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1. Introduction. Let P (n) denote the largest prime factor of an integer
n > 1, and P (1) = 1. For real numbers x, y ≥ 2, let S(x, y) = {n : 1 ≤ n
≤ x, P (n) ≤ y} and u = log x/ log y. Also, let

Ψ(x, y) =
∑

n∈S(x,y)

1 and Ψq(x, y) =
∑

n∈S(x,y)
(n,q)=1

1.

Estimates for the function Ψ(x, y) are needed in various problems in num-
ber theory and the study of the function has been the object of numerous
articles. Thus de Bruijn in [1] established the quantitative estimate

(1.1) Ψ(x, y) = x%(u)
(

1 + O

(
log(u + 1)

log y

))
,

for the range x ≥ 3, exp{(log x)5/8+ε} ≤ y ≤ x, where ε is any fixed
positive number, and %(u), the Dickman–de Bruijn function, is defined as
the continuous solution of the system

%(u) = 1, 0 ≤ u ≤ 1,

u%′(u) = −%(u− 1), u > 1.

Recently Hildebrand [7] showed that the asymptotic formula (1.1) remains
valid in the range

(1.2) x ≥ 3, exp{(log2 x)5/3+ε} ≤ y ≤ x,

where log2 x = log log x. More recently Hildebrand and Tenenbaum [8]
obtained an asymptotic formula for Ψ(x, y) in the range x ≥ y ≥ 2.

The asymptotic behaviour for Ψq(x, y) has been studied by several au-
thors, including Norton [9], Hazlewood [6], Fouvry and Tenenbaum [4].
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Thus, it was shown in [4] that uniformly for

(1.3) x ≥ x0(ε), exp{(log2 x)5/3+ε} ≤ y ≤ x,

and

log2(q + 2) ≤
{

log y

log(u + 1)

}1−ε

,

we have the estimate

(1.4) Ψq(x, y) =
ϕ(q)

q
Ψ(x, y)

(
1 + O

(
log2(qy) log2 x

log y

))
,

where ϕ(q) is Euler’s function.
We improved the above result (unpublished) by showing that

Ψq(x, y) =
ϕ(q)

q
Ψ(x, y)

{
1 + O

(
log(ω(q) + 3) log(u + 1)

log y

)}
holds uniformly in the range

x ≥ x0, exp{c1 log x log3 x/ log2 x} ≤ y ≤ x

and
ω(q) ≤ exp{c2 log x/ log2 x},

where ω(n) denotes the number of distinct prime divisors of n.
Very recently Tenenbaum [12] improved the above result; he showed the

following result:
Let c be an arbitrary positive constant. Under the conditions

P (q) ≤ y ≤ x, ω(q) ≤ yc/ log(u+1),

we have uniformly

(1.5) Ψq(x, y) =
ϕ(q)

q
Ψ(x, y)

(
1 + O

(
log(u + 1) log(ω(q) + 3)

log y

))
.

The proof of the last assertion used a result in sieve theory. (For all
relevant literature on the functions Ψ(x, y) and Ψq(x, y), see [9] and [4].)

The purpose of this paper is to estimate Ψq(x, y) in a wider range in q.
Let qy denote the product of the prime divisors of q that are ≤ y. For

u > 1, let ξ = ξ(u) be the unique positive solution of eξ = uξ + 1, and
ξ(1) = 0, so that asymptotically

ξ(u) = log u + log2 u + O(1).

Put β = β(x, y) = 1 − ξ(u)/ log y. Finally, let c0, c1, c2, . . . denote positive
absolute constants.

We now state our main result.

Theorem 1. For

x ≥ x0(ε), (log x)1+ε ≤ y ≤ x,(1.6)
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ω(qy) ≤ y1/2,(1.7)

we have uniformly

(1.8) Ψq(x, y) =
∏

p|q, p≤y

(1− p−β)Ψ(x, y)
{

1 + O

(
log(ω(qy) + 3)
log(u + 1) log y

)

+ O(exp(−(log y)3/5−ε))
}

.

Moreover , if

(1.9) ω(qy) ≤ exp{c3 log y/ log(u + 1)},
then the first error term in the right-hand side of (1.8) may be replaced by
O(log(ω(qy) + 3)/ log x).

From Theorem 1 we shall deduce the following corollary:

Corollary. For x, y satisfying (1.3) and ω(qy) ≤ y1/2, we have uni-
formly

Ψq(x, y) =
∏

p|q, p≤y

(
1− 1

pβ

)
x%(u)

(
−ξ(u)ζ(β)

β log y

)

×
{

1 + O

(
log(ω(qy) + 3)
log y log(u + 1)

)}
.

R e m a r k. From Theorem 1 we know that (1.5) in the ranges (1.6) and
(1.9) is a consequence of (1.8) and Lemma 10 below.

2. Estimates for Π(y, s). We write the complex variable s in the form
s = σ + it with real σ and t. Let

Π(y, s) =
∏
p≤y

(1− p−s)−1, y = [y] + 1/2,

σ(t) = log2/3(|t|+ 2) log1/3
2 (|t|+ 3),

and let ζ(s) be the Riemann zeta-function.

Lemma 1. There is an absolute constant c4 > 0 such that :

(i) In the region σ ≥ 1− c4/σ(t), ζ(s) 6= 0.
(ii) In the region |t| ≥ 1, σ ≥ 1− c4/σ(t),

ζ(s) � log2/3(|t|+ 2) log1/3
2 (|t|+ 3).

(iii) In the region |t| ≥ 1, σ ≥ 1− c4/2σ(t),

log ζ(s) � log2/3(|t|+ 2) log1/3
2 (|t|+ 3).

P r o o f. By Richert [10], we have for 0 ≤ σ ≤ 2, t ≥ 2,

ζ(s) � (1 + t100(1−σ)3/2
)(log t)2/3.
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From this and applying Theorems 3.10 and 3.11 of Titchmarsh [13] with
φ(t) = 302

3 log2 t, θ(t) = (log2 t)2/3/(log t)2/3, the lemma follows.

To show Theorem 1 and Corollary, we shall need the estimate for the
quantity Π(y, s). Saias [11] proved that the estimate

Π(y, s) = log y exp
{

γ +
(1−s) log y∫

0

ev − 1
v

dv

}
(2.1)

× (s− 1)ζ(s)
{

1 + Oε

(
1

L(ε)

)}
holds uniformly in the range

y ≥ 2, max(1− (log y)−2/5−ε, 3/4) ≤ σ ≤ 2, |t| ≤ L(ε),

where ε is any fixed positive number and

(2.2) L(ε) = exp{(log y)3/5−ε}.
From this we also have

Π(y, β + it) = exp{γ + I(ξ(u)) + w(u,−it log y)}(2.3)
× (−ξ(u)ζ(β + it))(1 + Oε(L(ε)−1)),

where

(2.4) I(z) =
z∫

0

ev − 1
v

dv,

and

(2.5) w(u, z) =
z∫

0

eξ(u)+v

ξ(u) + v
dv.

In [8], Hildebrand and Tenenbaum have given an upper estimate for
Π(y, s), but insufficient for our purposes. The following lemma gives a
stronger upper bound for Π(y, β + it). The method of proof is based on the
method of Vinogradov [14].

Lemma 2. For 2 ≤ u ≤ L(ε) and t ≥ 1/ log y we have uniformly

(2.6) |ew(u,−it log y)| � exp
{
− (1/10)ut2

(1− β)2 + t2

}
.

P r o o f. Let us set η = 1 − β = ξ(u)/ log y and a(t) = a(t, u, y) =
Re w(u,−it log y). Then

a(t) = eξ(u)
t log y∫
0

x cos x− ξ(u) sinx

ξ2(u) + x2
dx.
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We first consider the case u ≥ u0 (u0 sufficiently large). Using integration
by parts we obtain

a(t) = eξ(u)

{
t log y sin(t log y) + ξ(u) cos(t log y)

ξ2(u) + (t log y)2
(2.7)

− 1
ξ(u)

+ O

(
t2

(η2 + t2)ξ2(u)

)
+ 2

t log y∫
0

x2 sinx + (1 + ξ(u))x cos x

(ξ2(u) + x2)2
dx

}
.

Again using integration by parts we deduce that the last integral on the
right-hand side of (2.7) is

(2.8) ≤ 2ξ(u)(t log y) sin(t log y)
(ξ2(u) + (t log y)2)2

+ O

(
t2

(t2 + η2)ξ2(u)

)
.

Put tan θ = t/η. Then from (2.7) and (2.8) we get

a(t) ≤ eξ(u)

{
η√

η2 + t2ξ(u)
cos(t log y − θ)− 1

ξ(u)
(2.9)

+
2ξ(u)(t log y) sin(t log y)

(ξ2(u) + (t log y)2)2
+ O

(
t2

(η2 + t2)ξ2(u)

)}
.

If t > η, from (2.9) we obtain

a(t) ≤ eξ(u)

{
− 1

2
· t2

(η2 + t2)ξ(u)
+ O

(
1

ξ2(u)

)}
≤ − (1/10)ut2

(η2 + t2)
.

If 6/ log y < t ≤ η, we have sin(t log y) ≤ 1 ≤ (t log y)/6. Hence, from
(2.9) we have

a(t) ≤ eξ(u)

{
− 1

3
· t2

(η2 + t2)ξ(u)
+

1
π
· t2

(η2 + t2)ξ(u)
+ O

(
t2

(η2 + t2)ξ2(u)

)}
≤ − (1/10)ut2

η2 + t2
.

If π/ log y < t ≤ 6/ log y, then sin(t log y) ≤ 0. From this and (2.9), the
desired estimate (2.7) is derived at once.

Finally, if 1/ log y ≤ t ≤ π/ log y, then cos(t log y − θ) ≤ cos(π/4) =
1/
√

2. From (2.9) we get

a(t) ≤ eξ(u)

{
− η2

3(η2 + t2)
+ O

(
t2

(η2 + t2)ξ(u)

)}
≤ − (1/10)ut2

η2 + t2
.

Thus (2.6) is proved in the case u ≥ u0.
In the case 2 ≤ u ≤ u0, we have to show that a(t) � 1, which follows

easily from (2.9).
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This completes the proof of Lemma 2.

Lemma 3. For 2 ≤ u ≤ L(ε) and 0 ≤ t ≤ 1/ log y we have uniformly

a(t) ≤ −c0u(t log y)2,

where c0 is a sufficiently small positive number.

P r o o f. It suffices to show

F (t) := a(t) + c0e
ξ(u)

(
ξ(u)t2

η2

)
≤ 0.

By definition of a(t) and the condition 0 ≤ t log y ≤ 1, we have

F ′(t) ≤ eξ(u) t

η2

(
1− (5/6)ξ(u)

1 + t2/η2
+ 2c0ξ(u)

)
.

From this and noting that 1 + t2/η2 ≤ 1 + ξ−2(u), ξ(u) ≥ ξ(2) > 1.25 and
c0 has been chosen sufficiently small, we obtain F ′(t) < 0 for t > 0. This
provides the required inequality.

Lemma 4. For 2 ≤ u ≤ L(ε) and |t| ≤ 1/ log y we have uniformly

w(u,−it log y)

= −eξ(u)

(
it

η

)
− eξ(u)

(
ξ2(u)− 2ξ(u) + 2

η2

)
t2

2!
+ O(u(t log y)3).

P r o o f. Write
∂n

∂zn
w(u, z)

∣∣∣∣
z=0

= wn(u).

By the definition of w(u, z), we have w0(u) = 0, w1(u) = eξ(u)ξ−1(u),
w2(u) = −eξ(u)(ξ(u) − 1)ξ−2(u), and (∂3/∂z3)w(u, z) � u. From this and
Taylor’s theorem, the lemma is derived at once.

R e m a r k. From Lemmas 1, 2 and formula (2.3) we have for 1/ log y ≤
|t| ≤ L(ε), and 2 ≤ u ≤ L(ε)

|Π(y, β + it)| � exp{I(ξ(u))− c10ut2/((1− β)2 + t2)}
× {(log(|t|+ 2))2/3(log2(|t|+ 3))1/3 + 1/t}.

This improves on a result of [8].

3. Estimates for ϕ(qy, s)−1. Let

ϕ(qy, s) =
∏

p|q, p≤y

(1− p−s)−1.

If ω(qy) ≥ 2, we choose Kq so that π(Kq) = ω(qy), where π(x) denotes the
number of primes not exceeding x. If ω(qy) ≤ 1, we put Kq = e. Hence, we
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have
log Kq � log(ω(qy) + 3).

We need some estimates for ϕ(qy, s)−1.

Lemma 5. For u ≥ 2, |t| ≤ (u1/3 log y)−1, and ω(qy) ≤ y1/2, we have
uniformly

(3.1) ϕ(qy, β + it)−1 = ϕ(qy, β)−1(1 + itA + O(t2A2
0)),

where A = A(qy, β) is a real-valued function, and

A � η−1(uξ(u))1/2(log Kq/ log y) =: A0.

P r o o f. We have
ϕ(qy, β + it)−1

ϕ(qy, β)−1
= eitA+O(t2B), say,

where

A :=
∑

p|q, p≤y

∞∑
m=1

log p

pmβ
, B :=

∑
p|q, p≤y

∞∑
m=1

m log2 p

pmβ
.

We first estimate the quantity A. If exp{c3 log y/ log(u+1)} ≤ ω(qy) ≤ y1/2,
by partial summation and the prime number theorem we obtain

A �
∑

p≤Kq

log p

pβ
=

Kq∫
2

log z

zβ
dπ(z) � eη log Kq +

Kq∫
2

dz

zβ
(3.2)

� η−1eη log Kq � η−1(uξ(u))1/2(log Kq/ log y).

This provides the desired estimate.
If ω(qy) ≤ exp{c3 log y/ log(u + 1)}, we have

(3.3) A �
∑

p≤Kq

log p

pβ
�

∑
p≤Kq

log p

p
� log Kq.

This provides a stronger estimate than the assertion of the lemma.
Similarly,

B �
∑

p≤Kq

log2 p

pβ
�

Kq∫
2

log z

zβ
dz + eη log Kq log Kq(3.4)

� η−1 log Kqe
η log Kq � η−1 log y(uξ(u))1/2,

since t2B � 1, for |t| ≤ (u1/3 log y)−1, so we have

eitA+O(t2B) = 1 + itA + O(t2A2
0).

This completes the proof of Lemma 5.
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Lemma 6. For u ≥ 2, |t| ≤ 1/ log Kq, and ω(qy) ≤ exp{c3 log y/ log(u +
1)}, we have uniformly

(i) ϕ(qy, β + it)−1 = ϕ(qy, β)−1(1 + itA1 + O(t2 log2 Kq)), where A1 =
A1(qy, β) is a real-valued function, and A1 � log Kq.

(ii) ∂
∂tϕ(qy, β + it)−1 � ϕ(qy, β)−1 log Kq.

(iii) ∂2

∂t2 ϕ(qy, β + it)−1 � ϕ(qy, β)−1 log2 Kq.

P r o o f. It is similar to the proof of Lemma 5.

Lemma 7. For u ≥ 2, |t| ≤ 1/ log y, and ω(qy) ≤ y1/2, we have uniformly

ϕ(qy, β + it)−1 � ϕ(qy, β)−1 exp{O(u1/2(t log y)2)}.
P r o o f. We have∣∣∣∣ϕ(qy, β + it)−1

ϕ(qy, β)−1

∣∣∣∣ � exp
{

O

(
t2

∑
p≤Kq

log2 p

pβ

)}
� exp{O(u1/2(t log y)2)}

as wanted.

Lemma 8. (i) If u ≥ 2 and ω(qy) ≤ y1/2, then we have uniformly

ϕ(qy, β + it)−1 � ϕ(qy, β)−1(log2 y)eO(
√

u).

(ii) If u ≥ 2 and ω(qy) ≤ exp{c3 log y/ log(u + 1)}, then we have uni-
formly

ϕ(qy, β + it)−1 � ϕ(qy, β)−1 log2 Kq.

P r o o f. We have

ϕ(qy, β + it)−1 � exp
{ ∑

p≤Kq

1
pβ

}
.

In the case (i), by partial summation and the prime number theorem we
obtain ∑

p≤Kq

1
pβ

≤ log
1

1− β
+ O(u1/2),

hence
ϕ(qy, β + it)−1 � (log y)eO(

√
u).

Similarly
ϕ(qy, β) � (log y)eO(

√
u).

These provide the desired estimate.
In the case (ii), we have∑

p≤Kq

1
pβ

=
∑

p≤Kq

1
p
(1 + O((1− β) log p)) = log log Kq + O(1).
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Hence
ϕ(qy, β + it)−1 � log Kq.

Also
ϕ(qy, β) � log Kq.

These provide the assertion.
This completes the proof of Lemma 8.

Lemma 9. For u ≥ 2 and ω(qy) ≤ y1/2, we have uniformly

ϕ(qy)/qy � ϕ(qy, β)−1eO(
√

u).

P r o o f. We have
ϕ(qy)

qy
· 1
ϕ(qy, β)−1

� eΣ ,

where

Σ =
∑

p|q, p≤y

(
1
pβ
− 1

p

)
.

By partial summation and the prime number theorem we obtain

Σ �
Kq∫
2

eη log z − 1
z

· dz

log z

=
1∫

η log 2

ew − 1
w

dw +
η log Kq∫

1

ew − 1
w

dw �
√

u.

This provides the desired estimate.

Lemma 10. If ω(qy) ≤ exp{c3 log y/ log(u+1)}, then we have uniformly

ϕ(qy, β)−1 =
ϕ(qy)

qy

(
1 + O

(
log(u + 1) log Kq

log y

))
.

P r o o f. By the same argument as in [8, p. 289], we obtain

0 <
∏

p|q, p≤y

(
log

(
1− 1

p

)
− log

(
1− 1

pβ

))

≤
1∫

β

d

dσ

{ ∑
p≤Kq

log
(

1− 1
pσ

)}
dσ

=
(

1 + O

(
1

log y

)) η log Kq∫
0

es − 1
s

ds + O(η) � η log Kq.

From this, Lemma 10 follows.
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4. Application of the sieve methods. Let

(4.1) Nq(x) =
∑

n≤x, (n,q)=1

1 = x

{
ϕ(q)

q
+ Rq(x)

}
.

In this section we first give two lemmas on Nq(x), which are obtained by the
fundamental lemma of the sieve. Then we apply these results to estimate
the integrals

IA =
u−2∫

−∞
|Rq(yv)|evξ(u) dv, IB =

∞∫
u−2

|Rq(yv)|evξ(u) dv.

Lemma 11. If q ≥ 1, P (q) ≤ X and r = log X/ log(ω(q) + 3) ≥ 2, then
we have uniformly

(4.2) Nq(X) = X
ϕ(q)

q
{1 + O(e−(3/5)r log r) + O(e−(1/2)

√
log X)}.

P r o o f. This is a simple modification of Tenenbaum’s argument in [12].
We apply the fundamental lemma in the form given in [5, Ch. 4, Section 8].
For any z ≤ X and s = log X/ log z we have

(4.3) Nqz
(X) = X

ϕ(q)
q
{1 + O(e−s log s+s log2 3s+2s) + O(e−

√
log X)},

where qz =
∏

p|q,p≤z p. We may assume that X is a sufficiently large pos-
itive number, the result being trivial otherwise. We select z = (ω(q) +
exp

√
log X)3/2. This implies z ≤ X, since r ≥ 2. We also have

ϕ(qy)
qy

=
ϕ(q)

q

{
1 + O

((
1− 1

z

)−ω(q)

− 1
)}

(4.4)

=
ϕ(q)

q
{1 + O(e−(1/2)

√
log X)}.

By (4.3) and (4.4) we obtain

Nqz
(X) = X

ϕ(q)
q
{1 + O(e−(3/5)r log r) + O(e−(1/2)

√
log X)}.

Thus, to finish the proof of the lemma, it suffices to show

Nqz (X)−Nq(X) � Xe−(1/2)
√

log X .

The left-hand side equals∑
d|q/qz, d>1

µ(d)Nqz
(X/d) � X

∑
d|q/qz, d>1

µ2(d)/d.

From this, the above estimate is derived at once.
This completes the proof of the lemma.
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Lemma 12. For P (q) ≤ y and v ≥ 2, we have uniformly

(4.5) Nq(yv) = yv ϕ(q)
q
{1 + O(e−(1/5)v log v) + O(e−(1/2)v log y)}.

P r o o f. We apply the fundamental lemma in the form given in [3]. For
any z and s ≥ 1 we have

Nqz
(X) = X(ϕ(qz)/qz){1 + O(s−s/2)}+ O(zs).

Now, upon selecting X = yv, z = y, and s = log
√

X/ log z = v/2, the result
is derived at once.

Next apply Lemma 11 to estimate IA.

Lemma 13. If u0 ≤ u ≤ (log2 y)2, then

(4.6) IA �
ϕ(q)

q
· log(ω(q) + 3)

log y
exp{u20/21}.

P r o o f. Let v0 = 2 log(ω(q) + 3)/ log y. We write IA = IA1 + IA2, where
IA1 corresponds to the integration range −∞ < v ≤ v0; we have

IA1 � ev0ξ(u)
v0∫

0

(
Nq(yv)

yv
+

ϕ(q)
q

)
dv

� u log(u + 1)
{

1
log y

∑
n≤yv0 , (n,q)=1

1
n

+ v0
ϕ(q)

q

}
.

The sum over n is

�
∏

p≤yv, p - q

(
1 +

1
p

)
� v0 log y

∏
p|q, p≤yv

(
1− 1

p

)
� v0(log y)(ϕ(q)/q).

Hence

IA1 � (u2)
ϕ(q)

q
· log(ω(q) + 3)

log y
.

This is acceptable.
For IA2, applying Lemma 11 we have

Rq(yv) � exp
{
− 11

10
v log v − 1

20
· log y

log(ω(q) + 3)

}
ϕ(q)

q

+ exp
{
− 1

3
v log y

}
ϕ(q)

q
.

So for u ≤ (log2 y)2 we obtain

IA2 �
ϕ(q)

q
· log(ω(q) + 3)

log y

u−2∫
v0

e−(11/10)v log v+vξ(u) dv.



314 T. Z. Xuan

If v > u19/20, then (11/10) log v ≥ (26/25)ξ(u). Hence the last integral
is � exp{u20/21}. The desired result (4.6) now follows on collecting these
estimates.

Lemma 14. If u0 ≤ u ≤ (log2 y)2, then

(4.7) IB � ϕ(q)
q

· log(ω(q) + 3)
log y

e−u/6.

P r o o f. For u− 2 ≤ v ≤ log y/(log3 y)3, it is easily seen that

e−(1/2)
√

log yv � e−2vξ(u)(log y)−2.

Thus from Lemma 11 we deduce that

(4.8) |Rq(yv)| � ϕ(q)
q

· log(ω(q) + 3)
log y

e−(1.05)vξ(u).

If v > log y/(log3 y)3, applying Lemma 12 yields

|Rq(yv)| � ϕ(q)
q
{e−(1/5)v log v + e−(1/3)v log y}(4.9)

� ϕ(q)
q

· log(ω(q) + 3)
log y

e−2vξ(u).

Now (4.7) follows from the above two estimates.

5. Proof of Theorem 1: the case u ≤ (log2 y)2. Let

Λq(x, y) =
{

x
∫∞
−∞ %(u− v) dRq(yv), x ∈ R \ Z+,

Λq(x + 0, y), x ∈ Z+.

Recall that π(Kq) = ω(qy) for ω(qy) ≥ 2 and Kq = e for ω(qy) ≤ 1. By
formulas (5.4), (5.5) and (5.8) of [4] we have

Ψq(x, y) = Λq(x, y) + O
(
L(ε/2)−1Ψ(x, y)

∏
p≤Kq

(1 + p−β+c/ log y)
)
,

where L(ε) is defined by (2.2).
It is easily seen that the product over p ≤ Kq is � exp{(log2 y)3}. So

we obtain

(5.1) Ψq(x, y) = Λq(x, y) + O(Ψ(x, y)L(ε)−1).

We give the main steps of the proof of Theorem 1 in the form of four
lemmas.

Lemma 15. (i) For u ≥ 2 and T ≥ eξ(u) we have uniformly

(5.2) %(u) = eγ−uξ(u)+I(ξ(u))J(u) + O(1/T ),
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where

(5.3) J(u) =
1
2π

T∫
−T

eitu+w(u,−it)

1− it/ξ(u)
dt,

and where I(z), w(u, z) are defined by (2.4), (2.5), respectively.
(ii) For u ≥ 2, 0 ≤ v ≤ u− 2 and T ≥ eξ(u) we have uniformly

(5.4) %(u− v) = eγ−uξ(u)+I(ξ(u))evξ(u)K(u, v) + O(1/T ),

where

(5.5) K(u, v) =
1
2π

T∫
−T

eit(u−v)+w(u,−it)

1− it/ξ(u)
dt.

Write

(5.6) Iq(x, y) =
1
2π

T ′∫
−T ′

eit log x+w(u,−it log y)

(β + it)ϕ(qy, β + it)
(−ζ(β + it)) dt

and

(5.7) Q(u) = eγ−uξ(u)+I(ξ(u)).

Lemma 16. For u0 ≤ u ≤ (log2 y)2, ω(qy) ≤ y1/2 and 1/ log y ≤ T ′ ≤ 1
we have uniformly

Λq(x, y) = xQ(u)ξ(u)Iq(x, y)(5.8)

+ O

(
Ψ(x, y)ϕ(qy, β)−1e−c11u/ log2(u+1)

×
(

log(ω(qy) + 3)
log y

+
1

T ′ log y

))
.

Write

H(j)
q (x, y) = xQ(u)ξ(u)

1
2π

Tj∫
−Tj

eit log x+w(u,−it log y)

β + it
(5.9)

×
(
−ζ(β + it)

ϕ(qy, β + it)
− −ζ(β + it)

ϕ(qy, β)

)
dt (j = 1, 2),

where T1 = 1/ log y, T2 = 1/ log Kq.

Lemma 17. For x, y satisfying (1.3), u ≥ u0 and exp{c3 log y/ log(u +
1)} ≤ ω(qy) ≤ y1/2 we have uniformly

(5.10) H(1)
q (x, y) � Ψ(x, y)ϕ(qy, β)−1(log Kq/(log y log(u + 1))).

Lemma 18. For x, y satisfying (1.3), ω(qy) ≤ exp{c3 log y/ log(u + 1)}
and u ≥ u0 we have uniformly

(5.11) H(2)
q (x, y) � Ψ(x, y)ϕ(qy, β)−1(log Kq/ log x).
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In the case u0 ≤ u ≤ (log2 y)2, where u0 is a sufficiently large absolute
constant, Theorem 1 follows easily from these lemmas and (5.1). In fact, by
Lemma 16 with T ′ = 1/ log y and (5.1) we have

Ψq(x, y) = xQ(u)ξ(u)
1
2π

1/ log y∫
−1/ log y

eit log x+w(u,−it log y)

(β + it)ϕ(qy, β + it)
(−ζ(β + it)) dt

+ O(Ψ(x, y)ϕ(qy, β)−1e−c11u/ log2(u+1)).

When q = 1, the last formula remains true. From this and Lemma 17, the
desired estimate (1.7) is derived, when we assume exp{c3 log y/ log(u+1)} ≤
ω(qy) ≤ y1/2.

If ω(qy) ≤ exp{c3 log y/ log(u + 1)}, (1.7) is proved similarly.
If 1 ≤ u < u0, the assertion of Theorem 1 becomes, by Lemma 10,

(5.12) Ψq(x, y) =
ϕ(qy)

qy
Ψ(x, y)

(
1 + O

(
log(ω(qy) + 3)

log y

))
.

We first dispose of the case y1/C < ω(qy) ≤ y1/2, where C is sufficiently
large absolute constant. The desired estimate (5.12) follows from

Ψq(x, x) ≤ 7(ϕ(q)/q)x

(see, for example, [5, p. 104]).
We may therefore suppose ω(qy) ≤ y1/C . By the definition of Λ(x, y) we

have for x 6∈ Z+,

Λq(x, y) = x
u∫

−∞
%(u− v) dRq(yv)

= x%(u− v)Rq(yv)|u−∞ + x
u−1∫

−∞
Rq(yv)%′(u− v) dv.

By Lemma 11 the first term of the right-hand side equals

x%(u)(ϕ(qy)/qy)(1 + O(log(ω(qy) + 3)/ log y)).

By Lemma 11 we also deduce that, in the same way as in the proof of
Lemma 13, the second term is

� x%(u)(ϕ(qy)/qy)(log(ω(qy) + 3)/ log y).

By the above estimates and (5.1), (5.12) is proved for the case considered.

P r o o f o f L e m m a 15. By (1.9) of [2] we have

%(u) =
1

2πi

i∞∫
−i∞

eγ−uz+I(z) dz (u ≥ 1).
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From this and (3.3) and (3.4) of [2] we obtain for T ≥ 1, u ≥ 1,

%(u) =
1

2πi

iT∫
−iT

eγ−uz+I(z) dz + O(1/T ).

Also,

Re I(iT ) =
T∫

0

cos t− 1
t

dt = − log T + O(1)

and

I(σ + iT )− I(iT ) � 1
T

ξ(u)∫
0

ex dx � 1,

if T ≥ eξ(u) and 0 ≤ σ ≤ ξ(u). So we have

%(u) = eγ−uξ(u)+I(ξ(u))J(u) + O(1/T ),

where

J(u) =
1
2π

T∫
−T

eitu+I(ξ(u)−it)−I(ξ(u)) dt.

Obviously,

I(ξ(u)− it)− I(ξ(u)) =
−it∫
0

eξ(u)+w

ξ(u) + w
dw + log

(
ξ(u)

ξ(u)− it

)
.

From this and the definition of w(u, z) we have J(u)=J(u), which proves (i).
The proof of (ii) is similar.

P r o o f o f L e m m a 16. Write T ∗ = T ′ log y and

(5.13) K(u, v) =
T∗∫

−T∗

+
∫

T∗≤|t|≤T

= K1(u, v) + K2(u, v), say.

By the definition of Λq(x, y) we have for x 6∈ Z+,

Λq(x, y) = xQ(u)
u−2∫

−∞
evξ(u)K1(u, v) dRq(yv)(5.14)

+ xQ(u)
u−2∫

−∞
evξ(u)K2(u, v) dRq(yv)

+ x
u∫

u−2

%(u− v) dRq(yv) + O

(
x

T

u−2∫
−∞

|dRq(yv)|
)

= G1 + G2 + G3 + O(G4), say.
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We first estimate G2. Changing the order of integration and using inte-
gration by parts we get

(5.15) G2 = xQ(u)
{

ϕ(q)
q

J1(u) + e(u−2)ξ(u)Rq(yu−2)J1(2)− J2

}
,

where

J1(b) =
1
2π

∫
T∗<|t|≤T

eitb+w(u,−it)

1− it/ξ(u)
dt (2 ≤ b ≤ u)

and

J2 =
1
2π

∫
T∗<|t|≤T

eitu+w(u,−it)ξ(u)
{ u−2∫
−∞

Rq(yv)ev(ξ(u)−it) dv
}

dt.

By using integration by parts again we further obtain

J1(b) �
∣∣∣∣ew(u,−it)

t

∣∣∣∣
t=T∗

+
T∫

T∗

|ew(u,−it)|u2

t2
dt(5.16)

� e−c11u/ log2(u+1)(T ∗)−1.

For J2, changing the order of integration, then using integration by parts
twice we see that the inner integral is

� e−c11u/ log2(u+1) + eξ(u)ξ(u)
∣∣∣∣ T∫

T∗

ew(u,−it)eit(u−v−1) dt

ξ(u)− it

∣∣∣∣
� e−c11u/ log2(u+1).

From this, and Lemmas 13 and 9, we get

J2 � e−c11u/ log2(u+2)
u−2∫
0

|Rq(yv)|evξ(u) dv(5.17)

� ϕ(qy, β)−1(log Kq/ log y)e−c12u/ log2(u+1).

Combining (5.15)–(5.17) with (4.8) and using Lemma 9 we obtain

(5.18) G2 � Ψ(x, y)ϕ(qy, β)−1e−c12u/ log2(u+1)

×
(

1
T ∗

+
log Kq

log y

)
=: E1, say.

Also, by Lemmas 13 and 9 we easily get

(5.19) G3 � E1.

Now we turn to estimating G4 in (5.14). We have

G4 �
x

T

∑
m≤yu, (m,q)=1

1
m

(5.20)
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� x

T

∏
p≤yu

(
1 +

1
p

) ∏
p≤yu, p|q

(
1 +

1
p

)−1

� xT−1(u log y)(ϕ(qy)/qy) � E1

if T = e2uξ(u)(log2 y). Combining the above estimates yields

(5.21) Ψq(x, y) = G1 + O(E1).

To finish the proof of the lemma, it remains to estimate G1. Changing
the order of integration (with t replaced by t log y) we have

G1 = xQ(u)ξ(u)
1
2π

T ′∫
−T ′

eit log x+w(u,−it log y)

η − it
(5.22)

×
{ u−2∫
−∞

ev(ξ(u)−it log y) dRq(yv)
}

dt.

By Lemma 4.4 of [4] we have
∞∫

−∞
ev(ξ(u)−it log y)dRq(yv) =

∞∑
m=0

(ξ(u)− it log y)m

m!

∞∫
−∞

vm dRq(yv)

=
∏

p|q, p≤y

(
1− 1

pβ−it

)
(−η + it)ζ(β + it)

β + it
,

which implies that the main term of G1 is xQ(u)ξ(u)Iq(x, y).
We denote the error term of G1 by G′

1. By using integration by parts
and (4.9) we obtain

G′
1 = xQ(u)ξ(u)

1
2π

T ′∫
−T ′

eit log x+w(u,−it log y)

η − it
e−(u−2)ξ(u)Rq(yu−2) dt(5.23)

− xQ(u)ξ(u)(log y)
1
2π

∞∫
u−2

evξ(u)Rq(yv)

×
{

1
2π

T ′∫
−T ′

eit(u−v) log y+w(u,−it log y) dt

}
dv

= G′
11 + G′

12, say.

By Lemma 3 we easily get

1
2π

1/ log y∫
−1/ log y

eit(u−v) log y+w(u,−it log y) dt � 1
log y

.
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Now suppose that T ′ > 1/ log y. By using integration by parts twice and
using Lemma 2 we get

1
2π

∫
1/ log y<|t|≤T ′

eit(u−v) log y+w(u,−it log y) dt � e−c11u/ log2(u+1) 1
log y

.

Thus, the above estimates and Lemmas 14 and 9 yield

G′
12 � xQ(u)ξ(u)(IB)(5.24)

� Ψ(x, y)ϕ(qy, β)−1e−c11u/ log2(u+1) log(ω(qy) + 3)
log y

.

Similarly, we also have

(5.25) G′
11 � Ψ(x, y)ϕ(qy, β)−1e−c11u/ log2(u+1) log(ω(qy) + 1)

log y
.

From (5.21)–(5.25) we obtain (5.8) and the proof of Lemma 16 is complete.

P r o o f o f L e m m a 17. To prove the lemma we need the following
result (see, for example [13, p. 16]):

(5.26) ζ(s) =
1

s− 1
+ γ + O(|s− 1|), |t| ≤ 2, 0 < σ ≤ 2, s 6= 1.

Moreover, it is easy to prove that

(5.27) ζ ′(s) =
−1

(s− 1)2
+ O(1), |t| ≤ 2, 0 < σ ≤ 2, s 6= 1.

We divide the range of integration into two parts: |t| ≤ T0 and T0 <
|t| ≤ 1/ log y, where T0 = (u1/3 log y)−1, the corresponding integrals being
denoted by H1 and H2. By Lemmas 3 and 7 we have

H2 � xQ(u)ξ(u)ϕ(qy, β)−1η−1(5.28)

×
1/ log y∫
T0

e−c11u(t log y)2eO(
√

u(t log y)2) dt

� Ψ(x, y)ϕ(qy, β)−1e−c13u1/3
.

Now we estimate H1. Lemma 4 yields

(5.29) eit log x+w(u,−it log y)

= e−(1/2)w2(u)(t log y)2
{

1− it

η
+ O

(
t2

η2

)
+ O(u(t log y)3)

}
.

Expanding ζ(β + it)/ζ(β) in the Taylor series, we get

(5.30) ζ(β + it) = ζ(β)
{

1 +
ζ ′(β)
ζ(β)

(it) + O

(
t2

η2

)}
,
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where
ζ ′(β)
ζ(β)

� 1
η
.

By Lemma 5 we have

(5.31) ϕ(qy, β + it)−1 − ϕ(qy, β)−1 = ϕ(qy, β)−1(itA + O(t2A2
0)).

Also

(5.32)
1

β + it
=

1
β

(
1− it

β
+ O(t2)

)
.

Collecting the above estimates we deduce that the integrand is

(5.33) ϕ(qy, β)−1e−(1/2)w2(u)(t log y)2
(
−ζ(β)

β

)
×{itA + O(t2A0η

−1) + O(t2A2
0) + O(t3A2

0η
−1)

+ O(u(t log y)3(tA0)) + O(u(t log y)3(tA0)2)}.
We now integrate the last expression over the range |t| ≤ T0 to get

H(1)
q (x, y) � xQ(u)

(
−ξ(u)ζ(β)

β log y

)
× 1√

u

{
1

ξ(u)

(
log Kq

log y

)2

+
1√

uξ(u)

(
log Kq

log y

)}
.

It is well known that (for example, see (2.7) of [8])

Ψ(x, y) ∼ x%(u) ∼ e−uξ(u)+I(ξ(u)) 1√
2πu

as u →∞.

Also, by (5.26),
−ξ(u)ζ(β)

β log y
� 1.

Thus, the desired estimate (5.10) is derived.

P r o o f o f L e m m a 18. We divide the range of integration into three
parts: |t| ≤ T0, T0 < |t| ≤ 1/ log y, and 1/ log y < |t| ≤ 1/ log Kq, the
corresponding integrals being denoted by H ′

1, H ′
2 and H ′

3. Write

Z(t) =
ew(u,−it log y)(−ζ(β + it))

β + it

and
Φ(t) = ϕ(qy, β + it)−1 − ϕ(qy, β)−1.

Thus, H ′
3 can be rewritten as

H ′
3 = xQ(u)ξ(u)

1
2π

∫
1/ log y<|t|≤1/ log Kq

Z(t)Φ(t)eit log x dt.



322 T. Z. Xuan

We have

d

dt
Z(t) = ew(u,−it log y) e

ξ(u)(−i log y)
ξ(u) + it log y

· −ζ(β + it)
β + it

e−it log y

+ ew(u,−it log y)

{
−ζ ′(β + it)i

β + it
+
−ζ(β + it)(−i)

(β + it)2

}
= Z1(t)e−it log y + Z2(t), say.

By Lemma 2 and (5.26), (5.27) we have for 1/ log y ≤ |t| ≤ 1,

Z(t) � t−1e−c11u/ log2(u+1),

Zi(t) � t−2ec11u/ log2(u+1), i = 1, 2,

and
d

dt
Z(t) � t−2e−c11u/ log2(u+1).

Similarly
d

dt
Zi(t) � t−3e−c11u/ log2(u+1), i = 1, 2.

By using integration by parts twice and by Lemmas 2 and 8 we obtain

(5.34) H ′
3 � Ψ(x, y)ϕ(qy, β)−1e−c11u/ log2(u+1)(log Kq/ log y).

Now we turn to H ′
2 and H ′

1. We proceed as in the proof of Lemma 17
for H2 and H1 but using Lemma 6 instead of Lemmas 7 and 5. We obtain

H ′
2 � Ψ(x, y)ϕ(qy, β)−1(log Kq/ log y)e−c13u1/3

and

H ′
1 � Ψ(x, y)ϕ(qy, β)−1(log Kq/ log x).

This provides the desired estimate.

6. Proof of Theorem 1: the case u > (log2 y)2. We shall use the
following notations:

Φ(y, s) = log Π(y, s),

Φk(y, s) =
∂k

∂sk
Φ(y, s), k ≥ 0,

σk = Φk(y, β), k ≥ 0.

We notice that Lemmas 4, 8, 9, 10 and 13 of [8] remain true if α is
replaced by β, where α = α(x, y) is defined by (1.11).

Using a variant of Perron’s formula and Lemma 9 of [8] and our Lemma 8



Integers with no large prime factors 323

we get

(6.1) Ψq(x, y) =
1

2πi

β+iT∫
β−iT

xsΠ(y, s)
sϕ(qy, s)

ds

+ O(xe−uξ(u)+I(ξ(u))(log y)ϕ(qy, β)−1((T )−1/2 + e−c11u/ log2(u+1))),

where

T = (Y −1
ε + e−c11u/ log2(u+1))−2 and Yε = exp{(log y)3/2−ε}.

Now we suppose that ω(qy) ≤ y1/2 (the proof for the case ω(qy) ≤
exp{c3 log y/ log(u + 1)} is similar). By Lemma 8(ii) of [8], our Lemma 8
and the condition u > (log2 y)2 we further have

(6.2)
1

2πi

{ β−i/ log y∫
β−iT

+
β+iT∫

β+i/ log y

}xsΠ(y, s)
sϕ(qy, s)

ds

� xe−uξ(u)Π(y, β)ϕ(qy, β)−1(log2 y)(log T )e−c11u/ log2(u+1)

� Ψ(x, y)ϕ(qy, β)−1e−c14u/ log2(u+1).

Thus we obtain

Ψq(x, y) =
1

2πi

β+i/ log y∫
β−i/ log y

xsΠ(y, s)
sϕ(qy, s)

ds(6.3)

+ O(Ψ(x, y)ϕ(qy, β)−1(log−N x)).

When q = 1, (6.3) gives

(6.4) Ψ(x, y) =
1

2πi

β+i/ log y∫
β−i/ log y

xsΠ(y, s)
s

ds + O(Ψ(x, y)/ logN x).

Write

(6.5) Hq(x, y) =
1

2πi

β+i/ log y∫
β−i/ log y

xsΠ(y, s)
s

(ϕ(qy, s)−1 − ϕ(qy, β)−1) ds.

We first estimate the contribution of the range |t| ≤ T0 (recall that
T0 = (u1/3 log y)−1). Expanding the function Φ(y, s) in a Taylor series
around t = 0, we get

Φ(y, s) = σ0 + itσ1 −
t2

2
σ2 + O(t3σ3).

We further get

xsΠ(y, s) = xΠ(y, β)e−uξ(u)−(1/2)t2σ2{1 + O(t(log x + σ1)) + O(t3σ3)}.
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By Lemma 13 of [8] we easily get

log x + σ1 = O(uL(ε)−1) + O(1).

Thus, Lemma 5 shows that

xsΠ(y, s)
s

(ϕ(qy, s)−1 − ϕ(qy, β)−1)

= xe−uξ(u)Π(y, β)ϕ(qy, β)−1e−(1/2)t2σ2

× {itA + O(t2A2
0) + O(t(uL(ε)−1 + 1)tA0) + O(t3σ3tA0)},

where A is defined by Lemma 5 and A � η−1(uξ(u))1/2(log Kq/ log y). From
this and Lemma 4 of [8] we find that the contribution of the range |t| ≤ T0

is

(6.6) � xe−uξ(u)Π(y, β)ϕ(qy, β)−1 1√
u log y

(
log Kq

log(u + 1) log y
+

1
L(ε)

)
.

It remains to estimate the contribution of the range T0 < |t| ≤ 1/ log y.
By Lemma 8(i) of [8] and Lemma 6, this contribution is

� xe−uξ(u)Π(y, β)ϕ(qy, β)−1

1/ log y∫
T0

e−c14u(t log y)2(tA0) dt(6.7)

� xe−uξ(u)Π(y, β)ϕ(qy, β)−1e−c15u1/3 log Kq

(log y)2
.

By Theorem 1 of [8] we have

Ψ(x, y) � xe−uξ(u)Π(y, β)
1√

u log y
.

From this and (6.3)–(6.7), the desired estimate (1.8) is derived in the range
considered.

7. Proof of Corollary. The Corollary is an immediate consequence of
Theorem 1 and the following lemma.

Lemma 19. For x, y satisfying (1.3) we have uniformly

(7.1) Ψ(x, y) = x%(u)
(
−ξ(u)ζ(β)

β log y

)(
1 + O

(
1

log x

))
.

P r o o f. First, consider the case 1 ≤ u < u0. We have

−ξ(u)ζ(β)
β log y

=
(

1 + O

(
log(u + 1)

log y

))
= 1 + O

(
1

log x

)
.

The estimate (7.1) clearly follows from this and (1.1).



Integers with no large prime factors 325

We may therefore suppose u ≥ u0. From (5.1) and Lemma 16 with
T ′ = 1 and q = 1, we have

Ψ(x, y) = xQ(u)ξ(u)
1
2π

1∫
−1

eit log x+w(u,−it log y)

β + it
(−ζ(β + it)) dt(7.2)

+ O

(
x%(u)

(
e−c14u/ log2(u+1) 1

log x
+

1
L(ε)

))
,

where Q(u) is defined by (5.7).
Write

J(u, b) =
1
2π

b∫
−b

eit log x+w(u,−it log y)

η − it
dt.

By Lemma 15(i) with T = e2uξ(u)(log y), we have for u ≥ u0,

(7.3) %(u) = Q(u)ξ(u)J(u, T log y) + O(Q(u)e−c14u/ log2(u+1)(1/ log x)).

We divide the range of integration of J(u, T log y) in (7.3) into the parts:
|t| ≤ 1 and 1 < |t| ≤ T log y. Using integration by parts we see that the
contribution of the range 1 < |t| ≤ T log y is

� e−c14u/ log2(u+1)(1/ log x).

Thus, we further obtain

(7.4) %(u) = Q(u)ξ(u)J(u, 1) + O

(
Q(u)e−c14u/ log2(u+1) 1

log x

)
.

To finish the proof of the lemma, it therefore suffices to show that

(7.5) W :=
1∫

−1

eit log x+w(u,−it log y)F (t) dt � 1√
u log y

· 1
log x

,

where

F (t) =
ζ(β + it)

ζ(β)(1 + itβ−1)
− η

η − it
.

We divide the range of integration in (7.5) into the three parts: |t| ≤ T0,
T0 < |t| ≤ 1/ log y and 1/ log y ≤ |t| ≤ 1. The corresponding integrals are
denoted by W1, W2 and W3.

For |t| ≤ 1 we have

(7.6)
F (t) =

η

η − it
(1 + O(|η − it|) + O(η) + O(t))− η

η − it
= O(η),

F ′(t) = O(1) and F ′′(t) = O(1/η).

From this, Lemma 2 and using integration by parts twice we get

(7.7) W3 � e−c14u/ log2(u+1)(1/ log2 x).
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By Lemma 3 and (7.6) we have

(7.8) W2 � e−c15u1/3
(1/ log2 x).

To estimate W1, we expand F (t) in a Taylor series around t = 0, to get

F (t) = F ′(0)(it) + O(t2/η),

where

F ′(0) =
ζ ′(β)
ζ(β)

− 1
β
− 1

η
� 1.

From this and (5.29) we obtain

W1 =
1
2π

T0∫
−T0

e−(1/2)w2(u)(t log y)2(7.9)

× {F ′(0)(it) + O(t2/η) + O(ut4 log3 y)} dt

� 1√
u log y

· 1
u log y

.

The desired estimate (7.5) now follows on collecting these estimates.
This completes the proof of Lemma 19.
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