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1. Introduction. In 1918 Ramanujan [12] investigated the sums cn(a) of
the ath powers of all nth primitive roots of unity and proved that numerous
arithmetical functions g : N→ C possess an expansion of the form

(1) g(a) =
∞∑
n=1

ĝ(n)cn(a)

with suitable coefficients ĝ(n) for n ∈ N. Via Dirichlet series, Hardy [6]
shortly afterwards found a different approach to these Ramanujan expan-
sions, and in 1932 Carmichael [1] gave generalizations based on certain or-
thogonality relations for the Ramanujan sums cn(a). Later on, the existence
of many expansions of the type (1) could be explained by putting them into
the context of harmonic analysis by which the consideration was restricted
to almost even arithmetical functions g having, at least in general, a nonzero
asymptotic mean value (see, for example, Wintner [22], Cohen [2], Schwarz
and Spilker [18], Knopfmacher [9]). The progress achieved in mean value
theorems for multiplicative functions by Delange [3], Halász [5], Elliott [4]
led to certain classes of multiplicative functions g having a pointwise con-
vergent Ramanujan expansion (1) (compare Schwarz [14]–[17], Tuttas [20],
Warlimont [21]). From this point of view, for example the expansions (see
Ramanujan [12])

d(a) = −
∞∑
n=1

logn
n

cn(a),(2)

r(a) = π

∞∑
n=1

(−1)n−1

2n− 1
c2n−1(a)(3)

of the divisor function d(a) or the function r(a), which counts the num-
ber of representations of a ∈ N as sum of two squares of integers, remain
mysterious, and Knopfmacher [9] asks for a deeper conceptual explanation.

[25]
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The aim of this note is to develop such a concept for multiplicative
arithmetical functions from the close relationship between all Ramanujan
sums cn(a) and the good knowledge of the behaviour of the zeta function
and its derivatives in the half plane Re s ≥ 1.

We shall start with weighted convolution algebras over countable com-
mutative semigroups with unit element, and obtain a weighted inversion
theorem (Theorem 1) for power series of the Wiener type. This serves as
main tool in the investigation of the structure of certain classes of multi-
plicative functions on arithmetical semigroups with respect to the Dirichlet
convolution (Theorem 2). As a consequence we obtain a general weighted
relationship theorem (Theorem 3) for multiplicative functions, which leads
to a summation theorem (Theorem 4) for convergent Ramanujan series and
to the characterization (Theorem 5) of extensive classes of multiplicative
functions having a pointwise convergent representation of the type (1). In
this framework formulae (2) and (3) turn out to be very specific cases of
general statements.

2. Weighted convolution algebras. Let (H, ◦) be a countable com-
mutative semigroup with unit element e. Denote by W (H, ◦) the set of
weight functions ω : H → R+ having the properties

ω(e) = 1 ≤ ω(m ◦ n) ≤ ω(m)ω(n) for all m,n ∈ H,(4)

inf{ ν
√
ω(nν) | ν ∈ N} = 1 for all n ∈ H(5)

(here we write nν = n◦ . . .◦n with ν “factors” n ∈ H). For ω ∈W (H, ◦) put
further Aω(H, ◦) = {a : H → C | ‖a‖ω <∞}, where the norm is given by

‖a‖ω =
∑

n∈H
|a(n)|ω(n),

define λa + µb for λ, µ ∈ C, a, b ∈ Aω(H, ◦) pointwise, and introduce the
convolution product a ∗ b ∈ Aω(H, ◦) by

(a ∗ b)(n) =
∑

d,m∈H
d◦m=n

a(d)b(m) (n ∈ H).

Then, by (4), Aω(H, ◦) is a commutative Banach algebra with unit ele-
ment ε,

ε(n) =
{

1 if n = e
0 otherwise

(n ∈ H).

Specifically, choose for H the additive semigroup N0 = N ∪ {0}, denote
by U the closed unit disk in the complex plane, and define for a ∈ Aω =
Aω(N0,+),
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ta(z) =
∞∑
n=0

a(n)zn (z ∈ U).

Obviously the subset

A∗ω = {a ∈ Aω | ta(z) 6= 0 for all z ∈ U} ⊂ Aω
is closed under the convolution ∗ which corresponds to the Cauchy product
of power series, and ε ∈ A∗ω since tε(z) = 1. Wiener’s inversion theorem for
power series (see, for example, Rudin [13], Theorem 18.21) now takes the
following weighted form.

Theorem 1. For ω ∈ W (N0,+), A∗ω is the group of invertible elements
in Aω with respect to the convolution ∗.

For the proof consider any multiplicative linear functional h, element
of the maximal ideal space ∆ of Aω. Then h(a) = ta(ζ) for some ζ ∈ C
satisfying |ζ|n ≤ ω(n) for all n ∈ N, and (5) implies ζ ∈ U . Notice that
a ∈ Aω is invertible if and only if h(a) 6= 0 for every h ∈ ∆ (see again Rudin
[13], Theorem 18.17) which is equivalent to a ∈ A∗ω.

3. Multiplicative functions on arithmetical semigroups. The con-
cept of arithmetical semigroups (H, ◦) is based on the model (N, ·). By defi-
nition there is a non-empty set P ⊂ H of free generators, the prime elements,
such that the Unique Factorization Theorem holds in H, and there is a com-
pletely multiplicative norm mapping | · | : H → R+ such that the number of
elements with every finite bound is finite. This implies, for example, that H
is countable. The usual notions of elementary number theory, like divisor,
Dirichlet convolution, multiplicative function, are definable in arithmetical
semigroups (see Knopfmacher [9]). Specifically, denote byM the set of mul-
tiplicative functions f : H → C, i.e. f(e) = 1, f(m ◦ n) = f(m)f(n) for
all coprime m,n ∈ H. Then M is a group with respect to the Dirichlet
convolution ∗ defined as in Section 1, and for f ∈ M the Euler product
representation of the Dirichlet series is available,

f̃(s) =
∑

n∈H

f(n)
|n|s =

∏

p∈P
f̃p(s)

where

f̃p(s) = 1 +
f(p)
|p|s +

f(p2)
|p|2s + . . . ,

valid in some half plane Re s > α of absolute convergence.
For weight functions λ ∈W (H, ◦) we consider the sets

Gλ =
{
f ∈M

∣∣∣∣
∑

p∈P

|f(p)|2
|p|2 λ2(p) <∞,

∑

p∈P, ν≥2

|f(pν)|
|p|ν λ(pν) <∞

}
,
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G∗λ = {f ∈ Gλ | f̃p(s) 6= 0 for all p ∈ P, Re s ≥ 1},

Bλ =
{
f ∈ Gλ

∣∣∣∣
∑

p∈P

|f(p)|
|p| λ(p) <∞

}
,

Dλ =
{
f ∈M

∣∣∣∣
∑

n∈H

|f(n)|
|n| λ(n) <∞

}
.

In the special case λ = 1, (H, ◦) = (N, ·) these sets have been introduced
and studied by Heppner and Schwarz [8]. For a comprehensive exposition we
refer to Schwarz and Spilker [19], Chapter III. In this and the next section
their results are considerably extended (see also [11]).

Theorem 2. Let (H, ◦) be an arithmetical semigroup and λ ∈W (H, ◦).
Then:

(i) (Gλ, ∗) is a semigroup with unit element ε,
(ii) Bλ = Dλ,

(iii) (G∗λ, ∗) is a group.

P r o o f. The proof of (i) is an easy exercise in convergence, and the proof
of (ii) uses the submultiplicativity (4) of weight functions λ in the form

∑

n∈H

|f(n)|
|n| λ(n) ≤

∏

p∈P

(
1 +

∑

ν≥1

|f(pν)|
|p|ν λ(pν)

)

≤ exp
( ∑

p∈P, ν≥1

|f(pν)|
|p|ν λ(pν)

)
.

For the proof of (iii) observe that for f, g ∈ G∗λ,

(f ∗ g)∼p (s) = f̃p(s)g̃p(s) 6= 0 (p ∈ P, Re s ≥ 1)

so that G∗λ is closed under convolution. Further, if f, f−1 ∈ Gλ then also

f̃p(s)(f−1
p )∼(s) = ε̃p(s) = 1 (p ∈ P, Re s ≥ 1)

so that f, f−1 ∈ G∗λ. Therefore it remains to show that f ∈ G∗λ implies
f−1 ∈ Gλ.

Obviously for f ∈ M the Euler product factors f̃p(s) of the Dirichlet
series f̃(s) correspond to the p-fibres fp ∈M defined by

fp(n) =
{
f(pν) if n = pν , ν ∈ N0,
0 otherwise,

and f ∈ G∗λ implies fp ∈ G∗λ for every p ∈ P . Observe that fp ∈ G∗λ yields
fp ∈ A∗ω where ω(ν) = λ(pν) since

fp(s) = tf p(z)
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for |z| = |p|1−s ∈ U . Hence, by Theorem 1, f−1
p ∈ A∗ω, which gives f−1

p ∈ Gλ
for every p ∈ P . Thereby the proof of (iii) is reduced to carrying over the
Gλ-membership from all p-fibres f−1

p to f−1.
Consider the decomposition of the Euler product

f̃(s) =
∏

|p|≤c
f̃p(s) ·

∏

|p|>c

(
1− f(p)

|p|s
)−1

·
∏

|p|>c

(
1− f(p)

|p|s
)
f̃p(s)

which corresponds to the decomposition

(6) f = ( ∗
|p|≤c

fp) ∗ g ∗ h

with g, h ∈M satisfying

gp(n) =
{
fν(p) if n = pν , |p| > c, ν ∈ N0,
0 otherwise,

hp(n) =

{
f(pν)− f(pν−1)f(p) if n = pν , |p| > c, ν ∈ N,
1 if n = 1,
0 otherwise.

For sufficiently large c > 0 a direct verification gives g, h ∈ G∗λ and
∑

p∈P, ν≥2

|h(pν)|
|p|ν ≤ 1

2
.

Evidently g−1 ∈ Gλ. From h−1 ∗ h = ε we obtain the recursion formula

h−1(pν) = −
∑

2≤%≤ν
h(p%)h−1(pν−%) (|p| > c, ν ≥ 2),

and h(p) = h−1(p) = 0 for all p ∈ P , while h(pν) = 0 for all p ∈ P with
|p| ≤ c and ν ∈ N. Hence, by considering partial sums,

Σ : =
∑

p∈P, ν≥2

|h−1(pν)|
|p|ν λ(pν)

≤
∑

p∈P, ν≥2

∑

2≤%≤ν

|h(p%)|
|p|% · |h

−1(pν−%)|
|p|ν−% λ(p%)λ(pν−%)

≤
∑

p∈P, ν≥2

|h(pν)|
|p|ν λ(pν) +

∑

p∈P, %≥2, σ≥2

|h(p%)|
|p|% λ(p%)

|h−1(pσ)|
|p|σ λ(pσ)

≤ (1 +Σ)
∑

p∈P, ν≥2

|h(pν)|
|p|ν λ(pν) ≤ 1

2
(1 +Σ).

It follows that Σ ≤ 1, and therefore h−1 ∈ Gλ. By taking the inverse f−1 ∈
M we see from (6) that

f−1 = ( ∗
|p|≤c

f−1
p ) ∗ g−1 ∗ h−1
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is the convolution product of finitely many elements of Gλ which, by (i), also
belongs to Gλ.

An immediate consequence of Theorem 2 is the following weighted rela-
tionship theorem for multiplicative functions on arithmetical semigroups.

Theorem 3. Let (H, ◦) be an arithmetical semigroup, λ ∈ W (H, ◦). If
g ∈ Gλ and f ∈ G∗λ are λ-related , i.e.

∑

p∈P

|g(p)− f(p)|
|p| λ(p) <∞,

then there exists h ∈ Dλ such that g = h ∗ f .

P r o o f. By Theorem 2(i), (iii) we have h = g ∗ f−1 ∈ Gλ. Since h(p) =
g(p)− f(p) for all p ∈ P , the λ-relationship of g and f implies h ∈ Bλ, and
by Theorem 2(ii) the proof is complete.

In the special case (H, ◦) = (N, ·) the weighted relationship theorem from
[11] holds again. For λ = 1 see also Heppner and Schwarz [8], Schwarz and
Spilker [19], Chapter III.

4. A transfer principle. Theorem 3 provides a transfer principle con-
cerning asymptotic formulae and convergent series with multiplicative func-
tions on arithmetical semigroups (H, ◦). The derivation formula for Dirichlet
series, (∑

n∈H

f(n)
|n|s

)′
= −

∑

n∈H

f(n)
|n|s log |n|,

valid in any half plane of absolute convergence, suggests considering loga-
rithmic weight functions. For arbitrary arithmetical functions f : H → C
we set for abbreviation

N(f, x) =
∑

n∈H, |n|≤x
f(n) (x > 0).

Proposition 1. Let k ∈ N0 and λ(n) = (1+log |n|)k for n ∈ H. Assume
that the functions f ∈ G∗λ and g ∈ Gλ are λ-related. If for certain constants
α, β with Reα ≥ β ≥ 1 and l ∈ N0,

N(f, x) = xαP (log x) + o(xβ logl x) as x→∞
with a polynomial P of degree ≤ k, then also

N(g, x) = xαQ(log x) + o(xβ logl x) as x→∞
with a polynomial Q of degree ≤ k. In particular , the Dirichlet series h̃(s)
of h = g ∗ f−1 and its derivatives up to order k converge absolutely for
Re s ≥ 1, and
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Q(t) =
k∑

j=0

h̃(j)(α)
j!

P (j)(t).

For the proof notice that λ ∈W (H, ◦). The absolute convergence of the
series

h̃(j)(s) = (−1)j
∑

n∈H

h(n)
|n|s logj |n| (Re s ≥ 1)

for j = 0, 1, . . . , k is an immediate consequence of Theorem 3. In particular,

(−1)j
∑

n∈H
|n|≤x

h(n)
|n|α logj |n| = h̃(j)(α) +O(1)

∑

n∈H
|n|>x

|h(n)|
|n|Reα logj |n|

= h̃(j)(α) + o(x1−Reα logj−k x)

as x→∞, j = 0, 1, . . . , k. Now g = h ∗ f implies

N(g, x) =
∑

d∈H
|d|≤x

h(d)N
(
f,

x

|d|
)

= xα
∑

d∈H
|d|≤x

h(d)
|d|α P

(
log

x

|d|
)

+ xβ logl x
∑

d∈H
|d|≤x

|h(d)|
|d|β

(
1− log |d|

log x

)l
o(1),

where o(1) refers to x/|d| → ∞. By splitting at
√
x, say, we see that the last

sum is o(1) as x→∞. Finally, by Taylor’s formula,

P

(
log

x

|d|
)

= P (log x− log |d|) =
k∑

j=0

P (j)(log x)
j!

(−1)j logj |d|,

and the conclusion follows.

R e m a r k 1. Proposition 1 remains valid when o in the remainder terms
is replaced by O.

We mention that Theorem 3 holds for arbitrary norm functions on H.
If, for example, n 7→ |n| is replaced by n 7→ |n|∗ = |n|γ with some constant
γ > 0 then Gλ is left fixed and

∑

n∈H, |n|∗≤x
f(n) = N(f, x1/γ).

Hence the formal substitution x→ x1/γ applies in Proposition 1.
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We shall now consider convergent series indexed by elements of H. In
the case of conditional convergence it is necessary to agree upon an order of
the elements of H which may be obtained by any fixed bijective mapping
ν → nν from N onto H which, for example, is (weakly) order-preserving, i.e.
|nν | ≤ |nν+1| for all ν ∈ N.

Proposition 2. Let k ∈ N0 and λ(n) = (1+log |n|)k for n ∈ H. Assume
that the functions f ∈ G∗λ and g ∈ Gλ are λ-related. If for a certain constant
α with Reα ≥ 1, the series

∑

n∈H

f(n)
|n|α logj |n| (j = 0, 1, . . . , k)

converge to Sj then the series
∑

n∈H

g(n)
|n|α logk |n|

converges to
k∑

j=0

(
k

j

)
(−1)j h̃(j)(α)Sk−j ,

where h̃(s) is defined in Proposition 1.

The proof is similar to that of Proposition 1. Here we obtain

∑

|n|≤x

g(n)
|n|α logk |n| =

k∑

j=0

(
k

j

) ∑

|d|≤x

h(d)
|d|α logj |d|

∑

|m|≤x/|d|

f(m)
|m|α logk−j |m|

=
k∑

j=0

(
k

j

) ∑

|d|≤x

h(d)
|d|α logj |d|(Sk−j + o(1))

where o(1) refers to x/|d| → ∞. Again

∑

|m|≤x

g(n)
|n|α logk |n| =

k∑

j=0

(
k

j

)
Sk−j

∑

|d|≤x

h(d)
|d|α logj |d|+ o(1),

and for x→∞ the conclusion follows.

5. Ramanujan series. We shall meet some specific functions on arith-
metical semigroups (H, ◦) for which standard notations are partly in use
(compare, for example, Knopfmacher [9]). For β ∈ C the function Iβ : H →
C is defined by Iβ(n) = |n|β , and 1 = I0, I = I1. The Möbius function µ is
the inverse function of 1, i.e. µ ∗ 1 = ε and

µ(pν) =
{−1 for ν = 1

0 for ν > 1
(p ∈ P, ν ∈ N).
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The divisor function, the divisor sum function, and the Euler function are
given by d = 1 ∗ 1, σ = 1 ∗ I, ϕ = µ ∗ I, respectively. All these functions are
multiplicative.

For a ∈ H we set

(7) ηa(n) =
{ |n| if n | a

0 otherwise
(n ∈ H)

and define the Ramanujan sums cn(a) by

(8) cn(a) = (µ ∗ ηa)(n) =
∑

d|n
µ

(
n

d

)
ηa(d) (n ∈ H).

Obviously ηa represents the pointwise product of I with the characteristic
function of the set of divisors of a. Hence ηa(n) and cn(a) are both multi-
plicative functions of n, and cn(e) = µ(n), cn(n) = ϕ(n).

R e m a r k 2. It is well known (Ramanujan [12]) that in the classical case
(H, ◦) = (N, ·) the definition (8) is equivalent to that given at the beginning
of Section 1:

cn(a) =
∑

1≤ν≤n
(ν,n)=1

e2πi νna (n, a ∈ N).

For an easy proof denote the right side by Cn(a) and observe that
∑

1≤ν≤n
e2πi νna = ηa(n)

also can be written in the form∑

d|n

∑

1≤ν≤n
(ν,n)=d

e2πi ν/d
n/d

a =
∑

d|n

∑

1≤%≤n/d
(%,n/d)=1

e2πi %
n/d

a =
∑

d|n
Cn/d(a).

This shows ηa = 1 ∗ C.(a) or equivalently C.(a) = µ ∗ ηa = c.(a), as stated
above.

Theorem 4. Let k ∈ N0, λ(n) = (1 + log |n|)k for n ∈ H, and Reα ≥ 1.
Assume that f ∈M and µf ∈ G∗λ. Then the convergence of the series

sj =
∑

n∈H

f(n)µ(n)
|n|α logj |n| (j = 0, 1, . . . , k)

implies the convergence of the Ramanujan series

(9)
∑

n∈H

f(n)cn(a)
|n|α logk |n| =

k∑

j=0

(
k

j

)
(−1)j h̃(j)(α)sk−j

for every a ∈ H, where h̃(s) is the Dirichlet series of

(10) h = (fc.(a)) ∗ (µf)−1
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and is represented by the finite product

h̃(s) =
∏

pν‖a

(
1− f(p)

|p|s
)−1

(11)

×
((

1− 1
|p|
) ν∑
%=0

f(p%)
|p|%(s−1)

+
1
|p|
(

1− f(pν+1)
|p|(ν+1)(s−1)

))
.

P r o o f. It follows from (7) and (8) that
∑
p

|f(p)cp(a)|2
|p|2 λ2(p) =

∑
p

|f(p)|2|ηa(p)− 1|2
|p|2 λ2(p)

=
∑

p|a

|f(p)|2(|p| − 1)2

|p|2 λ2(p) +
∑

p - a

|f(p)|2
|p|2 λ2(p) <∞

and
∑

p,ν≥2

|f(pν)cpν (a)|
|p|ν λ(pν) =

∑

p,ν≥2

|f(pν)||ηa(pν)− ηa(pν−1)|
|p|ν λ(pν)

≤
∑

p,ν≥2
pν−1|a

|f(pν)|λ(pν) <∞.

Hence fc.(a) ∈ Gλ for every a ∈ H. Further fµ and fc.(a) are λ-related
since
∑
p

|f(p)µ(p)− f(p)cp(a)|
|p| λ(p) =

∑
p

|f(p)ηa(p)|
|p| λ(p) =

∑

p|a
|f(p)|λ(p) <∞.

So far, the proof does not depend on the weight function λ ∈W (H, ◦). But
the specific choice of λ allows us to apply Proposition 2. By replacing f by
fµ and g by fc.(a) we obtain (9) and (10). Since h is associated with the
Dirichlet series

h̃(s) =
(fc.(a))∼(s)

(fµ)∼(s)
a short calculation gives the product representation (11).

R e m a r k 3. For every s ∈ C, Re s ≥ 1, the product h̃(s) from (11)
represents a multiplicative function of a ∈ H.

R e m a r k 4. Theorem 4 gives the justification of formally inserting

cn(a) =
∑

d,m∈H
d◦m=n

ηa(d)µ(m)

into the left side of (9) and then summing independently over d ∈ H, m ∈ H.
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Corollary 1. If , in addition to the assumptions of Theorem 4, the
function f is completely multiplicative then

h̃(j)(s) = (−1)j(1 ∗ (fI1−s logj | · |))(a) (a ∈ H, j ∈ N0).

For the proof observe that (fµ)−1 = f in this case. Hence (10) yields
h = fηa, which gives

h̃(s) =
∑

n∈H

f(n)ηa(n)
|n|s =

∑

n|a

f(n)
|n|s−1 = (1 ∗ (fI1−s))(a).

By taking the jth derivative the assertion follows.

There are many applications of Theorem 4. Assume, for example, the
convergence of the series

(12)

∑

n∈H

µ(n)
|n| = 0,

∑

n∈H

µ(n) log |n|
|n| = − 1

A
,

∑

n∈H

µ(n) log2 |n|
|n| = −2γH

A2

with the Euler constant γH of (H, ◦). We meet this situation in all arithmeti-
cal semigroups (H, ◦) whose elements are nicely distributed with respect to
the norm mapping | · | so that the corresponding zeta function

1̃(s) =
∑

n∈H

1
|n|s =

A

s− 1
+ γH + . . .

is holomorphic for Re s > 1 − ϑ with some ϑ > 0 except for a simple pole
in s = 1 (compare Knopfmacher [9]). It is well known that the convergence
of the series (12) is equivalent to the prime number theorem in (H, ◦) with
suitable remainder term estimates. By taking f = 1 and α = 1 in Theorem
4 and Corollary 1 we derive from (12) the following formulae.

Corollary 2. Let (H, ◦) be an arithmetical semigroup such that the
series (12) converge with the above sums. Then the series

∑

n∈H

cn(a)
|n| = 0,

∑

n∈H

cn(a)
|n| log |n| = − 1

A
d(a),

∑

n∈H

cn(a)
|n| log2 |n| = − 1

A2 d(a)(2γH +A log |a|)

converge for all a ∈ H.

Consider the classical case (H, ◦) = (N, ·) where A = 1 and γH = γ, the
Euler constant. Then the statements of Corollary 2 have been made first by
Ramanujan [12]. In particular, formula (2) occurs here again. By taking the
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basic statements concerning the convergence of the series
∞∑
n=1

µ(n) logk n
ns

(Re s ≥ 1, k ∈ N0)

from Landau [10] (see §164 for Re s = 1) it is quite obvious how to deal with
the summation of the series

∞∑
n=1

cn(a) logk n
nα

for Reα ≥ 1, k ∈ N0. The same reasoning can be applied to Dirichlet
L-series. Specifically, the following series, formed with Dirichlet characters
χ : N→ C modulo q ∈ N, different from the principal character χ0 modulo
q, converge (see Landau [10], §102 ff.):

L(1, χ) =
∞∑
n=1

χ(n)
n
6= 0,

∞∑
n=1

µ(n)χ(n)
n

=
1

L(1, χ)
.

Since Dirichlet characters χ are completely multiplicative we may take
f = χ, α = 1, k = 0 in Theorem 4 and Corollary 1.

Corollary 3. Let χ 6= χ0 denote a Dirichlet character modulo q ∈ N.
Then the Ramanujan series

∞∑
n=1

χ(n)cn(a)
n

=
1

L(1, χ)
(1 ∗ χ)(a)

converges for every a ∈ N.

Observe that, for the nonprincipal character χ mod 4, we have L(1, χ) =
π/4, and 4(1 ∗ χ)(a) = r(a), the number of integer lattice points on the
circle of radius

√
a about the origin (see Hardy and Wright [7], Theorem

278). This gives Ramanujan’s formula (3).

6. Ramanujan expansions. In this section we apply Theorem 4 to the
problem of expanding given multiplicative functions into pointwise conver-
gent Ramanujan series. For k ∈ N0 and n ∈ H set now λk(n) = (1+log |n|)k
and assume that 1 ∈ Gλk . With each g ∈ Gλk having the property that

(13) |g̃p(1)− 1̃p(1)| < |g̃p(1)| for all p ∈ P
associate the function G ∈M defined by

(14)
G(pν)
|p|ν =

1̃p(1)
g̃p(1)

∑

%≥ν

(µ ∗ g)(p%)
|p|% (p ∈ P, ν ∈ N).

Since 1, µ, g ∈ Gλk the series 1̃p(1), µ̃p(1), g̃p(1) are absolutely convergent for
each p ∈ P , and (13) yields g̃p(1) 6= 0. Hence the function G is well defined.
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Notice also that 1, g ∈ Gλk and (13) give the existence of a constant δ > 0
such that

δ ≤
∣∣∣∣
1̃p(1)
g̃p(1)

∣∣∣∣ < 2 for all p ∈ P,
and that

lim
ν→∞

G(pν)
|p|ν = 0 for all p ∈ P.

Lemma 1. Under the above assumptions we have µG ∈ G∗λk , and (14) is
equivalent to

(15) g(p%) = ((Gc.(p%)) ∗ (µG)−1)∼p (1) (p ∈ P, % ∈ N0).

P r o o f. We have (µG)(pν) = 0 for p ∈ P , ν ≥ 2, and (13), (14) give

|(µG)(p)|
|p| ≤ 2

1 + |g(p)|
|p| + 2

∑

ν≥2

|g(pν)|
|p|ν .

From 1, g ∈ Gλk and by the choice of the weight function λk we see that
∑

p∈P

|(µG)(p)|2
|p|2 λ2(p)�

∑

p∈P

1 + |g(p)|2
|p|2 λ2(p)

+
∑

p∈P

|g(p)|
|p| λ(p)

∑

ν≥2

|g(pν)|
|p|ν λ(pν)

+
∑

p∈P

(∑

ν≥2

|g(pν)|
|p|ν λ(pν)

)2

� 1.

Further, for Re s ≥ 1 and p ∈ P , we see from (13) and (14) that

|(µG)∼p (s)| =
∣∣∣∣1−

G(p)
|p|s

∣∣∣∣ =
∣∣∣∣1−

1
|p|s−1

(
1− 1̃p(1)

g̃p(1)

)∣∣∣∣

≥ 1−
∣∣∣∣1−

1̃p(1)
g̃p(1)

∣∣∣∣ > 0.

Hence µG ∈ G∗λk .
By explicitly writing down the right side of (15) we obtain

g(p%) =
1

(µG)∼p (1)

((
1− 1
|p|
)

(1 +G(p) + . . .+G(p%)) +
1
|p| (1−G(p%+1))

)
.

By subtracting the same representation for g(p%−1) and dividing by |p|%, it
follows that

(µ ∗ g)(p%)
|p|% =

1
(µG)∼p (1)

(
G(p%)
|p|% −

G(p%+1)
|p|%+1

)
(% ∈ N),
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and summation over % ≥ ν gives

G(pν)
|p|ν = (µG)∼p (1)

∑

%≥ν

(µ ∗ g)(p%)
|p|% (ν ∈ N).

In particular, for ν = 1,

G(p)
|p| =

(
1− G(p)

|p|
)(

g̃p(1)

1̃p(1)
− 1
)

and hence
1̃p(1)
g̃p(1)

= (µG)∼p (1).

This proves (14). For the converse, observe that the above steps can be
reversed.

R e m a r k 5. For k ∈ N it is not difficult to show that G ∈ Gλk−1 if
1, g ∈ Gλk .

Assume 1 ∈ Gλk for k ∈ N0, and denote by Rk the class of functions
g ∈ Gλk satisfying (13) and having the property that the series

(16)
∑

n∈H

µ(n)G(n)
|n| logj |n|

{
= 0 if 0 ≤ j < k,
6= 0 if j = k,

converge where G is defined in (14).

Theorem 5. Let k ∈ N0. Then every g ∈ Rk possesses a pointwise
convergent Ramanujan expansion of the form

(1) g(a) =
∑

n∈H
ĝ(n)cn(a) (a ∈ H)

with the coefficients

(17) ĝ(n) =
(∑

m∈H

µ(m)G(m)
|m| logk |m|

)−1
G(n) logk |n|

|n| (n ∈ H)

where G ∈M is given in (14).

P r o o f. Notice that µG ∈ G∗λk by Lemma 1. By applying Theorem 4 to
G instead of f we obtain
∑

n∈H

G(n)cn(a)
|n| logk |n| =

∑

m∈H

µ(m)G(m)
|m| logk |m|((Gc.(a)) ∗ (Gµ)−1)∼(1).

It remains therefore to show that for all a ∈ H,

g(a) = ((Gc.(a)) ∗ (Gµ)−1)∼(1).
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Since, by Remark 3, the right side is a multiplicative function of a ∈ H and,
by Lemma 1, both sides coincide for all prime powers a = pν (p ∈ P, ν ∈ N)
the proof of Theorem 5 is complete.

In order to decide upon the Rk-membership of functions g ∈ Gλk the
following lemma is often useful.

Lemma 2. Let 1 ∈ Gλk , and let g ∈ G∗λk satisfy (13).Then the functions
µG, 1 ∗ g−1 ∈ G∗λk are λk-related , and g ∈ Rk if and only if

(18)
∑

n∈H

(1 ∗ g−1)(n)
|n| logj |n|

{
= 0 for 0 ≤ j < k,
6= 0 for j = k.

Moreover , the values of both series (16) and (18) are equal for j = k.

P r o o f. From Lemma 1 and Theorem 2 we have µG, 1 ∗ g−1 ∈ G∗λk . The
λk-relationship follows from
∑

p∈P

|(µG)(p)− (1 ∗ g−1)(p)|
|p| logk |p|

=
∑

p∈P

∣∣∣∣
g(p)− 1
|p| − 1 +

1̃p(1)
g̃p(1)

∣∣∣∣ logk |p|

�
∑

p∈P

(
1 + |g(p)|2
|p|2 +

∑

ν≥2

|g(pν)|
|p|ν

)
logk |p| � 1.

By taking µG and 1∗g−1 for f and g in Proposition 2 with α = 1 we obtain
the equivalence of (16) and (18) for 0 ≤ j ≤ k. Further

∑

n∈H

(1 ∗ g−1)(n)
|n| logk |n| =

∑

n∈H

(µG)(n)
|n| logk |n|

if the Dirichlet series

h̃(s) =
(1 ∗ g−1)∼(s)

(µG)∼(s)
which is absolutely convergent for Re s ≥ 1 assumes the value 1 at s = 1.
This comes as a trivial consequence from (14) since all Euler product factors
coincide at s = 1,

(µG)∼p (1) =
1̃p(1)
g̃p(1)

= (1 ∗ g−1)∼p (1) (p ∈ P ).

In order to find for every k ∈ N0 specific examples g ∈ Rk we restrict our
attention to arithmetical semigroups (H, ◦) such that the corresponding zeta
function 1̃(s) converges absolutely for Re s > 1, (s − 1)1̃(s) is holomorphic
for Re s > 1− ϑ for some ϑ > 0 with

lim
s→1

(s− 1)1̃(s) = A > 0,
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and

(19) N(µ, x)� x log−q x (x ≥ e)
for every q > 0. It is not necessary to study how these assumptions are
linked. For the classical case (H, ◦) = (N, ·) we refer to Landau [10], §157.

Obviously 1 ∈ R0, and d = 1 ∗ 1 ∈ R1 by Lemma 2 and (19). Consider
now the generalized divisor function dk ∈M defined by d1 = 1, dk+1 = dk∗1
for k ∈ N.

Proposition 3. Let k ∈ N. Then, under the above assumptions, we have
dk+1 ∈ Rk ∩ G∗λk , and the coefficients in the Ramanujan expansion (1) of
dk+1 are given by

d̂k+1(n)

= (−1)k
Ak

k!
· logk |n|
|n|

∏

pν‖n

((
1− 1
|p|
)k∑

λ≥0

(
k + ν + λ− 1

k − 1

)
1
|p|λ

)−1

.

P r o o f. Notice that for all k ∈ N, j ∈ N0 the estimate

(20)
∑

n∈H
|n|≤x

d−1
k (n) logj |n| �k,j x log−q x (x ≥ e)

holds for every q > 0. This is (19) for k = j = 1 and (20) is obtained by
induction over k and partial summation. Partial summation also leads to
the convergence of

(−1)j
∑

n∈H

d−1
k (n)
|n|s logj |n| =

(
(s−1)k

(
1

(s− 1) 1̃(s)

)k)(j)

(k ∈ N, j ∈ N0)

for Re s ≥ 1. In particular, for s = 1 we obtain

(21)
∑

n∈H

d−1
k (n)
|n| logj |n| =

{
0 if 0 ≤ j < k,

(−1)k
k!
Ak

if j = k.

Further we have (13) and (18) with g = dk+1 ∈ Rk ∩ G∗λk by Lemma 2
since 1 ∗ d−1

k+1 = d−1
k . From Theorem 5 and (21) we conclude that

d̂k+1(n) = (−1)k
Ak

k!
· logk |n|
|n| Dk+1(n),

where

Dk+1(n) =
∏

pν‖n

((
1− 1
|p|
)k∑

λ≥0

(
k + ν + λ− 1

k − 1

)
1
|p|λ

)−1

,

as stated in Proposition 3.

In particular, for k = 1 we obtain D2(n) = 1, and the Ramanujan
expansion of the divisor function d = d2 given in Corollary 2 results once
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more. For k = 2 the coefficients in the Ramanujan expansion of d3 take the
form

d̂3(n) =
A2

2
· log2 |n|
|n|

∏

pν‖n

|p|
(ν + 1)|p| − ν (n ∈ H).
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