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What is the structure of a pair of finite integers sets A,B ⊂ Z with the
small value of |A + B|? We answer this question for addition coefficient 3.
The obtained theorem sharpens the corresponding results of G. Freiman.

1. Introduction and historical comments. Let A = {a1, . . . , ak},
B = {b1, . . . , bl} be two sets of integers, so that k = |A|, l = |B|, and
suppose 0 = a1 < . . . < ak, 0 = b1 < . . . < bl. As usual, we write A+B for
the set {ai+bj | 1 ≤ i ≤ k, 1 ≤ j ≤ l}, and put 2A = A+A. By (a1, . . . , ak)
we denote the greatest common divisor of a1, . . . , ak, and by (a1, . . . , bl) the
greatest common divisor of a1, . . . , ak, b1, . . . , bl.

In [1] G. Freiman proved the following:

Theorem 1. (i) Let ak ≤ 2k − 3. Then |2A| ≥ ak + k.
(ii) Let ak ≥ 2k − 2 and (a1, . . . , ak) = 1. Then |2A| ≥ 3k − 3.

The present paper is devoted to the generalization of this theorem to the
case of summation of two distinct sets A and B. Without loss of generality,
we may assume ak ≥ bl, and put

δ =
{

1 if bl = ak,
0 if bl < ak.

Our main result is:

Theorem 2. (i) Let ak ≤ k + l − 2− δ. Then |A+B| ≥ ak + l.
(ii) Let ak ≥ k+l−1−δ and (a1, . . . , ak) = 1. Then |A+B| ≥ k+2l−2−δ.
We would like to note at this point that Theorem 2 will be deduced in

the next section from the following lemma, which in turn will be proved in
Section 3:

Lemma 1. Let (a1, . . . , ak) = 1. Then |A+B| ≥ min{ak, k+l−2−δ}+l.

[85]
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The question which so far remains unanswered is: how can one estimate
|A + B| in the case of ak ≥ k + l − 1 − δ and (a1, . . . , ak) = d > 1? We
may, of course, assume that (a1, . . . , bl) = 1 (else both A and B should be
reduced by the greatest common divisor) and then the following technique
may be used.

Break B into the union of pairwise disjoint sets, B = B1∪ . . .∪Bs, where
s is the number of residue classes modulo d having non-empty intersection
with B, and Bi (i = 1, . . . , s) are those intersections. Then obviously A+Bi
also are pairwise disjoint, hence

|A+B| =
s∑

i=1

|A+Bi|.

Using the well-known estimate |A+Bi| ≥ |A|+ |Bi| − 1 and observing that
s ≥ 2 (in view of (a1, . . . , bl) = 1) we immediately obtain:

Lemma 2. Let (a1, . . . , ak) > 1 and (a1, . . . , bl) = 1. Then |A + B| ≥
2k + l − 2.

The more accurate approach is to estimate |A + Bi| using Lemma 1
(which firstly requires the application of a suitable linear transformation to
both A and Bi). This readily gives

(1) |A+B| ≥ l +
s∑

i=1

min{ak/d, k + li − 2− δi},

where we set li = |Bi| (so that l1 + . . .+ ls = l) and

δi =
{

1 if 0 ∈ Bi and δ = 1,
0 if 0 6∈ Bi or δ = 0.

The sum on the right-hand side of (1) should now be estimated on the
basis of specific features of a particular problem. Actually, we will use this
approach later on in this paper to deduce Theorem 2 from Lemma 1.

And now a brief historical reference. The first generalization of Theo-
rem 1 to the case of two distinct summands was done by G. Freiman in [2].
The results obtained may be formulated as follows:

Theorem 3. (i) Let ak ≤ k + l − 3. Then |A+B| ≥ ak + l.
(ii) Let ak ≥ k + l − 2 and (a1, . . . , bl) = 1. Then |A + B| ≥ k + l +

min{k, l} − 3.

Later, J. Steinig gave in [5] a somewhat simplified proof of Theorem 3.
Note that this theorem follows easily from Theorem 2 and Lemma 2

according to the scheme below:
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1) If ak ≤ k + l − 3, we apply Theorem 2(i);
2) If ak ≥ k + l − 2 and (a1, . . . , bl) = 1:

2.1) If (a1, . . . , ak) > 1, we apply Lemma 2;
2.2) If (a1, . . . , ak) = 1:

2.2.1) If ak ≥ k + l − 1− δ, we apply Theorem 2(ii);
2.2.2) If ak ≤ k + l − 2 − δ, then δ = 0, ak = k + l − 2 and we

apply Theorem 2(i).

2. Deduction of the main theorem from Lemma 1. We assume
(a1, . . . , ak) = d > 1 and

(2) ak ≤ k + l − 2− δ
(else Theorem 2 follows from Lemma 1 automatically) and make use
of (1). First observe that B is situated in s of the d available residue classes
modulo d. Therefore

l ≤ sak
d

+ δ,

which together with (2) gives

ak ≤ k + s
ak
d
− 2, ak(d− s) ≤ (k − 2)d

and then, in view of ak ≥ (k − 1)d, we obtain s = d. Hence, the result will
follow from (1) as soon as we show that for each i = 1, . . . , d,

(3) ak/d ≤ k + li − 2− δi.
Using (2) once again we obtain

#{0 ≤ c < ak | c 6∈ B} = ak − l + δ ≤ k − 2,

li = #{0 ≤ c < ak | c ∈ Bi}+ δi

≥ ak/d−#{0 ≤ c < ak | c 6∈ B}+ δi

≥ ak/d− (k − 2) + δi,

which proves (3) and therefore the whole theorem.

3. Proof of Lemma 1. Let G be an abelian group, and let C ⊆ G be
a finite subset of G. By H(C) we will denote the period of C, that is, the
subgroup of all those elements h ∈ G which satisfy C + h = C. Obviously,
H(C) is always finite. If |H(C)| > 1, the set C is called periodic.

We will need the following result, due to M. Kneser ([3], [4]):

Theorem 4. Let A,B ⊆ G be finite non-empty subsets of G satisfying

|A+B| ≤ |A|+ |B| − 1.

Then H = H(A+B) satisfies

|A+B|+ |H| = |A+H|+ |B +H|.
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Hence, A+B is periodic if

|A+B| ≤ |A|+ |B| − 2.

P r o o f o f L e m m a 1. Suppose

(4) |A+B| ≤ k + 2l − 3− δ
and prove that

|A+B| ≥ ak + l.

Set q = ak, A = ϕA, B = ϕB, where ϕ : Z → Zq is the canonical ho-
momorphism of Z onto Zq. Then |A| = k − 1, |B| = l − δ, and obviously,
A+B = ϕA+ ϕB = ϕ(A+B). As the first step, we show that

(5) |A+B| ≤ |A+B| − l.
To this purpose, in the case of bl < ak it is sufficient to observe that

ϕ(a1 + bi) = ϕ(ak + bi) (i = 1, . . . , l)

while all the sums a1 + bi, ak + bi (i = 1, . . . , l) are pairwise distinct:

a1 + b1 < . . . < a1 + bl < ak + b1 < . . . < ak + bl.

And in the case of bl = ak, here we have

ϕ(a1 + bi) = ϕ(ak + bi) (i = 2, . . . , l − 1),

ϕ(a1 + b1) = ϕ(a1 + bl) = ϕ(ak + bl)

while all the sums above are pairwise distinct:

a1 + b1 < a1 + b2 < . . . < a1 + bl−1 < a1 + bl

< ak + b2 < . . . < ak + bl−1 < ak + bl.

In either case, (5) holds, and thus (4) implies

|A+B| ≤ (k + 2l − 3− δ)− l = |A|+ |B| − 2,

which in view of Kneser’s theorem shows that A + B is periodic. Put H =
H(A + B) ⊆ Zq so that H = dZq for some d | q, d > 0 (the requirement
d > 0 effectively means |H| > 1). Moreover, if d = 1, then H = Zq, that is,
A+B = Zq, and hence

|A+B| ≥ |A+B|+ l = q + l = ak + l,

which was to be proved. We now assume d > 1 and show that d | (a1, . . . , ak),
in contradiction with the assumptions of the lemma.

Denote by σ the canonical homomorphism σ : Zq → Zq/H, and let
Ã = σA, B̃ = σB. Since

|A+H| = |Ã||H|, |B +H| = |B̃||H|, |A+B| = |Ã+ B̃||H|,
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Kneser’s theorem gives

|Ã+ B̃| = |Ã|+ |B̃| − 1,(6)

|(A+H) \A|+ |(B +H) \B| = |H| − (|A|+ |B| − |A+B|).(7)

Each element c ∈ A+B satisfies either σϕc ∈ B̃, or σϕc ∈ (Ã+ B̃) \ B̃.
We will now separately count the number of elements c of both types:

1. Since B +H ⊆ A+B, we have

#{c ∈ A+B | σϕc ∈ B̃} = #{c ∈ A+B | ϕc ∈ B +H}(8)

≥ l + #{c ∈ A+B | c ∈ B +H}
= l + |B +H| = l + |B̃||H|.

2. We have

#{c ∈ A+B | σϕc ∈ (Ã+ B̃) \ B̃} =
∑

c̃∈(Ã+B̃)\B̃
#{c ∈ A+B | σϕc = c̃}.

For each c̃ ∈ (Ã + B̃) \ B̃ fix ã ∈ Ã, b̃ ∈ B̃ in such a way that c̃ = ã + b̃.
Then

#{c ∈ A+B | σϕc = c̃} ≥ |ϕ−1σ−1ã ∩A+ ϕ−1σ−1b̃ ∩B|
≥ |ϕ−1σ−1ã ∩A|+ |ϕ−1σ−1b̃ ∩B| − 1

≥ |σ−1ã ∩A|+ |σ−1b̃ ∩B| − 1

≥ 2|H| − 1− |(A+H) \A| − |(B +H) \B|
= |H| − 1 + |A|+ |B| − |A+B|

(we used here (7)). Therefore, in view of (6),

(9) #{c ∈ A+B | σϕc ∈ (Ã+ B̃) \ B̃}
≥ |(Ã+ B̃) \ B̃|(|H| − 1 + |A|+ |B| − |A+B|)
= (|Ã| − 1)(|H| − 1 + |A|+ |B| − |A+B|).

Summing up (8) and (9) and taking into account (6), we obtain

|A+B| ≥ l + |B̃||H|+ (|Ã| − 1)(|H| − 1 + |A|+ |B| − |A+B|)
= l + (|Ã|+ |B̃| − 1)|H|+ (|Ã| − 1)(|A|+ |B| − |A+B| − 1)

= l + |A+B|+ (|Ã| − 1)(|A|+ |B| − |A+B| − 1).

Now (4) gives |A+B| ≤ (k − 1) + (l − δ) + l − 2 = |A|+ |B|+ l − 2, hence

|A|+ |B|+ l − 2 ≥ l + |A+B|+ (|Ã| − 1)(|A|+ |B| − |A+B| − 1),

that is,

1 + (|Ã| − 2)(|A|+ |B| − |A+B| − 1) ≤ 0,
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and the obtained inequality shows that |Ã| = 1. But in view of 0 ∈ Ã this
means d | (a1, . . . , ak), a contradiction.

4. Consequences. Two situations permanently arise in applications and
are worth mentioning here.

The first is when B is a subset of A. This is an additional information,
and we use it to reject in Theorem 2 the restriction concerning the greatest
common divisor of elements of A. This also allows us to put the conclusion
of the theorem in a more compact form, like that of Lemma 1.

The second situation is when we cannot decide in advance which one
of the two sets A and B is longer. We have to pay for this uncertainty by
relaxing the estimates in Theorem 2.

In this section, we do not assume that the minimal elements of A and B
are 0, so the definition of δ should be changed, to say, as follows:

δ =
{

1 if A and B are of the same length,
0 otherwise.

Here by the length of a set we mean the difference between its maximal and
minimal elements.

We need also the notion of reduced length. For A = {a1, . . . , ak} put
a′i = ai − a1 (i = 1, . . . , k), and denote by d the greatest common divisor of
the elements of the set A′ = {a′1, . . . , a′k}. Then the reduced length of A is
defined by a = a′k/d.

Theorem 5. Let A be a finite set of integers of reduced length a, and
B ⊆ A. Then

|A+B| ≥ min{a, k + l − 2− δ}+ l.

P r o o f. We define A′ and d as above and put

a′′i = a′i/d (i = 1, . . . , k), A′′ = {a′′1 , . . . , a′′k},
b′′i = (bi − b1)/d (i = 1, . . . , l), B′′ = {b′′1 , . . . , b′′l },

so that a′′k = a is the reduced length of A. Then our theorem follows imme-
diately from Lemma 1 as applied to the sets A′′ and B′′.

The second situation of the two discussed above is covered by

Theorem 6. Define d = (a′1, . . . , a
′
k, b
′
1, . . . , b

′
l), a = a′k/d, b = b′l/d

(where a′i = ai − a1, b
′
i = bi − b1) and put c = max{a, b}. Then

|A+B| ≥ min{c, k + l − 2− δ}+ min{k, l}.
P r o o f. We may assume d = 1, a1 = b1 = 0 and also (due to the sym-

metry between A and B) c = ak ≥ bl. Then in the case of (a1, . . . , ak) = 1
we apply Lemma 1, and otherwise, Lemma 2.
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It should be pointed out that theorems of this type are usually utilized
to estimate the length for a given value of |A+B|, like the following:

Corollary 1. Let A,B, a be as in Theorem 5, and assume that T =
|A+B| < k + 2l − 2− δ. Then a ≤ T − l.

Corollary 2. Let A,B, c be as in Theorem 6, and assume that T =
|A+B| < k + l + min{k, l} − 2− δ. Then c ≤ T −min{k, l}.
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