Integers with no large prime factors

by

Ti Zuo Xuan (Beijing)

1. Introduction. Let $P(n)$ denote the largest prime factor of an integer $n>1$, and $P(1)=1$. For real numbers $x, y \geq 2$, let $S(x, y)=\{n: 1 \leq n$ $\leq x, P(n) \leq y\}$ and $u=\log x / \log y$. Also, let

$$
\Psi(x, y)=\sum_{n \in S(x, y)} 1 \quad \text { and } \quad \Psi_{q}(x, y)=\sum_{\substack{n \in S(x, y) \\(n, q)=1}} 1
$$

Estimates for the function $\Psi(x, y)$ are needed in various problems in number theory and the study of the function has been the object of numerous articles. Thus de Bruijn in [1] established the quantitative estimate

$$
\begin{equation*}
\Psi(x, y)=x \varrho(u)\left(1+O\left(\frac{\log (u+1)}{\log y}\right)\right) \tag{1.1}
\end{equation*}
$$

for the range $x \geq 3$, $\exp \left\{(\log x)^{5 / 8+\varepsilon}\right\} \leq y \leq x$, where ε is any fixed positive number, and $\varrho(u)$, the Dickman-de Bruijn function, is defined as the continuous solution of the system

$$
\begin{gathered}
\varrho(u)=1, \quad 0 \leq u \leq 1 \\
u \varrho^{\prime}(u)=-\varrho(u-1), \quad u>1
\end{gathered}
$$

Recently Hildebrand [7] showed that the asymptotic formula (1.1) remains valid in the range

$$
\begin{equation*}
x \geq 3, \quad \exp \left\{\left(\log _{2} x\right)^{5 / 3+\varepsilon}\right\} \leq y \leq x \tag{1.2}
\end{equation*}
$$

where $\log _{2} x=\log \log x$. More recently Hildebrand and Tenenbaum [8] obtained an asymptotic formula for $\Psi(x, y)$ in the range $x \geq y \geq 2$.

The asymptotic behaviour for $\Psi_{q}(x, y)$ has been studied by several authors, including Norton [9], Hazlewood [6], Fouvry and Tenenbaum [4].

[^0]Thus, it was shown in [4] that uniformly for

$$
\begin{equation*}
x \geq x_{0}(\varepsilon), \quad \exp \left\{\left(\log _{2} x\right)^{5 / 3+\varepsilon}\right\} \leq y \leq x, \tag{1.3}
\end{equation*}
$$

and

$$
\log _{2}(q+2) \leq\left\{\frac{\log y}{\log (u+1)}\right\}^{1-\varepsilon},
$$

we have the estimate

$$
\begin{equation*}
\Psi_{q}(x, y)=\frac{\varphi(q)}{q} \Psi(x, y)\left(1+O\left(\frac{\log _{2}(q y) \log _{2} x}{\log y}\right)\right) \tag{1.4}
\end{equation*}
$$

where $\varphi(q)$ is Euler's function.
We improved the above result (unpublished) by showing that

$$
\Psi_{q}(x, y)=\frac{\varphi(q)}{q} \Psi(x, y)\left\{1+O\left(\frac{\log (\omega(q)+3) \log (u+1)}{\log y}\right)\right\}
$$

holds uniformly in the range

$$
x \geq x_{0}, \quad \exp \left\{c_{1} \log x \log _{3} x / \log _{2} x\right\} \leq y \leq x
$$

and

$$
\omega(q) \leq \exp \left\{c_{2} \log x / \log _{2} x\right\},
$$

where $\omega(n)$ denotes the number of distinct prime divisors of n.
Very recently Tenenbaum [12] improved the above result; he showed the following result:

Let c be an arbitrary positive constant. Under the conditions

$$
P(q) \leq y \leq x, \quad \omega(q) \leq y^{c / \log (u+1)},
$$

we have uniformly

$$
\begin{equation*}
\Psi_{q}(x, y)=\frac{\varphi(q)}{q} \Psi(x, y)\left(1+O\left(\frac{\log (u+1) \log (\omega(q)+3)}{\log y}\right)\right) \tag{1.5}
\end{equation*}
$$

The proof of the last assertion used a result in sieve theory. (For all relevant literature on the functions $\Psi(x, y)$ and $\Psi_{q}(x, y)$, see [9] and [4].)

The purpose of this paper is to estimate $\Psi_{q}(x, y)$ in a wider range in q.
Let q_{y} denote the product of the prime divisors of q that are $\leq y$. For $u>1$, let $\xi=\xi(u)$ be the unique positive solution of $e^{\xi}=u \xi+1$, and $\xi(1)=0$, so that asymptotically

$$
\xi(u)=\log u+\log _{2} u+O(1) .
$$

Put $\beta=\beta(x, y)=1-\xi(u) / \log y$. Finally, let $c_{0}, c_{1}, c_{2}, \ldots$ denote positive absolute constants.

We now state our main result.
Theorem 1. For

$$
\begin{equation*}
x \geq x_{0}(\varepsilon), \quad(\log x)^{1+\varepsilon} \leq y \leq x, \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
\omega\left(q_{y}\right) \leq y^{1 / 2} \tag{1.7}
\end{equation*}
$$

we have uniformly

$$
\begin{align*}
\Psi_{q}(x, y)=\prod_{p \mid q, p \leq y}\left(1-p^{-\beta}\right) \Psi(x, y)\{1 & +O\left(\frac{\log \left(\omega\left(q_{y}\right)+3\right)}{\log (u+1) \log y}\right) \tag{1.8}\\
& \left.+O\left(\exp \left(-(\log y)^{3 / 5-\varepsilon}\right)\right)\right\}
\end{align*}
$$

Moreover, if

$$
\begin{equation*}
\omega\left(q_{y}\right) \leq \exp \left\{c_{3} \log y / \log (u+1)\right\} \tag{1.9}
\end{equation*}
$$

then the first error term in the right-hand side of (1.8) may be replaced by $O\left(\log \left(\omega\left(q_{y}\right)+3\right) / \log x\right)$.

From Theorem 1 we shall deduce the following corollary:
Corollary. For x, y satisfying (1.3) and $\omega\left(q_{y}\right) \leq y^{1 / 2}$, we have uniformly

$$
\begin{aligned}
& \Psi_{q}(x, y)=\prod_{p \mid q, p \leq y}\left(1-\frac{1}{p^{\beta}}\right) x \varrho(u)\left(\frac{-\xi(u) \zeta(\beta)}{\beta \log y}\right) \\
& \times\left\{1+O\left(\frac{\log \left(\omega\left(q_{y}\right)+3\right)}{\log y \log (u+1)}\right)\right\}
\end{aligned}
$$

Remark. From Theorem 1 we know that (1.5) in the ranges (1.6) and (1.9) is a consequence of (1.8) and Lemma 10 below.
2. Estimates for $\Pi(y, s)$. We write the complex variable s in the form $s=\sigma+i t$ with real σ and t. Let

$$
\begin{aligned}
\Pi(y, s) & =\prod_{p \leq y}\left(1-p^{-s}\right)^{-1}, \quad y=[y]+1 / 2 \\
\sigma(t) & =\log ^{2 / 3}(|t|+2) \log _{2}^{1 / 3}(|t|+3)
\end{aligned}
$$

and let $\zeta(s)$ be the Riemann zeta-function.
Lemma 1. There is an absolute constant $c_{4}>0$ such that:
(i) In the region $\sigma \geq 1-c_{4} / \sigma(t), \zeta(s) \neq 0$.
(ii) In the region $|t| \geq 1, \sigma \geq 1-c_{4} / \sigma(t)$,

$$
\zeta(s) \ll \log ^{2 / 3}(|t|+2) \log _{2}^{1 / 3}(|t|+3)
$$

(iii) In the region $|t| \geq 1, \sigma \geq 1-c_{4} / 2 \sigma(t)$,

$$
\log \zeta(s) \ll \log ^{2 / 3}(|t|+2) \log _{2}^{1 / 3}(|t|+3)
$$

Proof. By Richert [10], we have for $0 \leq \sigma \leq 2, t \geq 2$,

$$
\zeta(s) \ll\left(1+t^{100(1-\sigma)^{3 / 2}}\right)(\log t)^{2 / 3}
$$

From this and applying Theorems 3.10 and 3.11 of Titchmarsh [13] with $\phi(t)=\frac{302}{3} \log _{2} t, \theta(t)=\left(\log _{2} t\right)^{2 / 3} /(\log t)^{2 / 3}$, the lemma follows.

To show Theorem 1 and Corollary, we shall need the estimate for the quantity $\Pi(y, s)$. Saias [11] proved that the estimate

$$
\begin{align*}
\Pi(y, s)=\log y \exp \{\gamma & \left.+\int_{0}^{(1-s) \log y} \frac{e^{v}-1}{v} d v\right\} \tag{2.1}\\
& \times(s-1) \zeta(s)\left\{1+O_{\varepsilon}\left(\frac{1}{L(\varepsilon)}\right)\right\}
\end{align*}
$$

holds uniformly in the range

$$
y \geq 2, \quad \max \left(1-(\log y)^{-2 / 5-\varepsilon}, 3 / 4\right) \leq \sigma \leq 2, \quad|t| \leq L(\varepsilon)
$$

where ε is any fixed positive number and

$$
\begin{equation*}
L(\varepsilon)=\exp \left\{(\log y)^{3 / 5-\varepsilon}\right\} . \tag{2.2}
\end{equation*}
$$

From this we also have

$$
\begin{align*}
\Pi(y, \beta+i t)= & \exp \{\gamma+I(\xi(u))+w(u,-i t \log y)\} \tag{2.3}\\
& \times(-\xi(u) \zeta(\beta+i t))\left(1+O_{\varepsilon}\left(L(\varepsilon)^{-1}\right)\right),
\end{align*}
$$

where

$$
\begin{equation*}
I(z)=\int_{0}^{z} \frac{e^{v}-1}{v} d v \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
w(u, z)=\int_{0}^{z} \frac{e^{\xi(u)+v}}{\xi(u)+v} d v \tag{2.5}
\end{equation*}
$$

In [8], Hildebrand and Tenenbaum have given an upper estimate for $\Pi(y, s)$, but insufficient for our purposes. The following lemma gives a stronger upper bound for $\Pi(y, \beta+i t)$. The method of proof is based on the method of Vinogradov [14].

Lemma 2. For $2 \leq u \leq L(\varepsilon)$ and $t \geq 1 / \log y$ we have uniformly

$$
\begin{equation*}
\left|e^{w(u,-i t \log y)}\right| \ll \exp \left\{-\frac{(1 / 10) u t^{2}}{(1-\beta)^{2}+t^{2}}\right\} \tag{2.6}
\end{equation*}
$$

Proof. Let us set $\eta=1-\beta=\xi(u) / \log y$ and $a(t)=a(t, u, y)=$ $\operatorname{Re} w(u,-i t \log y)$. Then

$$
a(t)=e^{\xi(u)} \int_{0}^{t \log y} \frac{x \cos x-\xi(u) \sin x}{\xi^{2}(u)+x^{2}} d x
$$

We first consider the case $u \geq u_{0}$ (u_{0} sufficiently large). Using integration by parts we obtain

$$
\begin{align*}
a(t)=e^{\xi(u)}\{ & \frac{t \log y \sin (t \log y)+\xi(u) \cos (t \log y)}{\xi^{2}(u)+(t \log y)^{2}} \tag{2.7}\\
& -\frac{1}{\xi(u)}+O\left(\frac{t^{2}}{\left(\eta^{2}+t^{2}\right) \xi^{2}(u)}\right) \\
& \left.+2 \int_{0}^{t \log y} \frac{x^{2} \sin x+(1+\xi(u)) x \cos x}{\left(\xi^{2}(u)+x^{2}\right)^{2}} d x\right\} .
\end{align*}
$$

Again using integration by parts we deduce that the last integral on the right-hand side of (2.7) is

$$
\begin{equation*}
\leq \frac{2 \xi(u)(t \log y) \sin (t \log y)}{\left(\xi^{2}(u)+(t \log y)^{2}\right)^{2}}+O\left(\frac{t^{2}}{\left(t^{2}+\eta^{2}\right) \xi^{2}(u)}\right) \tag{2.8}
\end{equation*}
$$

Put $\tan \theta=t / \eta$. Then from (2.7) and (2.8) we get

$$
\begin{align*}
a(t) \leq e^{\xi(u)}\{ & \frac{\eta}{\sqrt{\eta^{2}+t^{2}} \xi(u)} \cos (t \log y-\theta)-\frac{1}{\xi(u)} \tag{2.9}\\
& \left.+\frac{2 \xi(u)(t \log y) \sin (t \log y)}{\left(\xi^{2}(u)+(t \log y)^{2}\right)^{2}}+O\left(\frac{t^{2}}{\left(\eta^{2}+t^{2}\right) \xi^{2}(u)}\right)\right\}
\end{align*}
$$

If $t>\eta$, from (2.9) we obtain

$$
a(t) \leq e^{\xi(u)}\left\{-\frac{1}{2} \cdot \frac{t^{2}}{\left(\eta^{2}+t^{2}\right) \xi(u)}+O\left(\frac{1}{\xi^{2}(u)}\right)\right\} \leq-\frac{(1 / 10) u t^{2}}{\left(\eta^{2}+t^{2}\right)}
$$

If $6 / \log y<t \leq \eta$, we have $\sin (t \log y) \leq 1 \leq(t \log y) / 6$. Hence, from (2.9) we have

$$
\begin{aligned}
a(t) & \leq e^{\xi(u)}\left\{-\frac{1}{3} \cdot \frac{t^{2}}{\left(\eta^{2}+t^{2}\right) \xi(u)}+\frac{1}{\pi} \cdot \frac{t^{2}}{\left(\eta^{2}+t^{2}\right) \xi(u)}+O\left(\frac{t^{2}}{\left(\eta^{2}+t^{2}\right) \xi^{2}(u)}\right)\right\} \\
& \leq-\frac{(1 / 10) u t^{2}}{\eta^{2}+t^{2}}
\end{aligned}
$$

If $\pi / \log y<t \leq 6 / \log y$, then $\sin (t \log y) \leq 0$. From this and (2.9), the desired estimate (2.7) is derived at once.

Finally, if $1 / \log y \leq t \leq \pi / \log y$, then $\cos (t \log y-\theta) \leq \cos (\pi / 4)=$ $1 / \sqrt{2}$. From (2.9) we get

$$
a(t) \leq e^{\xi(u)}\left\{-\frac{\eta^{2}}{3\left(\eta^{2}+t^{2}\right)}+O\left(\frac{t^{2}}{\left(\eta^{2}+t^{2}\right) \xi(u)}\right)\right\} \leq-\frac{(1 / 10) u t^{2}}{\eta^{2}+t^{2}}
$$

Thus (2.6) is proved in the case $u \geq u_{0}$.
In the case $2 \leq u \leq u_{0}$, we have to show that $a(t) \ll 1$, which follows easily from (2.9).

This completes the proof of Lemma 2.
Lemma 3. For $2 \leq u \leq L(\varepsilon)$ and $0 \leq t \leq 1 / \log y$ we have uniformly

$$
a(t) \leq-c_{0} u(t \log y)^{2},
$$

where c_{0} is a sufficiently small positive number.
Proof. It suffices to show

$$
F(t):=a(t)+c_{0} e^{\xi(u)}\left(\frac{\xi(u) t^{2}}{\eta^{2}}\right) \leq 0
$$

By definition of $a(t)$ and the condition $0 \leq t \log y \leq 1$, we have

$$
F^{\prime}(t) \leq e^{\xi(u)} \frac{t}{\eta^{2}}\left(\frac{1-(5 / 6) \xi(u)}{1+t^{2} / \eta^{2}}+2 c_{0} \xi(u)\right)
$$

From this and noting that $1+t^{2} / \eta^{2} \leq 1+\xi^{-2}(u), \xi(u) \geq \xi(2)>1.25$ and c_{0} has been chosen sufficiently small, we obtain $F^{\prime}(t)<0$ for $t>0$. This provides the required inequality.

LEMmA 4. For $2 \leq u \leq L(\varepsilon)$ and $|t| \leq 1 / \log y$ we have uniformly
$w(u,-i t \log y)$

$$
=-e^{\xi(u)}\left(\frac{i t}{\eta}\right)-e^{\xi(u)}\left(\frac{\xi^{2}(u)-2 \xi(u)+2}{\eta^{2}}\right) \frac{t^{2}}{2!}+O\left(u(t \log y)^{3}\right) .
$$

Proof. Write

$$
\left.\frac{\partial^{n}}{\partial z^{n}} w(u, z)\right|_{z=0}=w_{n}(u)
$$

By the definition of $w(u, z)$, we have $w_{0}(u)=0, w_{1}(u)=e^{\xi(u)} \xi^{-1}(u)$, $w_{2}(u)=-e^{\xi(u)}(\xi(u)-1) \xi^{-2}(u)$, and $\left(\partial^{3} / \partial z^{3}\right) w(u, z) \ll u$. From this and Taylor's theorem, the lemma is derived at once.

Remark. From Lemmas 1, 2 and formula (2.3) we have for $1 / \log y \leq$ $|t| \leq L(\varepsilon)$, and $2 \leq u \leq L(\varepsilon)$

$$
\begin{aligned}
|\Pi(y, \beta+i t)| \ll & \exp \left\{I(\xi(u))-c_{10} u t^{2} /\left((1-\beta)^{2}+t^{2}\right)\right\} \\
& \times\left\{(\log (|t|+2))^{2 / 3}\left(\log _{2}(|t|+3)\right)^{1 / 3}+1 / t\right\}
\end{aligned}
$$

This improves on a result of [8].
3. Estimates for $\varphi\left(q_{y}, s\right)^{-1}$. Let

$$
\varphi\left(q_{y}, s\right)=\prod_{p \mid q, p \leq y}\left(1-p^{-s}\right)^{-1}
$$

If $\omega\left(q_{y}\right) \geq 2$, we choose K_{q} so that $\pi\left(K_{q}\right)=\omega\left(q_{y}\right)$, where $\pi(x)$ denotes the number of primes not exceeding x. If $\omega\left(q_{y}\right) \leq 1$, we put $K_{q}=e$. Hence, we
have

$$
\log K_{q} \asymp \log \left(\omega\left(q_{y}\right)+3\right) .
$$

We need some estimates for $\varphi\left(q_{y}, s\right)^{-1}$.
Lemma 5. For $u \geq 2,|t| \leq\left(u^{1 / 3} \log y\right)^{-1}$, and $\omega\left(q_{y}\right) \leq y^{1 / 2}$, we have uniformly

$$
\begin{equation*}
\varphi\left(q_{y}, \beta+i t\right)^{-1}=\varphi\left(q_{y}, \beta\right)^{-1}\left(1+i t A+O\left(t^{2} A_{0}^{2}\right)\right) \tag{3.1}
\end{equation*}
$$

where $A=A\left(q_{y}, \beta\right)$ is a real-valued function, and

$$
A \ll \eta^{-1}(u \xi(u))^{1 / 2}\left(\log K_{q} / \log y\right)=: A_{0}
$$

Proof. We have

$$
\frac{\varphi\left(q_{y}, \beta+i t\right)^{-1}}{\varphi\left(q_{y}, \beta\right)^{-1}}=e^{i t A+O\left(t^{2} B\right)}, \quad \text { say }
$$

where

$$
A:=\sum_{p \mid q, p \leq y} \sum_{m=1}^{\infty} \frac{\log p}{p^{m \beta}}, \quad B:=\sum_{p \mid q, p \leq y} \sum_{m=1}^{\infty} \frac{m \log ^{2} p}{p^{m \beta}} .
$$

We first estimate the quantity A. If $\exp \left\{c_{3} \log y / \log (u+1)\right\} \leq \omega\left(q_{y}\right) \leq y^{1 / 2}$, by partial summation and the prime number theorem we obtain

$$
\begin{align*}
A & \ll \sum_{p \leq K_{q}} \frac{\log p}{p^{\beta}}=\int_{2}^{K_{q}} \frac{\log z}{z^{\beta}} d \pi(z) \ll e^{\eta \log K_{q}}+\int_{2}^{K_{q}} \frac{d z}{z^{\beta}} \tag{3.2}\\
& \ll \eta^{-1} e^{\eta \log K_{q}} \ll \eta^{-1}(u \xi(u))^{1 / 2}\left(\log K_{q} / \log y\right) .
\end{align*}
$$

This provides the desired estimate.
If $\omega\left(q_{y}\right) \leq \exp \left\{c_{3} \log y / \log (u+1)\right\}$, we have

$$
\begin{equation*}
A \ll \sum_{p \leq K_{q}} \frac{\log p}{p^{\beta}} \ll \sum_{p \leq K_{q}} \frac{\log p}{p} \ll \log K_{q} \tag{3.3}
\end{equation*}
$$

This provides a stronger estimate than the assertion of the lemma.
Similarly,

$$
\begin{align*}
B & \ll \sum_{p \leq K_{q}} \frac{\log ^{2} p}{p^{\beta}} \ll \int_{2}^{K_{q}} \frac{\log z}{z^{\beta}} d z+e^{\eta \log K_{q}} \log K_{q} \tag{3.4}\\
& \ll \eta^{-1} \log K_{q} e^{\eta \log K_{q}} \ll \eta^{-1} \log y(u \xi(u))^{1 / 2},
\end{align*}
$$

since $t^{2} B \ll 1$, for $|t| \leq\left(u^{1 / 3} \log y\right)^{-1}$, so we have

$$
e^{i t A+O\left(t^{2} B\right)}=1+i t A+O\left(t^{2} A_{0}^{2}\right)
$$

This completes the proof of Lemma 5.

Lemma 6. For $u \geq 2,|t| \leq 1 / \log K_{q}$, and $\omega\left(q_{y}\right) \leq \exp \left\{c_{3} \log y / \log (u+\right.$ 1) \}, we have uniformly
(i) $\varphi\left(q_{y}, \beta+i t\right)^{-1}=\varphi\left(q_{y}, \beta\right)^{-1}\left(1+i t A_{1}+O\left(t^{2} \log ^{2} K_{q}\right)\right)$, where $A_{1}=$ $A_{1}\left(q_{y}, \beta\right)$ is a real-valued function, and $A_{1} \ll \log K_{q}$.
(ii) $\frac{\partial}{\partial t} \varphi\left(q_{y}, \beta+i t\right)^{-1} \ll \varphi\left(q_{y}, \beta\right)^{-1} \log K_{q}$.
(iii) $\frac{\partial^{2}}{\partial t^{2}} \varphi\left(q_{y}, \beta+i t\right)^{-1} \ll \varphi\left(q_{y}, \beta\right)^{-1} \log ^{2} K_{q}$.

Proof. It is similar to the proof of Lemma 5 .
Lemma 7. For $u \geq 2,|t| \leq 1 / \log y$, and $\omega\left(q_{y}\right) \leq y^{1 / 2}$, we have uniformly

$$
\varphi\left(q_{y}, \beta+i t\right)^{-1} \ll \varphi\left(q_{y}, \beta\right)^{-1} \exp \left\{O\left(u^{1 / 2}(t \log y)^{2}\right)\right\} .
$$

Proof. We have

$$
\begin{aligned}
\left|\frac{\varphi\left(q_{y}, \beta+i t\right)^{-1}}{\varphi\left(q_{y}, \beta\right)^{-1}}\right| & \ll \exp \left\{O\left(t^{2} \sum_{p \leq K_{q}} \frac{\log ^{2} p}{p^{\beta}}\right)\right\} \\
& \ll \exp \left\{O\left(u^{1 / 2}(t \log y)^{2}\right)\right\}
\end{aligned}
$$

as wanted.
Lemma 8. (i) If $u \geq 2$ and $\omega\left(q_{y}\right) \leq y^{1 / 2}$, then we have uniformly

$$
\varphi\left(q_{y}, \beta+i t\right)^{-1} \ll \varphi\left(q_{y}, \beta\right)^{-1}\left(\log ^{2} y\right) e^{O(\sqrt{u})} .
$$

(ii) If $u \geq 2$ and $\omega\left(q_{y}\right) \leq \exp \left\{c_{3} \log y / \log (u+1)\right\}$, then we have uniformly

$$
\varphi\left(q_{y}, \beta+i t\right)^{-1} \ll \varphi\left(q_{y}, \beta\right)^{-1} \log ^{2} K_{q} .
$$

Proof. We have

$$
\varphi\left(q_{y}, \beta+i t\right)^{-1} \ll \exp \left\{\sum_{p \leq K_{q}} \frac{1}{p^{\beta}}\right\} .
$$

In the case (i), by partial summation and the prime number theorem we obtain

$$
\sum_{p \leq K_{q}} \frac{1}{p^{\beta}} \leq \log \frac{1}{1-\beta}+O\left(u^{1 / 2}\right)
$$

hence

$$
\varphi\left(q_{y}, \beta+i t\right)^{-1} \ll(\log y) e^{O(\sqrt{u})} .
$$

Similarly

$$
\varphi\left(q_{y}, \beta\right) \ll(\log y) e^{O(\sqrt{u})} .
$$

These provide the desired estimate.
In the case (ii), we have

$$
\sum_{p \leq K_{q}} \frac{1}{p^{\beta}}=\sum_{p \leq K_{q}} \frac{1}{p}(1+O((1-\beta) \log p))=\log \log K_{q}+O(1) .
$$

Hence

$$
\varphi\left(q_{y}, \beta+i t\right)^{-1} \ll \log K_{q}
$$

Also

$$
\varphi\left(q_{y}, \beta\right) \ll \log K_{q}
$$

These provide the assertion.
This completes the proof of Lemma 8.
Lemma 9. For $u \geq 2$ and $\omega\left(q_{y}\right) \leq y^{1 / 2}$, we have uniformly

$$
\varphi\left(q_{y}\right) / q_{y} \ll \varphi\left(q_{y}, \beta\right)^{-1} e^{O(\sqrt{u})}
$$

Proof. We have

$$
\frac{\varphi\left(q_{y}\right)}{q_{y}} \cdot \frac{1}{\varphi\left(q_{y}, \beta\right)^{-1}} \ll e^{\Sigma}
$$

where

$$
\Sigma=\sum_{p \mid q, p \leq y}\left(\frac{1}{p^{\beta}}-\frac{1}{p}\right)
$$

By partial summation and the prime number theorem we obtain

$$
\begin{aligned}
\Sigma & \ll \int_{2}^{K_{q}} \frac{e^{\eta \log z}-1}{z} \cdot \frac{d z}{\log z} \\
& =\int_{\eta \log 2}^{1} \frac{e^{w}-1}{w} d w+\int_{1}^{\eta \log K_{q}} \frac{e^{w}-1}{w} d w \ll \sqrt{u} .
\end{aligned}
$$

This provides the desired estimate.
Lemma 10. If $\omega\left(q_{y}\right) \leq \exp \left\{c_{3} \log y / \log (u+1)\right\}$, then we have uniformly

$$
\varphi\left(q_{y}, \beta\right)^{-1}=\frac{\varphi\left(q_{y}\right)}{q_{y}}\left(1+O\left(\frac{\log (u+1) \log K_{q}}{\log y}\right)\right)
$$

Proof. By the same argument as in [8, p. 289], we obtain

$$
\begin{aligned}
0 & <\prod_{p \mid q, p \leq y}\left(\log \left(1-\frac{1}{p}\right)-\log \left(1-\frac{1}{p^{\beta}}\right)\right) \\
& \leq \int_{\beta}^{1} \frac{d}{d \sigma}\left\{\sum_{p \leq K_{q}} \log \left(1-\frac{1}{p^{\sigma}}\right)\right\} d \sigma \\
& =\left(1+O\left(\frac{1}{\log y}\right)\right) \int_{0}^{\eta \log K_{q}} \frac{e^{s}-1}{s} d s+O(\eta) \ll \eta \log K_{q} .
\end{aligned}
$$

From this, Lemma 10 follows.

4. Application of the sieve methods. Let

$$
\begin{equation*}
N_{q}(x)=\sum_{n \leq x,(n, q)=1} 1=x\left\{\frac{\varphi(q)}{q}+R_{q}(x)\right\} \tag{4.1}
\end{equation*}
$$

In this section we first give two lemmas on $N_{q}(x)$, which are obtained by the fundamental lemma of the sieve. Then we apply these results to estimate the integrals

$$
I_{A}=\int_{-\infty}^{u-2}\left|R_{q}\left(y^{v}\right)\right| e^{v \xi(u)} d v, \quad I_{B}=\int_{u-2}^{\infty}\left|R_{q}\left(y^{v}\right)\right| e^{v \xi(u)} d v
$$

Lemma 11. If $q \geq 1, P(q) \leq X$ and $r=\log X / \log (\omega(q)+3) \geq 2$, then we have uniformly

$$
\begin{equation*}
N_{q}(X)=X \frac{\varphi(q)}{q}\left\{1+O\left(e^{-(3 / 5) r \log r}\right)+O\left(e^{-(1 / 2) \sqrt{\log X}}\right)\right\} \tag{4.2}
\end{equation*}
$$

Proof. This is a simple modification of Tenenbaum's argument in [12]. We apply the fundamental lemma in the form given in [5, Ch. 4, Section 8]. For any $z \leq X$ and $s=\log X / \log z$ we have

$$
\begin{equation*}
N_{q_{z}}(X)=X \frac{\varphi(q)}{q}\left\{1+O\left(e^{-s \log s+s \log _{2} 3 s+2 s}\right)+O\left(e^{-\sqrt{\log X}}\right)\right\} \tag{4.3}
\end{equation*}
$$

where $q_{z}=\prod_{p \mid q, p \leq z} p$. We may assume that X is a sufficiently large positive number, the result being trivial otherwise. We select $z=(\omega(q)+$ $\exp \sqrt{\log X})^{3 / 2}$. This implies $z \leq X$, since $r \geq 2$. We also have

$$
\begin{align*}
\frac{\varphi\left(q_{y}\right)}{q_{y}} & =\frac{\varphi(q)}{q}\left\{1+O\left(\left(1-\frac{1}{z}\right)^{-\omega(q)}-1\right)\right\} \tag{4.4}\\
& =\frac{\varphi(q)}{q}\left\{1+O\left(e^{-(1 / 2) \sqrt{\log X}}\right)\right\}
\end{align*}
$$

By (4.3) and (4.4) we obtain

$$
N_{q_{z}}(X)=X \frac{\varphi(q)}{q}\left\{1+O\left(e^{-(3 / 5) r \log r}\right)+O\left(e^{-(1 / 2) \sqrt{\log X}}\right)\right\}
$$

Thus, to finish the proof of the lemma, it suffices to show

$$
N_{q_{z}}(X)-N_{q}(X) \ll X e^{-(1 / 2) \sqrt{\log X}}
$$

The left-hand side equals

$$
\sum_{d \mid q / q_{z}, d>1} \mu(d) N_{q_{z}}(X / d) \ll X \sum_{d \mid q / q_{z}, d>1} \mu^{2}(d) / d
$$

From this, the above estimate is derived at once.
This completes the proof of the lemma.

Lemma 12. For $P(q) \leq y$ and $v \geq 2$, we have uniformly

$$
\begin{equation*}
N_{q}\left(y^{v}\right)=y^{v} \frac{\varphi(q)}{q}\left\{1+O\left(e^{-(1 / 5) v \log v}\right)+O\left(e^{-(1 / 2) v \log y}\right)\right\} . \tag{4.5}
\end{equation*}
$$

Proof. We apply the fundamental lemma in the form given in [3]. For any z and $s \geq 1$ we have

$$
N_{q_{z}}(X)=X\left(\varphi\left(q_{z}\right) / q_{z}\right)\left\{1+O\left(s^{-s / 2}\right)\right\}+O\left(z^{s}\right) .
$$

Now, upon selecting $X=y^{v}, z=y$, and $s=\log \sqrt{X} / \log z=v / 2$, the result is derived at once.

Next apply Lemma 11 to estimate I_{A}.
Lemma 13. If $u_{0} \leq u \leq\left(\log _{2} y\right)^{2}$, then

$$
\begin{equation*}
I_{A} \ll \frac{\varphi(q)}{q} \cdot \frac{\log (\omega(q)+3)}{\log y} \exp \left\{u^{20 / 21}\right\} \tag{4.6}
\end{equation*}
$$

Proof. Let $v_{0}=2 \log (\omega(q)+3) / \log y$. We write $I_{A}=I_{A 1}+I_{A 2}$, where $I_{A 1}$ corresponds to the integration range $-\infty<v \leq v_{0}$; we have

$$
\begin{aligned}
I_{A 1} & \ll e^{v_{0} \xi(u)} \int_{0}^{v_{0}}\left(\frac{N_{q}\left(y^{v}\right)}{y^{v}}+\frac{\varphi(q)}{q}\right) d v \\
& \ll u \log (u+1)\left\{\frac{1}{\log y} \sum_{n \leq y^{v_{0}},(n, q)=1} \frac{1}{n}+v_{0} \frac{\varphi(q)}{q}\right\} .
\end{aligned}
$$

The sum over n is

$$
\begin{aligned}
& \ll \prod_{p \leq y^{v}, p+q}\left(1+\frac{1}{p}\right) \ll v_{0} \log y \prod_{p \mid q, p \leq y^{v}}\left(1-\frac{1}{p}\right) \\
& \ll v_{0}(\log y)(\varphi(q) / q) .
\end{aligned}
$$

Hence

$$
I_{A 1} \ll\left(u^{2}\right) \frac{\varphi(q)}{q} \cdot \frac{\log (\omega(q)+3)}{\log y} .
$$

This is acceptable.
For $I_{A 2}$, applying Lemma 11 we have

$$
\begin{aligned}
R_{q}\left(y^{v}\right) \ll & \exp \left\{-\frac{11}{10} v \log v-\frac{1}{20} \cdot \frac{\log y}{\log (\omega(q)+3)}\right\} \frac{\varphi(q)}{q} \\
& +\exp \left\{-\frac{1}{3} v \log y\right\} \frac{\varphi(q)}{q} .
\end{aligned}
$$

So for $u \leq\left(\log _{2} y\right)^{2}$ we obtain

$$
I_{A 2} \ll \frac{\varphi(q)}{q} \cdot \frac{\log (\omega(q)+3)}{\log y} \int_{v_{0}}^{u-2} e^{-(11 / 10) v \log v+v \xi(u)} d v .
$$

If $v>u^{19 / 20}$, then $(11 / 10) \log v \geq(26 / 25) \xi(u)$. Hence the last integral is $\ll \exp \left\{u^{20 / 21}\right\}$. The desired result (4.6) now follows on collecting these estimates.

LEmmA 14. If $u_{0} \leq u \leq\left(\log _{2} y\right)^{2}$, then

$$
\begin{equation*}
I_{B} \ll \frac{\varphi(q)}{q} \cdot \frac{\log (\omega(q)+3)}{\log y} e^{-u / 6} \tag{4.7}
\end{equation*}
$$

Proof. For $u-2 \leq v \leq \log y /\left(\log _{3} y\right)^{3}$, it is easily seen that

$$
e^{-(1 / 2) \sqrt{\log y^{v}}} \ll e^{-2 v \xi(u)}(\log y)^{-2}
$$

Thus from Lemma 11 we deduce that

$$
\begin{equation*}
\left|R_{q}\left(y^{v}\right)\right| \ll \frac{\varphi(q)}{q} \cdot \frac{\log (\omega(q)+3)}{\log y} e^{-(1.05) v \xi(u)} \tag{4.8}
\end{equation*}
$$

If $v>\log y /\left(\log _{3} y\right)^{3}$, applying Lemma 12 yields

$$
\begin{align*}
\left|R_{q}\left(y^{v}\right)\right| & \ll \frac{\varphi(q)}{q}\left\{e^{-(1 / 5) v \log v}+e^{-(1 / 3) v \log y}\right\} \tag{4.9}\\
& \ll \frac{\varphi(q)}{q} \cdot \frac{\log (\omega(q)+3)}{\log y} e^{-2 v \xi(u)}
\end{align*}
$$

Now (4.7) follows from the above two estimates.
5. Proof of Theorem 1: the case $u \leq\left(\log _{2} y\right)^{2}$. Let

$$
\Lambda_{q}(x, y)= \begin{cases}x \int_{-\infty}^{\infty} \varrho(u-v) d R_{q}\left(y^{v}\right), & x \in \mathbb{R} \backslash \mathbb{Z}^{+}, \\ \Lambda_{q}(x+0, y), & x \in \mathbb{Z}^{+} .\end{cases}
$$

Recall that $\pi\left(K_{q}\right)=\omega\left(q_{y}\right)$ for $\omega\left(q_{y}\right) \geq 2$ and $K_{q}=e$ for $\omega\left(q_{y}\right) \leq 1$. By formulas (5.4), (5.5) and (5.8) of [4] we have

$$
\Psi_{q}(x, y)=\Lambda_{q}(x, y)+O\left(L(\varepsilon / 2)^{-1} \Psi(x, y) \prod_{p \leq K_{q}}\left(1+p^{-\beta+c / \log y}\right)\right)
$$

where $L(\varepsilon)$ is defined by (2.2).
It is easily seen that the product over $p \leq K_{q}$ is $\ll \exp \left\{\left(\log _{2} y\right)^{3}\right\}$. So we obtain

$$
\begin{equation*}
\Psi_{q}(x, y)=\Lambda_{q}(x, y)+O\left(\Psi(x, y) L(\varepsilon)^{-1}\right) \tag{5.1}
\end{equation*}
$$

We give the main steps of the proof of Theorem 1 in the form of four lemmas.

Lemma 15. (i) For $u \geq 2$ and $T \geq e^{\xi(u)}$ we have uniformly

$$
\begin{equation*}
\varrho(u)=e^{\gamma-u \xi(u)+I(\xi(u))} J(u)+O(1 / T), \tag{5.2}
\end{equation*}
$$

where

$$
\begin{equation*}
J(u)=\frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{i t u+w(u,-i t)}}{1-i t / \xi(u)} d t \tag{5.3}
\end{equation*}
$$

and where $I(z), w(u, z)$ are defined by (2.4), (2.5), respectively.
(ii) For $u \geq 2,0 \leq v \leq u-2$ and $T \geq e^{\xi(u)}$ we have uniformly

$$
\begin{equation*}
\varrho(u-v)=e^{\gamma-u \xi(u)+I(\xi(u))} e^{v \xi(u)} K(u, v)+O(1 / T) \tag{5.4}
\end{equation*}
$$

where

$$
\begin{equation*}
K(u, v)=\frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{i t(u-v)+w(u,-i t)}}{1-i t / \xi(u)} d t \tag{5.5}
\end{equation*}
$$

Write

$$
\begin{equation*}
I_{q}(x, y)=\frac{1}{2 \pi} \int_{-T^{\prime}}^{T^{\prime}} \frac{e^{i t \log x+w(u,-i t \log y)}}{(\beta+i t) \varphi\left(q_{y}, \beta+i t\right)}(-\zeta(\beta+i t)) d t \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
Q(u)=e^{\gamma-u \xi(u)+I(\xi(u))} \tag{5.7}
\end{equation*}
$$

LEMMA 16. For $u_{0} \leq u \leq\left(\log _{2} y\right)^{2}, \omega\left(q_{y}\right) \leq y^{1 / 2}$ and $1 / \log y \leq T^{\prime} \leq 1$ we have uniformly

$$
\begin{align*}
\Lambda_{q}(x, y)= & x Q(u) \xi(u) I_{q}(x, y) \tag{5.8}\\
& +O\left(\Psi(x, y) \varphi\left(q_{y}, \beta\right)^{-1} e^{-c_{11} u / \log ^{2}(u+1)}\right. \\
& \left.\times\left(\frac{\log \left(\omega\left(q_{y}\right)+3\right)}{\log y}+\frac{1}{T^{\prime} \log y}\right)\right)
\end{align*}
$$

Write

$$
\begin{align*}
H_{q}^{(j)}(x, y)= & x Q(u) \xi(u) \frac{1}{2 \pi} \int_{-T_{j}}^{T_{j}} \frac{e^{i t \log x+w(u,-i t \log y)}}{\beta+i t} \tag{5.9}\\
& \times\left(\frac{-\zeta(\beta+i t)}{\varphi\left(q_{y}, \beta+i t\right)}-\frac{-\zeta(\beta+i t)}{\varphi\left(q_{y}, \beta\right)}\right) d t \quad(j=1,2)
\end{align*}
$$

where $T_{1}=1 / \log y, T_{2}=1 / \log K_{q}$.
Lemma 17. For x, y satisfying (1.3), $u \geq u_{0}$ and $\exp \left\{c_{3} \log y / \log (u+\right.$ $1)\} \leq \omega\left(q_{y}\right) \leq y^{1 / 2}$ we have uniformly

$$
\begin{equation*}
H_{q}^{(1)}(x, y) \ll \Psi(x, y) \varphi\left(q_{y}, \beta\right)^{-1}\left(\log K_{q} /(\log y \log (u+1))\right) \tag{5.10}
\end{equation*}
$$

Lemma 18. For x, y satisfying (1.3), $\omega\left(q_{y}\right) \leq \exp \left\{c_{3} \log y / \log (u+1)\right\}$ and $u \geq u_{0}$ we have uniformly

$$
\begin{equation*}
H_{q}^{(2)}(x, y) \ll \Psi(x, y) \varphi\left(q_{y}, \beta\right)^{-1}\left(\log K_{q} / \log x\right) \tag{5.11}
\end{equation*}
$$

In the case $u_{0} \leq u \leq\left(\log _{2} y\right)^{2}$, where u_{0} is a sufficiently large absolute constant, Theorem 1 follows easily from these lemmas and (5.1). In fact, by Lemma 16 with $T^{\prime}=1 / \log y$ and (5.1) we have

$$
\begin{aligned}
\Psi_{q}(x, y)= & x Q(u) \xi(u) \frac{1}{2 \pi} \int_{-1 / \log y}^{1 / \log y} \frac{e^{i t \log x+w(u,-i t \log y)}}{(\beta+i t) \varphi\left(q_{y}, \beta+i t\right)}(-\zeta(\beta+i t)) d t \\
& +O\left(\Psi(x, y) \varphi\left(q_{y}, \beta\right)^{-1} e^{-c_{11} u / \log ^{2}(u+1)}\right) .
\end{aligned}
$$

When $q=1$, the last formula remains true. From this and Lemma 17, the desired estimate (1.7) is derived, when we assume $\exp \left\{c_{3} \log y / \log (u+1)\right\} \leq$ $\omega\left(q_{y}\right) \leq y^{1 / 2}$.

If $\omega\left(q_{y}\right) \leq \exp \left\{c_{3} \log y / \log (u+1)\right\}$, (1.7) is proved similarly.
If $1 \leq u<u_{0}$, the assertion of Theorem 1 becomes, by Lemma 10,

$$
\begin{equation*}
\Psi_{q}(x, y)=\frac{\varphi\left(q_{y}\right)}{q_{y}} \Psi(x, y)\left(1+O\left(\frac{\log \left(\omega\left(q_{y}\right)+3\right)}{\log y}\right)\right) . \tag{5.12}
\end{equation*}
$$

We first dispose of the case $y^{1 / C}<\omega\left(q_{y}\right) \leq y^{1 / 2}$, where C is sufficiently large absolute constant. The desired estimate (5.12) follows from

$$
\Psi_{q}(x, x) \leq 7(\varphi(q) / q) x
$$

(see, for example, [5, p. 104]).
We may therefore suppose $\omega\left(q_{y}\right) \leq y^{1 / C}$. By the definition of $\Lambda(x, y)$ we have for $x \notin \mathbb{Z}^{+}$,

$$
\begin{aligned}
\Lambda_{q}(x, y) & =x \int_{-\infty}^{u} \varrho(u-v) d R_{q}\left(y^{v}\right) \\
& =\left.x \varrho(u-v) R_{q}\left(y^{v}\right)\right|_{-\infty} ^{u}+x \int_{-\infty}^{u-1} R_{q}\left(y^{v}\right) \varrho^{\prime}(u-v) d v .
\end{aligned}
$$

By Lemma 11 the first term of the right-hand side equals

$$
x \varrho(u)\left(\varphi\left(q_{y}\right) / q_{y}\right)\left(1+O\left(\log \left(\omega\left(q_{y}\right)+3\right) / \log y\right)\right) .
$$

By Lemma 11 we also deduce that, in the same way as in the proof of Lemma 13, the second term is

$$
\ll x \varrho(u)\left(\varphi\left(q_{y}\right) / q_{y}\right)\left(\log \left(\omega\left(q_{y}\right)+3\right) / \log y\right) .
$$

By the above estimates and (5.1), (5.12) is proved for the case considered.
Proof of Lemma 15. By (1.9) of [2] we have

$$
\varrho(u)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} e^{\gamma-u z+I(z)} d z \quad(u \geq 1)
$$

From this and (3.3) and (3.4) of [2] we obtain for $T \geq 1, u \geq 1$,

$$
\varrho(u)=\frac{1}{2 \pi i} \int_{-i T}^{i T} e^{\gamma-u z+I(z)} d z+O(1 / T)
$$

Also,

$$
\operatorname{Re} I(i T)=\int_{0}^{T} \frac{\cos t-1}{t} d t=-\log T+O(1)
$$

and

$$
I(\sigma+i T)-I(i T) \ll \frac{1}{T} \int_{0}^{\xi(u)} e^{x} d x \ll 1
$$

if $T \geq e^{\xi(u)}$ and $0 \leq \sigma \leq \xi(u)$. So we have

$$
\varrho(u)=e^{\gamma-u \xi(u)+I(\xi(u))} \bar{J}(u)+O(1 / T)
$$

where

$$
\bar{J}(u)=\frac{1}{2 \pi} \int_{-T}^{T} e^{i t u+I(\xi(u)-i t)-I(\xi(u))} d t
$$

Obviously,

$$
I(\xi(u)-i t)-I(\xi(u))=\int_{0}^{-i t} \frac{e^{\xi(u)+w}}{\xi(u)+w} d w+\log \left(\frac{\xi(u)}{\xi(u)-i t}\right)
$$

From this and the definition of $w(u, z)$ we have $\bar{J}(u)=J(u)$, which proves (i).
The proof of (ii) is similar.
Proof of Lemma 16 . Write $T^{*}=T^{\prime} \log y$ and

$$
\begin{equation*}
K(u, v)=\int_{-T^{*}}^{T^{*}}+\int_{T^{*} \leq|t| \leq T}=K_{1}(u, v)+K_{2}(u, v), \quad \text { say. } \tag{5.13}
\end{equation*}
$$

By the definition of $\Lambda_{q}(x, y)$ we have for $x \notin \mathbb{Z}^{+}$,
(5.14) $\Lambda_{q}(x, y)=x Q(u) \int_{-\infty}^{u-2} e^{v \xi(u)} K_{1}(u, v) d R_{q}\left(y^{v}\right)$

$$
\begin{aligned}
& \quad+x Q(u) \int_{-\infty}^{u-2} e^{v \xi(u)} K_{2}(u, v) d R_{q}\left(y^{v}\right) \\
& \quad+x \int_{u-2}^{u} \varrho(u-v) d R_{q}\left(y^{v}\right)+O\left(\frac{x}{T} \int_{-\infty}^{u-2}\left|d R_{q}\left(y^{v}\right)\right|\right) \\
& =G_{1}+G_{2}+G_{3}+O\left(G_{4}\right), \quad \text { say. }
\end{aligned}
$$

We first estimate G_{2}. Changing the order of integration and using integration by parts we get

$$
\begin{equation*}
G_{2}=x Q(u)\left\{\frac{\varphi(q)}{q} J_{1}(u)+e^{(u-2) \xi(u)} R_{q}\left(y^{u-2}\right) J_{1}(2)-J_{2}\right\}, \tag{5.15}
\end{equation*}
$$

where

$$
J_{1}(b)=\frac{1}{2 \pi} \int_{T^{*}<\mid t \leq T} \frac{e^{i t b+w(u,-i t)}}{1-i t / \xi(u)} d t \quad(2 \leq b \leq u)
$$

and

$$
J_{2}=\frac{1}{2 \pi} \int_{T^{*}<|t| \leq T} e^{i t u+w(u,-i t)} \xi(u)\left\{\int_{-\infty}^{u-2} R_{q}\left(y^{v}\right) e^{v(\xi(u)-i t)} d v\right\} d t .
$$

By using integration by parts again we further obtain

$$
\begin{align*}
J_{1}(b) & \ll\left|\frac{e^{w(u,-i t)}}{t}\right|_{t=T^{*}}+\int_{T^{*}}^{T} \frac{\left|e^{w(u,-i t)}\right| u^{2}}{t^{2}} d t \tag{5.16}\\
& \ll e^{-c_{11} u / \log ^{2}(u+1)}\left(T^{*}\right)^{-1} .
\end{align*}
$$

For J_{2}, changing the order of integration, then using integration by parts twice we see that the inner integral is

$$
\begin{aligned}
& \ll e^{-c_{11} u / \log ^{2}(u+1)}+e^{\xi(u)} \xi(u)\left|\int_{T^{*}}^{T} e^{w(u,-i t)} e^{i t(u-v-1)} \frac{d t}{\xi(u)-i t}\right| \\
& \ll e^{-c_{11} u / \log ^{2}(u+1)} .
\end{aligned}
$$

From this, and Lemmas 13 and 9, we get

$$
\begin{align*}
J_{2} & \ll e^{-c_{11} u / \log ^{2}(u+2)} \int_{0}^{u-2}\left|R_{q}\left(y^{v}\right)\right| e^{v \xi(u)} d v \tag{5.17}\\
& \ll \varphi\left(q_{y}, \beta\right)^{-1}\left(\log K_{q} / \log y\right) e^{-c_{12} u / \log ^{2}(u+1)} .
\end{align*}
$$

Combining (5.15)-(5.17) with (4.8) and using Lemma 9 we obtain

$$
\begin{align*}
& G_{2} \ll \Psi(x, y) \varphi\left(q_{y}, \beta\right)^{-1} e^{-c_{12} u / \log ^{2}(u+1)} \tag{5.18}\\
& \quad \times\left(\frac{1}{T^{*}}+\frac{\log K_{q}}{\log y}\right)=: E_{1}, \quad \text { say } .
\end{align*}
$$

Also, by Lemmas 13 and 9 we easily get

$$
\begin{equation*}
G_{3} \ll E_{1} . \tag{5.19}
\end{equation*}
$$

Now we turn to estimating G_{4} in (5.14). We have

$$
\begin{equation*}
G_{4} \ll \frac{x}{T} \sum_{m \leq y^{u},(m, q)=1} \frac{1}{m} \tag{5.20}
\end{equation*}
$$

$$
\begin{aligned}
& \ll \frac{x}{T} \prod_{p \leq y^{u}}\left(1+\frac{1}{p}\right) \prod_{p \leq y^{u}, p \mid q}\left(1+\frac{1}{p}\right)^{-1} \\
& \ll x T^{-1}(u \log y)\left(\varphi\left(q_{y}\right) / q_{y}\right) \ll E_{1}
\end{aligned}
$$

if $T=e^{2 u \xi(u)}\left(\log ^{2} y\right)$. Combining the above estimates yields

$$
\begin{equation*}
\Psi_{q}(x, y)=G_{1}+O\left(E_{1}\right) \tag{5.21}
\end{equation*}
$$

To finish the proof of the lemma, it remains to estimate G_{1}. Changing the order of integration (with t replaced by $t \log y$) we have

$$
\begin{align*}
G_{1}= & x Q(u) \xi(u) \frac{1}{2 \pi} \int_{-T^{\prime}}^{T^{\prime}} \frac{e^{i t \log x+w(u,-i t \log y)}}{\eta-i t} \tag{5.22}\\
& \times\left\{\int_{-\infty}^{u-2} e^{v(\xi(u)-i t \log y)} d R_{q}\left(y^{v}\right)\right\} d t .
\end{align*}
$$

By Lemma 4.4 of [4] we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{v(\xi(u)-i t \log y)} d R_{q}\left(y^{v}\right) & =\sum_{m=0}^{\infty} \frac{(\xi(u)-i t \log y)^{m}}{m!} \int_{-\infty}^{\infty} v^{m} d R_{q}\left(y^{v}\right) \\
& =\prod_{p \mid q, p \leq y}\left(1-\frac{1}{p^{\beta-i t}}\right) \frac{(-\eta+i t) \zeta(\beta+i t)}{\beta+i t},
\end{aligned}
$$

which implies that the main term of G_{1} is $x Q(u) \xi(u) I_{q}(x, y)$.
We denote the error term of G_{1} by G_{1}^{\prime}. By using integration by parts and (4.9) we obtain

$$
\begin{align*}
G_{1}^{\prime}= & x Q(u) \xi(u) \frac{1}{2 \pi} \int_{-T^{\prime}}^{T^{\prime}} \frac{e^{i t \log x+w(u,-i t \log y)}}{\eta-i t} e^{-(u-2) \xi(u)} R_{q}\left(y^{u-2}\right) d t \tag{5.23}\\
& -x Q(u) \xi(u)(\log y) \frac{1}{2 \pi} \int_{u-2}^{\infty} e^{v \xi(u)} R_{q}\left(y^{v}\right) \\
& \times\left\{\frac{1}{2 \pi} \int_{-T^{\prime}}^{T^{\prime}} e^{i t(u-v) \log y+w(u,-i t \log y)} d t\right\} d v \\
= & G_{11}^{\prime}+G_{12}^{\prime}, \quad \text { say. }
\end{align*}
$$

By Lemma 3 we easily get

$$
\frac{1}{2 \pi} \int_{-1 / \log y}^{1 / \log y} e^{i t(u-v) \log y+w(u,-i t \log y)} d t \ll \frac{1}{\log y}
$$

Now suppose that $T^{\prime}>1 / \log y$. By using integration by parts twice and using Lemma 2 we get

$$
\frac{1}{2 \pi} \int_{1 / \log y<|t| \leq T^{\prime}} e^{i t(u-v) \log y+w(u,-i t \log y)} d t \ll e^{-c_{11} u / \log ^{2}(u+1)} \frac{1}{\log y}
$$

Thus, the above estimates and Lemmas 14 and 9 yield

$$
\begin{align*}
G_{12}^{\prime} & \ll x Q(u) \xi(u)\left(I_{B}\right) \tag{5.24}\\
& \ll \Psi(x, y) \varphi\left(q_{y}, \beta\right)^{-1} e^{-c_{11} u / \log ^{2}(u+1)} \frac{\log \left(\omega\left(q_{y}\right)+3\right)}{\log y}
\end{align*}
$$

Similarly, we also have

$$
\begin{equation*}
G_{11}^{\prime} \ll \Psi(x, y) \varphi\left(q_{y}, \beta\right)^{-1} e^{-c_{11} u / \log ^{2}(u+1)} \frac{\log \left(\omega\left(q_{y}\right)+1\right)}{\log y} \tag{5.25}
\end{equation*}
$$

From (5.21)-(5.25) we obtain (5.8) and the proof of Lemma 16 is complete.
Proof of Lemma 17. To prove the lemma we need the following result (see, for example [13, p. 16]):

$$
\begin{equation*}
\zeta(s)=\frac{1}{s-1}+\gamma+O(|s-1|), \quad|t| \leq 2,0<\sigma \leq 2, s \neq 1 \tag{5.26}
\end{equation*}
$$

Moreover, it is easy to prove that

$$
\begin{equation*}
\zeta^{\prime}(s)=\frac{-1}{(s-1)^{2}}+O(1), \quad|t| \leq 2,0<\sigma \leq 2, s \neq 1 \tag{5.27}
\end{equation*}
$$

We divide the range of integration into two parts: $|t| \leq T_{0}$ and $T_{0}<$ $|t| \leq 1 / \log y$, where $T_{0}=\left(u^{1 / 3} \log y\right)^{-1}$, the corresponding integrals being denoted by H_{1} and H_{2}. By Lemmas 3 and 7 we have

$$
\begin{align*}
H_{2} & \ll x Q(u) \xi(u) \varphi\left(q_{y}, \beta\right)^{-1} \eta^{-1} \tag{5.28}\\
& \times \int_{T_{0}}^{1 / \log y} e^{-c_{11} u(t \log y)^{2}} e^{O\left(\sqrt{u}(t \log y)^{2}\right)} d t \\
& \ll \Psi(x, y) \varphi\left(q_{y}, \beta\right)^{-1} e^{-c_{13} u^{1 / 3}} .
\end{align*}
$$

Now we estimate H_{1}. Lemma 4 yields

$$
\begin{align*}
& e^{i t \log x+w(u,-i t \log y)} \tag{5.29}\\
& \quad=e^{-(1 / 2) w_{2}(u)(t \log y)^{2}}\left\{1-\frac{i t}{\eta}+O\left(\frac{t^{2}}{\eta^{2}}\right)+O\left(u(t \log y)^{3}\right)\right\}
\end{align*}
$$

Expanding $\zeta(\beta+i t) / \zeta(\beta)$ in the Taylor series, we get

$$
\begin{equation*}
\zeta(\beta+i t)=\zeta(\beta)\left\{1+\frac{\zeta^{\prime}(\beta)}{\zeta(\beta)}(i t)+O\left(\frac{t^{2}}{\eta^{2}}\right)\right\} \tag{5.30}
\end{equation*}
$$

where

$$
\frac{\zeta^{\prime}(\beta)}{\zeta(\beta)} \asymp \frac{1}{\eta}
$$

By Lemma 5 we have

$$
\begin{equation*}
\varphi\left(q_{y}, \beta+i t\right)^{-1}-\varphi\left(q_{y}, \beta\right)^{-1}=\varphi\left(q_{y}, \beta\right)^{-1}\left(i t A+O\left(t^{2} A_{0}^{2}\right)\right) \tag{5.31}
\end{equation*}
$$

Also

$$
\begin{equation*}
\frac{1}{\beta+i t}=\frac{1}{\beta}\left(1-\frac{i t}{\beta}+O\left(t^{2}\right)\right) \tag{5.32}
\end{equation*}
$$

Collecting the above estimates we deduce that the integrand is

$$
\begin{align*}
& \varphi\left(q_{y}, \beta\right)^{-1} e^{-(1 / 2) w_{2}(u)(t \log y)^{2}}\left(\frac{-\zeta(\beta)}{\beta}\right) \tag{5.33}\\
& \quad \times\left\{i t A+O\left(t^{2} A_{0} \eta^{-1}\right)+O\left(t^{2} A_{0}^{2}\right)+O\left(t^{3} A_{0}^{2} \eta^{-1}\right)\right. \\
& \left.\quad+O\left(u(t \log y)^{3}\left(t A_{0}\right)\right)+O\left(u(t \log y)^{3}\left(t A_{0}\right)^{2}\right)\right\}
\end{align*}
$$

We now integrate the last expression over the range $|t| \leq T_{0}$ to get

$$
\begin{aligned}
H_{q}^{(1)}(x, y) \ll & x Q(u)\left(\frac{-\xi(u) \zeta(\beta)}{\beta \log y}\right) \\
& \times \frac{1}{\sqrt{u}}\left\{\frac{1}{\xi(u)}\left(\frac{\log K_{q}}{\log y}\right)^{2}+\frac{1}{\sqrt{u \xi(u)}}\left(\frac{\log K_{q}}{\log y}\right)\right\} .
\end{aligned}
$$

It is well known that (for example, see (2.7) of [8])

$$
\Psi(x, y) \sim x \varrho(u) \sim e^{-u \xi(u)+I(\xi(u))} \frac{1}{\sqrt{2 \pi u}} \quad \text { as } u \rightarrow \infty
$$

Also, by (5.26),

$$
\frac{-\xi(u) \zeta(\beta)}{\beta \log y} \asymp 1
$$

Thus, the desired estimate (5.10) is derived.
Proof of Lemma 18. We divide the range of integration into three parts: $|t| \leq T_{0}, T_{0}<|t| \leq 1 / \log y$, and $1 / \log y<|t| \leq 1 / \log K_{q}$, the corresponding integrals being denoted by $H_{1}^{\prime}, H_{2}^{\prime}$ and H_{3}^{\prime}. Write

$$
Z(t)=\frac{e^{w(u,-i t \log y)}(-\zeta(\beta+i t))}{\beta+i t}
$$

and

$$
\Phi(t)=\varphi\left(q_{y}, \beta+i t\right)^{-1}-\varphi\left(q_{y}, \beta\right)^{-1}
$$

Thus, H_{3}^{\prime} can be rewritten as

$$
H_{3}^{\prime}=x Q(u) \xi(u) \frac{1}{2 \pi} \int_{1 / \log y<|t| \leq 1 / \log K_{q}} Z(t) \Phi(t) e^{i t \log x} d t
$$

We have

$$
\begin{aligned}
\frac{d}{d t} Z(t)= & e^{w(u,-i t \log y)} \frac{e^{\xi(u)}(-i \log y)}{\xi(u)+i t \log y} \cdot \frac{-\zeta(\beta+i t)}{\beta+i t} e^{-i t \log y} \\
& +e^{w(u,-i t \log y)}\left\{\frac{-\zeta^{\prime}(\beta+i t) i}{\beta+i t}+\frac{-\zeta(\beta+i t)(-i)}{(\beta+i t)^{2}}\right\} \\
= & Z_{1}(t) e^{-i t \log y}+Z_{2}(t), \quad \text { say. }
\end{aligned}
$$

By Lemma 2 and (5.26), (5.27) we have for $1 / \log y \leq|t| \leq 1$,

$$
\begin{aligned}
Z(t) & \ll t^{-1} e^{-c_{11} u / \log ^{2}(u+1)}, \\
Z_{i}(t) & \ll t^{-2} e^{c_{11} u / \log ^{2}(u+1)}, \quad i=1,2,
\end{aligned}
$$

and

$$
\frac{d}{d t} Z(t) \ll t^{-2} e^{-c_{11} u / \log ^{2}(u+1)} .
$$

Similarly

$$
\frac{d}{d t} Z_{i}(t) \ll t^{-3} e^{-c_{11} u / \log ^{2}(u+1)}, \quad i=1,2 .
$$

By using integration by parts twice and by Lemmas 2 and 8 we obtain

$$
\begin{equation*}
H_{3}^{\prime} \ll \Psi(x, y) \varphi\left(q_{y}, \beta\right)^{-1} e^{-c_{11} u / \log ^{2}(u+1)}\left(\log K_{q} / \log y\right) . \tag{5.34}
\end{equation*}
$$

Now we turn to H_{2}^{\prime} and H_{1}^{\prime}. We proceed as in the proof of Lemma 17 for H_{2} and H_{1} but using Lemma 6 instead of Lemmas 7 and 5. We obtain

$$
H_{2}^{\prime} \ll \Psi(x, y) \varphi\left(q_{y}, \beta\right)^{-1}\left(\log K_{q} / \log y\right) e^{-c_{13} u^{1 / 3}}
$$

and

$$
H_{1}^{\prime} \ll \Psi(x, y) \varphi\left(q_{y}, \beta\right)^{-1}\left(\log K_{q} / \log x\right) .
$$

This provides the desired estimate.
6. Proof of Theorem 1: the case $u>\left(\log _{2} y\right)^{2}$. We shall use the following notations:

$$
\begin{aligned}
\Phi(y, s) & =\log \Pi(y, s), \\
\Phi_{k}(y, s) & =\frac{\partial^{k}}{\partial s^{k}} \Phi(y, s), \quad k \geq 0, \\
\sigma_{k} & =\Phi_{k}(y, \beta), \quad k \geq 0 .
\end{aligned}
$$

We notice that Lemmas $4,8,9,10$ and 13 of [8] remain true if α is replaced by β, where $\alpha=\alpha(x, y)$ is defined by (1.11).

Using a variant of Perron's formula and Lemma 9 of [8] and our Lemma 8
we get

$$
\begin{align*}
& \Psi_{q}(x, y)=\frac{1}{2 \pi i} \int_{\beta-i \bar{T}}^{\beta+i \bar{T}} \frac{x^{s} \Pi(y, s)}{s \varphi\left(q_{y}, s\right)} d s \tag{6.1}\\
& +O\left(x e^{-u \xi(u)+I(\xi(u))}(\log y) \varphi\left(q_{y}, \beta\right)^{-1}\left((\bar{T})^{-1 / 2}+e^{-c_{11} u / \log ^{2}(u+1)}\right)\right)
\end{align*}
$$

where

$$
\bar{T}=\left(Y_{\varepsilon}^{-1}+e^{-c_{11} u / \log ^{2}(u+1)}\right)^{-2} \quad \text { and } \quad Y_{\varepsilon}=\exp \left\{(\log y)^{3 / 2-\varepsilon}\right\} .
$$

Now we suppose that $\omega\left(q_{y}\right) \leq y^{1 / 2}$ (the proof for the case $\omega\left(q_{y}\right) \leq$ $\exp \left\{c_{3} \log y / \log (u+1)\right\}$ is similar). By Lemma 8(ii) of [8], our Lemma 8 and the condition $u>\left(\log _{2} y\right)^{2}$ we further have

$$
\begin{align*}
& \frac{1}{2 \pi i}\left\{\int_{\beta-i \bar{T}}^{\beta-i / \log y}+\int_{\beta+i / \log y}^{\beta+i \bar{T}}\right\} \frac{x^{s} \Pi(y, s)}{s \varphi\left(q_{y}, s\right)} d s \tag{6.2}\\
& \quad \ll x e^{-u \xi(u)} \Pi(y, \beta) \varphi\left(q_{y}, \beta\right)^{-1}\left(\log ^{2} y\right)(\log \bar{T}) e^{-c_{11} u / \log ^{2}(u+1)} \\
& \quad \ll \Psi(x, y) \varphi\left(q_{y}, \beta\right)^{-1} e^{-c_{14} u / \log ^{2}(u+1)} .
\end{align*}
$$

Thus we obtain

$$
\begin{align*}
\Psi_{q}(x, y)= & \frac{1}{2 \pi i} \int_{\beta-i / \log y}^{\beta+i / \log y} \frac{x^{s} \Pi(y, s)}{s \varphi\left(q_{y}, s\right)} d s \tag{6.3}\\
& +O\left(\Psi(x, y) \varphi\left(q_{y}, \beta\right)^{-1}\left(\log ^{-N} x\right)\right) .
\end{align*}
$$

When $q=1$, (6.3) gives

$$
\begin{equation*}
\Psi(x, y)=\frac{1}{2 \pi i} \int_{\beta-i / \log y}^{\beta+i / \log y} \frac{x^{s} \Pi(y, s)}{s} d s+O\left(\Psi(x, y) / \log ^{N} x\right) . \tag{6.4}
\end{equation*}
$$

Write

$$
\begin{equation*}
\bar{H}_{q}(x, y)=\frac{1}{2 \pi i} \int_{\beta-i / \log y}^{\beta+i / \log y} \frac{x^{s} \Pi(y, s)}{s}\left(\varphi\left(q_{y}, s\right)^{-1}-\varphi\left(q_{y}, \beta\right)^{-1}\right) d s . \tag{6.5}
\end{equation*}
$$

We first estimate the contribution of the range $|t| \leq T_{0}$ (recall that $\left.T_{0}=\left(u^{1 / 3} \log y\right)^{-1}\right)$. Expanding the function $\Phi(y, s)$ in a Taylor series around $t=0$, we get

$$
\Phi(y, s)=\sigma_{0}+i t \sigma_{1}-\frac{t^{2}}{2} \sigma_{2}+O\left(t^{3} \sigma_{3}\right) .
$$

We further get

$$
x^{s} \Pi(y, s)=x \Pi(y, \beta) e^{-u \xi(u)-(1 / 2) t^{2} \sigma_{2}}\left\{1+O\left(t\left(\log x+\sigma_{1}\right)\right)+O\left(t^{3} \sigma_{3}\right)\right\} .
$$

By Lemma 13 of [8] we easily get

$$
\log x+\sigma_{1}=O\left(u L(\varepsilon)^{-1}\right)+O(1) .
$$

Thus, Lemma 5 shows that

$$
\begin{aligned}
\frac{x^{s} \Pi(y, s)}{s} & \left(\varphi\left(q_{y}, s\right)^{-1}-\varphi\left(q_{y}, \beta\right)^{-1}\right) \\
= & x e^{-u \xi(u)} \Pi(y, \beta) \varphi\left(q_{y}, \beta\right)^{-1} e^{-(1 / 2) t^{2} \sigma_{2}} \\
& \times\left\{i t A+O\left(t^{2} A_{0}^{2}\right)+O\left(t\left(u L(\varepsilon)^{-1}+1\right) t A_{0}\right)+O\left(t^{3} \sigma_{3} t A_{0}\right)\right\}
\end{aligned}
$$

where A is defined by Lemma 5 and $A \ll \eta^{-1}(u \xi(u))^{1 / 2}\left(\log K_{q} / \log y\right)$. From this and Lemma 4 of [8] we find that the contribution of the range $|t| \leq T_{0}$ is
(6.6) $\ll x e^{-u \xi(u)} \Pi(y, \beta) \varphi\left(q_{y}, \beta\right)^{-1} \frac{1}{\sqrt{u} \log y}\left(\frac{\log K_{q}}{\log (u+1) \log y}+\frac{1}{L(\varepsilon)}\right)$.

It remains to estimate the contribution of the range $T_{0}<|t| \leq 1 / \log y$. By Lemma 8(i) of [8] and Lemma 6, this contribution is

$$
\begin{align*}
& \ll x e^{-u \xi(u)} \Pi(y, \beta) \varphi\left(q_{y}, \beta\right)^{-1} \int_{T_{0}}^{1 / \log y} e^{-c_{14} u(t \log y)^{2}}\left(t A_{0}\right) d t \tag{6.7}\\
& \ll x e^{-u \xi(u)} \Pi(y, \beta) \varphi\left(q_{y}, \beta\right)^{-1} e^{-c_{15} u^{1 / 3}} \frac{\log K_{q}}{(\log y)^{2}} .
\end{align*}
$$

By Theorem 1 of [8] we have

$$
\Psi(x, y) \asymp x e^{-u \xi(u)} \Pi(y, \beta) \frac{1}{\sqrt{u} \log y} .
$$

From this and (6.3)-(6.7), the desired estimate (1.8) is derived in the range considered.
7. Proof of Corollary. The Corollary is an immediate consequence of Theorem 1 and the following lemma.

Lemma 19. For x, y satisfying (1.3) we have uniformly

$$
\begin{equation*}
\Psi(x, y)=x \varrho(u)\left(\frac{-\xi(u) \zeta(\beta)}{\beta \log y}\right)\left(1+O\left(\frac{1}{\log x}\right)\right) . \tag{7.1}
\end{equation*}
$$

Proof. First, consider the case $1 \leq u<u_{0}$. We have

$$
\frac{-\xi(u) \zeta(\beta)}{\beta \log y}=\left(1+O\left(\frac{\log (u+1)}{\log y}\right)\right)=1+O\left(\frac{1}{\log x}\right) .
$$

The estimate (7.1) clearly follows from this and (1.1).

We may therefore suppose $u \geq u_{0}$. From (5.1) and Lemma 16 with $T^{\prime}=1$ and $q=1$, we have

$$
\begin{align*}
\Psi(x, y)= & x Q(u) \xi(u) \frac{1}{2 \pi} \int_{-1}^{1} \frac{e^{i t \log x+w(u,-i t \log y)}}{\beta+i t}(-\zeta(\beta+i t)) d t \tag{7.2}\\
& +O\left(x \varrho(u)\left(e^{-c_{14} u / \log ^{2}(u+1)} \frac{1}{\log x}+\frac{1}{L(\varepsilon)}\right)\right)
\end{align*}
$$

where $Q(u)$ is defined by (5.7).
Write

$$
J(u, b)=\frac{1}{2 \pi} \int_{-b}^{b} \frac{e^{i t \log x+w(u,-i t \log y)}}{\eta-i t} d t .
$$

By Lemma 15(i) with $T=e^{2 u \xi(u)}(\log y)$, we have for $u \geq u_{0}$,
(7.3) $\quad \varrho(u)=Q(u) \xi(u) J(u, T \log y)+O\left(Q(u) e^{-c_{14} u / \log ^{2}(u+1)}(1 / \log x)\right)$.

We divide the range of integration of $J(u, T \log y)$ in (7.3) into the parts: $|t| \leq 1$ and $1<|t| \leq T \log y$. Using integration by parts we see that the contribution of the range $1<|t| \leq T \log y$ is

$$
\ll e^{-c_{14} u / \log ^{2}(u+1)}(1 / \log x) .
$$

Thus, we further obtain

$$
\begin{equation*}
\varrho(u)=Q(u) \xi(u) J(u, 1)+O\left(Q(u) e^{-c_{14} u / \log ^{2}(u+1)} \frac{1}{\log x}\right) . \tag{7.4}
\end{equation*}
$$

To finish the proof of the lemma, it therefore suffices to show that

$$
\begin{equation*}
W:=\int_{-1}^{1} e^{i t \log x+w(u,-i t \log y)} F(t) d t \ll \frac{1}{\sqrt{u} \log y} \cdot \frac{1}{\log x}, \tag{7.5}
\end{equation*}
$$

where

$$
F(t)=\frac{\zeta(\beta+i t)}{\zeta(\beta)\left(1+i t \beta^{-1}\right)}-\frac{\eta}{\eta-i t} .
$$

We divide the range of integration in (7.5) into the three parts: $|t| \leq T_{0}$, $T_{0}<|t| \leq 1 / \log y$ and $1 / \log y \leq|t| \leq 1$. The corresponding integrals are denoted by W_{1}, W_{2} and W_{3}.

For $|t| \leq 1$ we have

$$
\begin{gather*}
F(t)=\frac{\eta}{\eta-i t}(1+O(|\eta-i t|)+O(\eta)+O(t))-\frac{\eta}{\eta-i t}=O(\eta), \tag{7.6}\\
F^{\prime}(t)=O(1) \quad \text { and } \quad F^{\prime \prime}(t)=O(1 / \eta) .
\end{gather*}
$$

From this, Lemma 2 and using integration by parts twice we get

$$
\begin{equation*}
W_{3} \ll e^{-c_{14} u / \log ^{2}(u+1)}\left(1 / \log ^{2} x\right) . \tag{7.7}
\end{equation*}
$$

By Lemma 3 and (7.6) we have

$$
\begin{equation*}
W_{2} \ll e^{-c_{15} u^{1 / 3}}\left(1 / \log ^{2} x\right) . \tag{7.8}
\end{equation*}
$$

To estimate W_{1}, we expand $F(t)$ in a Taylor series around $t=0$, to get

$$
F(t)=F^{\prime}(0)(i t)+O\left(t^{2} / \eta\right),
$$

where

$$
F^{\prime}(0)=\frac{\zeta^{\prime}(\beta)}{\zeta(\beta)}-\frac{1}{\beta}-\frac{1}{\eta} \ll 1 .
$$

From this and (5.29) we obtain

$$
\begin{align*}
W_{1}= & \frac{1}{2 \pi} \int_{-T_{0}}^{T_{0}} e^{-(1 / 2) w_{2}(u)(t \log y)^{2}} \tag{7.9}\\
& \times\left\{F^{\prime}(0)(i t)+O\left(t^{2} / \eta\right)+O\left(u t^{4} \log ^{3} y\right)\right\} d t \\
< & \frac{1}{\sqrt{u} \log y} \cdot \frac{1}{u \log y} .
\end{align*}
$$

The desired estimate (7.5) now follows on collecting these estimates.
This completes the proof of Lemma 19.

References

[1] N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors $>y$, Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), 50-60.
[2] -, The asymptotic behavior of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15 (1951), 25-32.
[3] H. G. Diamond and H. Halberstam, The combinatorial sieve, in: Number Theory, Proc. 4th Matsci. Conf. Ootacamund/India 1984, Lecture Notes in Math. 1122, Springer, 1985, 63-73.
[4] E. Fouvry et G. Tenenbaum, Entiers sans grand facteur premier en progressions arithmétiques, Proc. London Math. Soc. (3) 63 (1991), 449-494.
[5] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
[6] D. G. Hazlewood, Sums over positive integers with few prime factors, J. Number Theory 7 (1975), 189-207.
[7] A. Hildebrand, On the number of positive integers $\leq x$ and free of prime factors $>y$, ibid. 22 (1986), 289-307.
[8] A. Hildebrand and G. Tenenbaum, On integers free of large prime factors, Trans. Amer. Math. Soc. 296 (1986), 265-290.
[9] K. K. Norton, Numbers with small prime factors and the least k-th power non residue, Mem. Amer. Math. Soc. 106 (1971).
[10] H. E. Richert, Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen $\sigma=1$, Math. Ann. 169 (1967), 97-101.
[11] E. Saias, Sur le nombre des entiers sans grand facteur premier, J. Number Theory 32 (1989), 78-99.
[12] G. Tenenbaum, Cribler les entiers sans grand facteur premier, Philos. Trans. Roy. Soc. London Ser. A 345 (1993), 377-384.
[13] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. revised by D. R. Heath-Brown, Oxford, 1986.
[14] A. I. Vinogradov, On numbers with small prime divisors, Dokl. Akad. Nauk SSSR (N.S.) 109 (1956), 683-686 (in Russian).

DEPARTMENT OF MATHEMATICS
BEIJING NORMAL UNIVERSITY
BEIJING 100875
PEOPLE'S REPUBLIC OF CHINA

Received on 2.7.1991
and in revised form on 30.11.1993

[^0]: Project supported by the National Natural Science Foundation of People's Republic of China.

