2	2	3	1	(9)	1	1	1	3	0

Table 1 (cont.)

m	n_0	n_1	n_2	$n_0^{(1)}$	$n_2^{(1)}$	$\lambda_3^-(k^*)$	A_0^{*-}	$ D_0 $	$ A_0 $	$ D_1 $	$ A_1 $	$\lambda_3(k)$
5647	2	2	3	2	4	1	(3)	1	1	1	3	0
5749	2	2	2	2	3	1	(27)	1	1	1	3	0
5902	2	2	2	2	3	1	(9)	1	1	1	3	0
5938	1	1	1	2	2	1	(27)	1	3	1	9	*
5971	2	2	3	3	3	3	(9)	1	1	3	27	*
6001	2	2	2	2	3	1	(9)	1	1	1	3	0
6169	2	2	2	3	3	1	(3)	1	1	1	3	*
6187	2	2	2	3	3	3	(3)	1	1	1	9	*
6202	2	2	2	3	3	1	(3)	1	1	1	3	*
6238	1	1	1	2	2	1	(3)	1	3	3	9	0
6271	2	2	2	3	3	1	(3)	1	1	1	3	*
6286	2	2	2	3	3	1	(9)	1	1	1	3	*
6295	2	2	2	2	2	2	(3)	1	1	3	9	0
6355	2	2	2	2	3	1	(3)	1	1	1	3	0
6403	2	2	2	2	3	1	(9)	1	1	1	3	0
6430	2	2	2	2	2	3	(3)	1	1	3	9	0
6451	2	2	2	2	2	2	(3)	1	1	3	27	0
6502	2	2	2	2	3	1	(9)	1	1	1	3	0
6559	2	2	4	3	4	2	(3, 3)	9	9	27	81	*
6601	1	1	1	2	2	2	(3)	1	3	3	9	0
6691	2	2	2	2	3	1	(3)	1	1	1	3	0
6730	2	2	2	2	3	1	(9)	1	1	1	3	0
6799	2	2	2	2	2	2	(3)	1	1	3	9	0
6871	2	2	2	3	3	1	(27)	1	1	1	3	*
6901	1	1	1	2	2	2	(3)	1	3	3	9	0
6907	2	2	2	2	3	1	(3)	1	1	1	3	0
6934	2	2	2	3	3	1	(9)	1	1	1	3	*
6949	2	2	2	2	2	2	(3)	1	1	3	9	0
6955	3	3	4	3	5	1	(3)	1	1	1	3	0
7006	3	3	3	3	4	3	(3,3)	3	3	3	9	*
7051	2	2	2	2	3	1	(9)	1	1	1	3	0
7078	2	2	4	2	5	1	(3)	1	1	1	3	0
7234	1	1	1	2	2	2	(3)	1	3	3	9	0
7246	2	2	3	2	4	2	(9)	1	1	1	9	0
7294	2	2	2	2	3	1	(9)	1	1	1	3	0
7303	2	2	2	2	2	3	(3)	1	1	3	9	0
7309	2	2	2	3	3	1	(9)	1	1	1	3	*
7315	2	2	2	2	3	2	(3)	1	1	1	9	0
7321	2	2	2	3	3	1	(3)	1	1	1	3	*
7387	1	1	1	2	2	1	(9)	1	3	3	9	0
7429	2	2	3	3	3	2	(9)	1	1	3	9	*
7465	3	3	3	3	4	2	(3,3)	9	9	9	27	*
7522	2	2	2	2	3	1	(3)	1	1	1	3	0
7582	2	2	2	3	3	1	(3)	1	1	1	3	*
7603 7621	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{2}{2}$	3 3	1 1	(27)	1 1	1	1 1	3	0 0
1021	2	2	2	2	ა	1	(3)	1		1	3	U

T. Fukuda and H. Taya

Table 1 (cont.)

m	n_0	n_1	n_2	$n_0^{(1)}$	$n_2^{(1)}$	$\lambda_3^-(k^*)$	A_0^{*-}	$ D_0 $	$ A_0 $	$ D_1 $	$ A_1 $	$\lambda_3(k)$
7633	2	2	2	2	3	1	(9)	1	1	1	3	0
7639	1	1	1	2	2	1	(3)	1	3	3	9	0
7642	2	2	3	3	3	2	(27)	1	1	3	9	*
7705	2	2	2	2	2	2	(3)	1	1	3	9	0
7711	1	2	2	2	3	1	(3)	1	3	3	9	0
7726	2	2	2	2	3	3	(3,3)	1	3	1	81	*
7753	1	2	2	2	3	2	(9)	1	3	3	27	0
7906	2	2	2	2	3	1	(9)	1	1	1	3	0
7951	2	2	3	2	4	1	(3)	1	1	1	3	0
7954	2	2	3	2	4	2	(3,3)	3	3	3	9	0
7957	2	2	2	3	3	1	(3)	1	1	1	3	*
7969	3	3	3	3	4	1	(3)	1	1	1	3	0
7978	2	2	2	2	2	2	(3)	1	1	3	9	0
8011	2	2	2	2	3	1	(3)	1	1	1	3	0
8017	1	1	1	2	2	1	(3)	1	3	1	9	*
8095	2	2	2	2	3	1	(3)	1	1	1	3	0
8101	2	2	2	3	3	1	(3)	1	1	1	3	*
8137	2	2	2	2	3	2	(3)	1	1	1	27	0
8155	2	2	2	3	3	1	(3)	1	1	1	3	*
8194	2	2	2	2	2	4	(3)	1	1	3	9	0
8203	2	2	2	2	3	1	(3)	1	1	1	3	0
8209	2	2	2	2	2	2	(3)	1	1	3	9	0
8245	2	2	2	2	3	1	(3)	1	1	1	3	0
8365	2	2	2	2	3	1	(9)	1	1	1	3	0
8374	2	2	3	2	4	3	(3, 3)	3	3	3	27	0
8422	2	2	2	2	3	1	(3)	1	1	1	3	0
8545	1	1	1	2	2	1	(9)	1	3	3	9	0
8569	2	2	2	3	3	1	(3)	1	1	1	3	*
8599	2	2	2	2	3	1	(3)	1	1	1	3	0
8626	2	2	2	2	3	1	(3)	1	1	1	3	0
8713	2	2	3	2	4	2	(3, 3)	3	3	3	9	0
8755	2	2	2	2	3	1	(3)	1	1	1	3	0
8758	2	2	2	2	2	4	(3)	1	1	3	9	0
8782	1	1	1	2	2	1	(9)	1	3	1	9	*
8785	2	2	3	2	4	1	(3)	1	1	1	3	0
8809	2	2	4	2	5	1	(3)	1	1	1	3	0
8821	2	2	4	2	5	1	(3)	1	1	1	3	0
8854	1	1	1	2	2	2	(3)	1	3	3	9	0
8863	1	2	2	2	3	1	(3)	1	3	3	9	0
8893	2	2	2	2	2	2	(3)	1	1	3	9	0
8965	3	3	3	3	4	1	(3)	1	1	1	3	0
9019	2	2	2	2	3	1	(9)	1	1	1	3	0
9034	1	1	$\begin{array}{c} 1\\ 2\end{array}$	2	2	1	(27)	1	3	3	9	0
9058 0007	2	2		3	3	1	(9)	1	1	1	3	*
9097 9103	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{2}{2}$	2 2	$\frac{2}{3}$	$\frac{2}{1}$	(3)	1	1	3	$\begin{array}{c} 27\\ 3\end{array}$	0
9103	2	2	2	2	3	1	(27)	1	1		ാ	0

m	n_0	n_1	n_2	$n_0^{(1)}$	$n_2^{(1)}$	$\lambda_3^-(k^*)$	A_0^{*-}	$ D_0 $	$ A_0 $	$ D_1 $	$ A_1 $	$\lambda_3(k)$
9115	2	2	3	2	4	1	(3)	1	1	1	3	0
9145	2	2	2	2	3	1	(3)	1	1	1	3	0
9202	2	2	2	2	3	1	(3)	1	1	1	3	0
9274	4	4	5	4	6	1	(3)	1	1	1	3	0
9427	2	2	2	2	3	3	(3)	1	1	1	9	0
9463	2	2	3	2	4	1	(3)	1	1	1	3	0
9586	1	1	1	2	2	3	(3)	1	3	3	9	0
9634	3	3	4	3	5	2	(9,3)	3	3	3	9	*
9679	4	4	6	4	7	1	(3)	1	1	1	3	0
9691	2	2	3	3	3	2	(9)	1	1	3	9	*
9754	2	2	4	2	5	1	(3)	1	1	1	3	0
9766	1	1	1	2	2	1	(3)	1	3	3	9	0
9790	2	2	2	2	3	4	(3, 3)	3	3	3	27	0
9814	4	4	4	5	5	1	(3)	1	1	1	3	*
9895	3	3	3	3	4	1	(3)	1	1	1	3	0

Table 1 (cont.)

References

- A. Candiotti, Computations of Iwasawa invariants and K₂, Compositio Math. 29 (1974), 89–111.
- [2] B. Ferrero and L. C. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. 109 (1979), 377–395.
- [3] T. Fukuda, Iwasawa λ -invariants of certain real quadratic fields, Proc. Japan Acad. 65A (1989), 260–262.
- [4] —, Iwasawa λ-invariants of imaginary quadratic fields, J. College Industrial Technology Nihon Univ. 27 (1994), 35–88. (Corrigendum; to appear ibid.)
- [5] T. Fukuda and K. Komatsu, On the λ invariants of \mathbb{Z}_p -extensions of real quadratic fields, J. Number Theory 23 (1986), 238–242.
- [6] —, —, On \mathbb{Z}_p -extensions of real quadratic fields, J. Math. Soc. Japan 38 (1986), 95–102.
- [7] T. Fukuda, K. Komatsu and H. Wada, A remark on the λ -invariants of real quadratic fields, Proc. Japan Acad. 62A (1986), 318–319.
- [8] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
- [9] —, On p-adic L-functions and cyclotomic fields II, Nagoya Math. J. 67 (1977), 139–158.
- [10] K. Iwasawa, On Z_l-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246–326.
- [11] S. Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Math. 797, Springer, Berlin, 1980.
- [12] H. Taya, On the Iwasawa λ-invariants of real quadratic fields, Tokyo J. Math. 16 (1993), 121–130.
- [13] —, Computation of Z₃-invariants of real quadratic fields, preprint series, Waseda Univ. Technical Report No. 93–13, 1993.

- [14] H. Wada and M. Saito, A table of ideal class groups of imaginary quadratic fields, Sophia Kôkyuroku in Math. 28, Depart. of Math., Sophia Univ. Tokyo, 1988.
- [15] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math.
 83, Springer, New York, 1982.
- [16] H. Yokoi, On the class number of a relatively cyclic number field, Nagoya Math. J. 29 (1967), 31–44.

DEPARTMENT OF MATHEMATICS	DEPARTMENT OF MATHEMATICS
COLLEGE OF INDUSTRIAL TECHNOLOGY	SCHOOL OF SCIENCE AND ENGINEERING
NIHON UNIVERSITY	WASEDA UNIVERSITY
2-11-1, SHIN-EI NARASHINO-SHI	3-4-1, OKUBO SHINJUKU-KU
CHIBA, 275 JAPAN	TOKYO, 169 JAPAN
E-mail: FUKUDA@MATH.CIT.NIHON-U.AC.JP	E-mail: TAYA@CFI.WASEDA.AC.JP

Received on 28.3.1994 and in revised form on 5.6.1994 (2587)

292