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The simplest case of Hilbert’s Irreducibility Theorem asserts that if
F (t, x) is irreducible over Q, then there exists t∗ ∈ Q such that F (t∗, x)
is irreducible over Q. Many different proofs have been given for this the-
orem, namely Hilbert’s (1892) [H], Mertens’s (1911) [Me], Skolem’s (1921)
[Sk], Dörge’s (1927) [Do], Siegel’s (1929) [Si], Eichler’s (1939) [Ei], Inaba’s
(1943) [In], Fried’s (1974) [Fr], Roquette’s (1975) [Ro], Cohen’s (1981) [Co],
Sprindžuk’s (1981) [Spr], Dèbes’s (1986) [De1], (1993) [De2].

Only the last of the quoted papers explicitly mentions the problem of
estimating the size of a t∗ with the above property in terms of the degree
and height of F . By the height of F , to be abbreviated H(F ), we mean the
maximum absolute value of the coefficients of a constant multiple of F that
has coprime integer coefficients. Dèbes gives actually an estimate valid for
several polynomials Fi. His result reads (see Cor. 3.7 of [De2]):

Let F1, . . . , Fh be irreducible polynomials in Q[t, x] such that degFi ≤ D
and H(Fi) ≤ H (1). Then there exists a rational number t∗ = u/v such that
each Fi(t∗, x) is irreducible over Q and

(1) max(|u|, |v|) ≤ exp(1010D100hD2 logD(log2H + 1)).

Dèbes also gives a corresponding result for algebraic number fields. We
observe that Cohen’s result, formulated for algebraic number fields, is par-
tially explicit and gives, in the case of the rational field, the following bound:

Under the same assumptions as before, for H ≥ ee one may find a t∗ ∈ Z
with the above property such that

(1) Dèbes in fact formulates his result in terms of the logarithmic height.

[293]
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(2) |t∗| ≤ h2 log(eh)Hc,

where c depends only on D.

Actually, assuming the Riemann Hypothesis for zeta functions of num-
ber fields, Cohen obtained an estimate implying the sharp bound |t∗| ≤
max{ch2 log(eh), log4H}. This includes a result by Fogels [Fo] concerning
the special case h = 1, F (t, x) = f1(x)+tf2(x). Yasumoto [Ya] asked whether
for h = 1 there exists a bound for |t∗| independent of H.

The aim of the present paper is to prove the following theorem, which
improves on both (1) and (2), as far as the dependence on D and H is
concerned.

Theorem. Let F1, . . . , Fh ∈ Z[t, x] be irreducible over Q. There exists a
positive integer t∗ such that Fi(t∗, x) are irreducible for all i ≤ h and

|t∗| ≤ max{exp(2(6m)5), exp(366),

h9 exp(450(logH)5/6 + 11250m5 + 45(m+ 1)2n+ 45n(logH)2/5)},
where m = max{degt Fi}, n = max{degx Fi}, H = max{20, H(Fi)}.

Auxiliary lemmas. Our proof will make use of a sharp estimate by
Bombieri and Pila [BP] of the number of integral points on algebraic plane
curves. A direct application of their Theorem 5 would lead, however, to a
bound weaker than the stated above. Nevertheless it is possible to modify
their proof to produce a result which is more suitable for our purposes. This
will be done in the course of the proof of our first lemma.

Lemma 1. Let Φ ∈ Q[t, y] be a polynomial irreducible over Q, of total
degree D. Then, for every positive integer δ < D and for every N ≥ 1, the
number of integer points (t∗, y∗) such that Φ(t∗, y∗) = 0 and max{|t∗|, |y∗|}
≤ N is bounded by

(3D∆)∆+4N8/(3(δ+3)),

where ∆ = (δ + 1)(δ + 2)/2.

P r o o f. Consider first the case when Φ is reducible over C. Then Φ(t∗, y∗)
= 0 implies that Ψ(t∗, y∗) = 0 for some factor Ψ of Φ, irreducible over C
and with the coefficient of the leading term (in the anti-lexicographic order)
equal to 1, hence also Ψ ′(t∗, y∗) = 0, where Ψ ′ is conjugate to Ψ over Q,
and so is another factor of Φ. Since Resy(Ψ, Ψ ′)2 | discy Φ, it follows that the
number of integers t∗ such that for some integer y∗, Ψ(t∗, y∗) = Ψ ′(t∗, y∗) = 0,
does not exceed 1

2 deg(discy Φ) ≤ D(D − 1). Since the same estimate ap-
plies to integers y∗, the total number of integer points is ≤ D2(D − 1)2 <
(3D∆)∆+4.

Assume therefore that Φ is absolutely irreducible. Let G(N) = G(D,N)
be the maximum number of integer points on the graph of a C∞ function
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g(t), on an interval I of length at most N , with |g′(t)| ≤ 1 and g satis-
fying some algebraic relation Γ (t, g) = 0, with Γ absolutely irreducible of
degree D. Clearly we may assume I ⊂ [0, N ].

Now fix some positive integer δ < D and let g(t) be such a C∞ function.
Given A ≥ 1, by appealing to Lemma 6 of [BP], we can divide the domain
I of g into at most 2D2(∆ − 1)2 ≤ 2D2∆2 subintervals Iν such that, for
each Iν and each l = 1, . . . , ∆− 1, either (i) or (ii) holds:

(i) |g(l)(t)| ≤ l!Al/(∆−1)N1−l for all t ∈ Iν ;
(ii) |g(l)(t)| > l!Al/(∆−1)N1−l for all t ∈ Iν .

After translating the graph of g(t) on each Iν by an integer, we can
assume, since |g′(t)| ≤ 1, that |g(t)| ≤ N for all t ∈ Iν . Now, for each Iν ,
either (i) or (ii) holds:

(i) |g(l)(t)| ≤ l!Al/(∆−1)N1−l for all t ∈ Iν and all l = 0, . . . ,∆− 1;
(ii) |g(l)(t)| ≤ l!Al/(∆−1)N1−l for all t ∈ Iν and all l < k, and
|g(k)(t)| ≥ k!Ak/(∆−1)N1−k for all t ∈ Iν .

In the case (i) we have

‖g‖∆−1 := max
0≤k≤∆−1

max
t∈Iν

|g(k)(t)|
k!

N1−k ≤ A.

In the case (ii) the hypotheses of Lemma 7 of [BP] hold with Ak/(∆−1)

in place of A, and hence

|Iν | ≤ 2A−1/(∆−1)N.

For the Iν of the first type we apply the Main Lemma of [BP], with
d replaced by δ, D replaced by ∆, f replaced by g. We infer that integral
points on y = g(t), t ∈ Iν , lie on the union of at most 4(A1/2N)8/(3(δ+3)) real
algebraic curves of degree ≤ δ. Since δ < D these curves cannot contain the
appropriate translation of Γ (t, y) = 0, thus we infer from Bézout’s theorem
that each of them intersects the translation in question in at most δD points.
We thus obtain the following recurrence relation for G(N):

G(N) ≤ K1N
α +K2G(λN),

where

K1=8D3δ∆2A4/(3(δ+3)), K2=2D2∆2, α=
8

3(δ + 3)
, λ=2A−1/(∆−1).

Continuing, we find that, provided λν−1N ≥ 1,

G(N) ≤ K1N
α(1 +K2λ

α + . . .+ (K2λ
α)ν−1) +Kν

2G(λνN).

We now choose λ so that K2λ
α = 1/2, that is, we set

λ =
(

1
2K2

)1/α

= (4D2∆2)−3(δ+3)/8 < 1
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and thus

A =
(

2
λ

)∆−1

> 1.

Finally, we choose ν so that λ/N ≤ λν < 1/N . Then G(λνN) ≤ 1 and

G(N) ≤ 2K1N
α + 2−νλ−αNα ≤ 2(K1 +K2)Nα.

Now,

K1 +K2 = 8D3δ∆2A4/(3(δ+3)) + 2D2∆2

= 8D3δ∆224(∆−1)/(3(δ+3))(4D2∆2)(∆−1)/2 + 2D2∆2

< 10D3δ∆2(8D2∆2)(∆−1)/2,

which gives

G(N) < 20D3δ∆2(8D2∆2)(∆−1)/2Nα.

Our original curve C : Φ(t, y) = 0 has at most 1
2D(D−1) singular points,

and at most 2D(D − 1) points of slope ±1. Hence C ∩ [0, N ]2 is made up of
at most 3D2 graphs of C∞ functions with slope bounded by 1 with respect
to one of the axes. The number of integral points is therefore at most

3D2G(N) < 60D5δ∆2(8D2∆2)(∆−1)/2Nα < 1
2 (3D∆)∆+4Nα.

Replacing N with 2N we obtain the lemma.

Let F (t, x) ∈ Z[t, x], write F (t, x) = a0(t)
∏n
i=1(x−xi), where xi are ele-

ments of Q(t), and let D(t) be the discriminant of F with respect
to x. For a nonempty subset ω of {1, . . . , n} and for every positive inte-
ger j ≤ #ω, let Pω,j(t, y) be the minimal polynomial of a0(t)τj(xi : i ∈ ω)
over Q(t), where τj is the jth fundamental symmetric function. We remark
that, in virtue of an old theorem of Kronecker (see [Sch], Theorem 10,
p. 48), a0(t)τj(xi : i ∈ ω) is in any case integral over Z[t], whence Pω,j
is a polynomial in Z[t, y], monic in y.

Lemma 2. For all t∗ ∈ Z, if a0(t∗)D(t∗) 6= 0 and F (t∗, x) is reducible
over Q, then for some ω ⊂ {1, . . . , n} of cardinality k ≤ n/2 all the polyno-
mials Pω,j(t∗, y), j ≤ k, have a zero yj ∈ Z.

P r o o f. Let K be the splitting field of F (t, x) over Q(t), and let ∆ be
the discriminant of K (over Q[t]). If D(t∗) 6= 0, then t − t∗ is not ramified
in K, hence ∆(t∗) 6= 0. By a well known result (see [Ha], p. 464) there exists
a generator θ of K integral over Q[t] and such that discx T (t∗) 6= 0, where
T (t, x) is the minimal polynomial of θ over Q(t). We have accordingly

xi =
Li(t, θ)
M(t)

(1 ≤ i ≤ n),
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where M ∈ Q[t], Li ∈ Q[t, u] and M(t∗) 6= 0 provided a0(t∗) 6= 0. It follows
that in the ring Q[t, u, x] we have the congruences

(3) a0(t)M(t)nF (t, x) ≡ a0(t)
n∏

i=1

(M(t)x− Li(t, u)) (mod T (t, u))

and

(4) M(t)j degPPω,j(t, a0(t)τj(Li/M : i ∈ ω)) ≡ 0 (mod T (t, u))

for every nonempty ω ⊂ {1, . . . , n} and every j ≤ #ω.
Assume now that a0(t∗)D(t∗) 6= 0 and F (t∗, x) is reducible over Q.

Without loss of generality we may suppose that

F (t∗, x) = a0(t∗)
n∏

i=1

(x− x∗i )

and that

(5) a0(t∗)
k∏

i=1

(x− x∗i ) ∈ Z[x]

where 1 ≤ k ≤ n/2.
Choose u∗ ∈ C such that T (t∗, u∗) = 0. By (3),

a0(t∗)
n∏

i=1

(x− x∗i ) = a0(t∗)
n∏

i=1

(
x− Li(t∗, u∗)

M(t∗)

)
;

hence there exists a subset ω of {1, . . . , n} of cardinality k such that

{x∗1, . . . , x∗k} =
{
Li(t∗, u∗)
M(t∗)

: i ∈ ω
}
.

By (4), for every j ≤ k,

Pω,j(t∗, a0(t∗)τj(x∗1, . . . , x
∗
k)) = 0

and since yj := a0(t∗)τj(x∗1, . . . , x
∗
k) ∈ Z by (5), the assertion follows.

Let F have degree m in t and n in x. We have

Lemma 3. The polynomials Pω,j(t, y) defined before the statement of
Lemma 2 have, for k ≤ n/2, the property that , if |t∗| ≥ 1, a0(t∗)D(t∗) 6= 0
and Pω,j(t∗, y∗) = 0, then

(6) |y∗| ≤ 2k
√
n+ 1(m+ 1)H|t∗|m,

where H is the height of F . Moreover , deg(Pω,j) ≤ mdegy(Pω,j) ≤ m
(
n
k

)
.
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P r o o f. We retain the notation of the proof of Lemma 2. First observe
that the polynomial ∏

#ω=k

(y − a0(t)τj(xi : i ∈ ω)) ,

the product being extended over all subsets ω of {1, . . . , n} having cardi-
nality k, lies clearly in Q[t, y], and has degree

(
n
k

)
in y. Hence, since Pω,j

divides this polynomial, we have degy Pω,j ≤
(
n
k

)
.

For the same reason we may write

Pω,j(t, y) =
∏

I∈Ω

(
y − a0(t)τj

(
Li(t, θ)
M(t)

: i ∈ I
))

the product being extended over a certain family Ω of subsets I of {1, . . . , n}
with #I = k. Let

Qω,j(t, u, y) =
∏

I∈Ω

(
y − a0(t)τj

(
Li(t, u)
M(t)

: i ∈ I
))

.

Then, as in the proof of Lemma 2, we have the congruence

M(t)j degP (Qω,j(t, u, y)− Pω,j(t, y)) ≡ 0 (mod T (t, u))

whence, setting t = t∗, u = u∗, where T (t∗, u∗) = 0, we get

Pω,j(t∗, y) = Qω,j(t∗, u∗, y).

Hence all the zeros of Pω,j(t∗, y) are of the form a0(t∗)τj
(Li(t∗,u∗)

M(t∗) : i ∈ I),
namely of the form a0(t∗)τ∗j , where τ∗j is the jth symmetric function of a
certain subset of cardinality k of the set {x∗1, . . . , x∗n} of all zeros of F (t∗, x).

By a classical theorem of Landau [La], for each t∗ ∈ C,

M := |a0(t∗)|
n∏

i=1

max{1, |x∗i |} ≤
√√√√

n∑

i=0

|ai(t∗)|2,

where ai(t) are the coefficients of F (t, x) viewed as polynomial in x.
For |t∗| ≥ 1 we have

|ai(t∗)| ≤ (m+ 1)H|t∗|m,
hence, by the above observations,

|y∗| ≤
(
k

j

)√
n+ 1(m+ 1)H|t∗|m ≤ 2k

√
n+ 1(m+ 1)Ht∗m

and the first part of the lemma follows.
In order to prove the second part, write

Pω,j(t, y) = yp +
p∑

i=1

Pi(t)yp−i.
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For every fixed t∗ ∈ C, Pi(t∗) is, up to a sign, the ith fundamental symmetric
function in the zeros of Pω,j(t∗, y). Hence, if |t∗| ≥ 1, by (6) we have

|Pi(t∗)| ≤
(
p

i

)
2ki(n+ 1)i/2(m+ 1)iHi|t∗|mi = O(|t∗|mi),

which implies that deg(Pi) ≤ mi, so

deg(Pω,j) = max
0≤i≤p

{p− i+ deg(Pi)} ≤ mp.
This completes the proof.

Lemma 4. Let F (t, x) ∈ Z[t, x] be a polynomial irreducible over Q,
of degree m in t and n ≥ 2 in x, and let H ≥ max{20,H(F )}. If T ≥
max{exp(2(6m)6), exp(366)}, then the number of positive integers t∗ ≤ T
such that F (t∗, x) is reducible over Q does not exceed

T 8/9 exp(50(logH)5/6 + 1250m4 log(m+ 1) + 5(m+ 1)2n+ 5n(logH)2/5).

P r o o f. Retaining the notation used in Lemma 2, we let S(T ) be the
number of positive integers t∗ ≤ T such that a0(t∗)D(t∗) 6= 0 and F (t∗, x)
is reducible over Q.

Let ω be a nonempty subset of {1, . . . , n}, of cardinality k ≤ n/2. We
contend that at least one of the polynomials Pω,j(t, y), j ≤ k, has degree
≥ 2 in y. If not then, by definition of the Pω,j ’s, all the symmetric functions
τj(xi : i ∈ ω) would lie in Q(t), whence F (t, x) would have a factor in Q(t)[x]
of positive degree k < n, contrary to the assumptions. Pick for each ω one
such polynomial and denote it by Pω(t, y). Then Pω is a polynomial with ra-
tional integral coefficients, irreducible over Q, monic and of degree ≥ 2 in y.
Moreover, if t∗ is such that a0(t∗)D(t∗) 6= 0 and F (t∗, x) is reducible over Q,
then, by Lemma 2, some polynomial Pω(t∗, y) has an integral zero. So

(7) S(T ) ≤
∑

#ω≤n/2
Sω(T ),

where Sω(T ) is the number of positive integers t∗ ≤ T such that Pω(t∗, y)
has an integral zero and a0(t∗)D(t∗) 6= 0.

Letting dω = degy Pω, Dω = degPω, we have, by Lemma 3,

(8) 2 ≤ dω ≤
(
n

k

)
, Dω ≤ mdω.

To estimate Sω(T ) we shall use Lemma 1 and distinguish three cases,
putting, for simplicity of notation, L1 = logH, L2 = log logH.

C a s e 1: dω ≥ 3 and Dω ≥ [max{3m, (L1/L2)1/5}] + 1. In this case, if
Pω(t∗, y∗) = 0, where |t∗| ≤ T , then, by (6), max{|t∗|, |y∗|} ≤ 2n/2

√
n+ 1

× (m+ 1)HTm ≤ 2n(m+ 1)HTm, so we may apply Lemma 1 with

N = 2n(m+ 1)HTm, δ = [max{3m, (L1/L2)1/5}]
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and obtain

Sω(T ) < (2n(m+ 1)Tm)
8

3(3m+3)H
8
3 (L2
L1

)1/5

(3Dω∆)∆+4

≤ T 8/9 exp
(

8
3

(L1)4/5(L2)1/5 +
8n log 2

3(3m+ 3)

+
8 log(m+ 1)

9(m+ 1)
+ (∆+ 4) log(3Dω∆)

)
.

To estimate the expression

E =
8 log(m+ 1)

9(m+ 1)
+ (∆+ 4)log(3Dω∆) ≤ 8

9e
+ (∆+ 4)log(3Dω∆)

we distinguish two cases, according as 3m ≥ (L1/L2)1/5 or not. In the first
case a calculation shows that E ≤ 26(m + 1)2 log(m + 1) + 4(m + 1)2n. In
the other case we use the crude bound ∆+ 5 ≤ 2(L1/L2)2/5 and obtain

E ≤ L2/5
1 L

3/5
2 + 4n(L1/L2)2/5.

Adding the bounds obtained we finally have

Sω(T ) < T 8/9 exp(4L4/5
1 L

1/5
2 + 5n(L1/L2)2/5)

× exp(26(m+ 1)2 log(m+ 1) + 4(m+ 1)2n).

C a s e 2: 3 ≤ dω ≤ Dω < [max{3m, (L1/L2)1/5}] + 1. In this case we
take

E = [max{3m, (L1/L2)1/5}] + 2

and apply Lemma 1 to the polynomial Pω(t, tE + y). Now, for every zero
(t∗, y∗) with |t∗| ≤ T we have, again by (6), |y∗| ≤ TE + 2n(m+ 1)HTm <
(m+1)2nHTE , so we may take N = (m+1)2nHTE and δ = dωE−1 (note
that the polynomial Pω(t, tE + y) is of exact degree dωE).

We readily see that ∆ + 4 ≤ E4/2. Distinguishing again whether 3m >
(L1/L2)1/5 or not, and adding the bounds obtained for log((3Dω∆)∆+4) in
these cases, we obtain

Sω(T ) < T 8/9 exp
(

25(L1)4/5(L2)1/5 + 1250m4 log(m+ 1) +
8n log 2

9(m+ 1)

)
.

C a s e 3: dω = 2. In this case, by Lemma 3, Dω ≤ 2m. We take
E =

[
max

{
3m, 1

2L
1/6
1

}]
and apply Theorem 5 of [BP] to the polynomial

Pω(t, tE + y), assumed irreducible over C (if it is reducible over C the open-
ing argument in the proof of Lemma 1 applies). As in Case 2 we may take
N = (m + 1)2nHTE > TE + (m + 1)2nHTm (note that the degree of
Pω(t, tE + y) is 2E).

Observe that the condition N > exp(26E6) (an assumption of the theo-
rem in question) is equivalent to
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(m+ 1)2nHTE > exp(max{(6m)6, logH})
and is satisfied provided T ≥ exp(2(6m)5), as we are assuming.

The mentioned theorem gives

Sω(T ) < N1/(2E) exp(12
√

2E logN log logN).

Now 2E ≤ (logN)1/6, and log logN ≤ (logN)1/6, since logN ≥ log T >
366 by assumption. Hence

Sω(T ) < exp
(

logN
2E

(
1 + 12(2E)3/2

√
log logN

logN

))

≤ exp
(

logN
2E

(
1 + 12

(
1

logN

)1/6))

≤ exp
(

2 logN
3E

)
≤ T 2/3 exp

(
2L5/6

1 +
2n log 2

9m

)
.

Observe now that since H > 20 we have

L
4/5
1 L

1/5
2 < 2L5/6

1 .

Using this inequality in the first two cases, comparing the three estimates
and summing over ω, an operation which at most multiplies the bound by
2n, we obtain

S(T ) ≤ T 8/9 exp(50L5/6
1 + 250m4 log(m+ 1) + 4(m+ 1)2n+ 5nL2/5

1 ).

We have still to take into account the solutions of a0(t∗)D(t∗) = 0, but
these are at most 2m(n + 1) < exp((m + 1)2n) in number. This concludes
the proof.

P r o o f o f T h e o r e m. Let m,n,H be as in the statement of the The-
orem, and let T satisfy the lower bound in the statement of Lemma 4. Then
the total number R of positive integers t∗ ≤ T such that at least one of the
polynomials Fi(t∗, x) is reducible over Q satisfies

R ≤ hT 8/9 exp(50(logH)5/6+250m4 log(m+1)+5(m+1)2n+5n(logH)2/5).

To find a suitable value of t∗ ≤ T it thus suffices that this quantity is less
than T , which holds if

T > h9 exp(450(logH)5/6 + 2250m5 + 45(m+ 1)2n+ 45n(logH)2/5).

Combining this with the lower bound necessary for an application of
Lemma 4, we obtain the Theorem.

R e m a r k. It is obviously possible by changing the splitting into cases
to obtain a corresponding theorem, with different numerical values for the
coefficients appearing in the final estimate.
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