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What is the structure of a pair of finite integers sets A, B C Z with the
small value of |A + B|? We answer this question for addition coefficient 3.
The obtained theorem sharpens the corresponding results of G. Freiman.

1. Introduction and historical comments. Let A = {ay,...,ax},
B = {by,...,b;} be two sets of integers, so that k& = |A|, [ = |B|, and
suppose 0 = a1 < ... <ag, 0=05b1 <...<b. As usual, we write A + B for
the set {a;+b; | 1 <i <k, 1 <j<I}, and put 24 = A+ A. By (a1,...,ax)
we denote the greatest common divisor of aq,...,ak, and by (a1,...,b;) the
greatest common divisor of ay,...,ar,b1,...,0b.

In [1] G. Freiman proved the following:

THEOREM 1. (i) Let ay < 2k — 3. Then [2A] > ay, + k.
(i) Let ax > 2k —2 and (aq,...,ax) = 1. Then |2A| > 3k — 3.

The present paper is devoted to the generalization of this theorem to the
case of summation of two distinct sets A and B. Without loss of generality,
we may assume ag > by, and put

5 — 1 ifbl:ak,
10 if b; < ag.

Our main result is:

THEOREM 2. (i) Let a, <k+1—2—46. Then |A+ B| > ay, + 1.
(i) Let ap > k+l—1-9 and (a1,...,ar) = 1. Then |A+B| > k+2l—2—90.

We would like to note at this point that Theorem 2 will be deduced in
the next section from the following lemma, which in turn will be proved in
Section 3:

LEMMA 1. Let (ai,...,ax) = 1. Then |A+B| > min{ay, k+1—2—3§}+1.

(85]
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The question which so far remains unanswered is: how can one estimate
|A + B| in the case of a, > k+1—1—9 and (a1,...,ax) = d > 17 We
may, of course, assume that (ai,...,b) = 1 (else both A and B should be
reduced by the greatest common divisor) and then the following technique
may be used.

Break B into the union of pairwise disjoint sets, B = B;U...UB;, where
s is the number of residue classes modulo d having non-empty intersection
with B, and B; (i = 1,...,s) are those intersections. Then obviously A+ B;
also are pairwise disjoint, hence

|A+B|=)_|A+ B
=1

Using the well-known estimate |A + B;| > |A| + |B;| — 1 and observing that
s > 2 (in view of (aj,...,b) = 1) we immediately obtain:

LEMMA 2. Let (a1,...,a;) > 1 and (a1,...,b;) = 1. Then |A+ B| >
2k+1-2.

The more accurate approach is to estimate |A 4+ B;| using Lemma 1
(which firstly requires the application of a suitable linear transformation to
both A and B;). This readily gives

(1) |A+ Bl >1+ ) min{ar/d, k+1; —2 -},

i=1
where we set [; = |B;| (so that [ +...+ 1, =) and

5 — 1 if0€ B;and 6 =1,
10 if0¢gB;ord=0.

The sum on the right-hand side of (1) should now be estimated on the
basis of specific features of a particular problem. Actually, we will use this
approach later on in this paper to deduce Theorem 2 from Lemma 1.

And now a brief historical reference. The first generalization of Theo-
rem 1 to the case of two distinct summands was done by G. Freiman in [2].
The results obtained may be formulated as follows:

THEOREM 3. (i) Let ap, < k+1—3. Then |A+ B| > a) + .
(ii) Let a, > k+1—2 and (a1,...,b;) = 1. Then |[A+ B| > k+ 1+
min{k,l} — 3.

Later, J. Steinig gave in [5] a somewhat simplified proof of Theorem 3.

Note that this theorem follows easily from Theorem 2 and Lemma 2
according to the scheme below:
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1) If ap < k41— 3, we apply Theorem 2(i);
2) Ifay > k+1—2and (ay,...,0) =1
2.1) If (a1,...,ar) > 1, we apply Lemma 2;
2.2) If (a1,...,ax) = 1:
221)Ifa > k+1—1-4, we apply Theorem 2(ii);
222)fap <k+1—2—-9,thend =0, ap =k +1—2 and we
apply Theorem 2(i).

2. Deduction of the main theorem from Lemma 1. We assume
(a1,...,ax) =d>1 and
(2) ap <k+1—-2-6
(else Theorem 2 follows from Lemma 1 automatically) and make use

of (1). First observe that B is situated in s of the d available residue classes
modulo d. Therefore

ag
[ <s—+46
—Sd+’

which together with (2) gives
ag
d
and then, in view of ay > (k — 1)d, we obtain s = d. Hence, the result will
follow from (1) as soon as we show that for each i =1,...,d,

(3) ap/d < k4 1; —2 — 0;.
Using (2) once again we obtain
#{0<c<ap|cg€Bl=ar—14+06<k—-2,
li=#{0<c<ay|c€ B;}+9;
>ap/d—#{0<c<ap|cg B} +9;
> ap/d— (k—2)+ 6,

which proves (3) and therefore the whole theorem. m

ar <k+s— -2, ap(d—s)<(k—2)d

3. Proof of Lemma 1. Let GG be an abelian group, and let C C G be
a finite subset of G. By H(C) we will denote the period of C, that is, the
subgroup of all those elements h € G which satisfy C + h = C. Obviously,

H(C) is always finite. If |H(C)| > 1, the set C is called periodic.
We will need the following result, due to M. Kneser ([3], [4]):

THEOREM 4. Let A, B C G be finite non-empty subsets of G satisfying
|A+ B| < |A|+|B| - 1.
Then H = H(A + B) satisfies
|A+B|+|H|=|A+H|+|B+H|
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Hence, A+ B is periodic if
|A+ B| < |A| + |B| —2.
Proof of Lemma 1. Suppose
(4) A+ B|<k+20—-3—-90
and prove that
|A+ B| > ap +1.

Set ¢ = ax, A = pA, B = ¢B, where ¢ : Z — Z, is the canonical ho-
momorphism of Z onto Z,. Then |A| = k — 1, |B| =1 — 4, and obviously,
A+ B=pA+ ¢pB = p(A+ B). As the first step, we show that

(5) |A+ B| <|A+ B| -1
To this purpose, in the case of b; < ay, it is sufficient to observe that
plar +b;) = plar +b;) (E=1,...,1)
while all the sums ay + b;, a +b; (i =1,...,1) are pairwise distinct:
alt+h <...<a+b<ap+b <...<ap+b.
And in the case of b; = ay, here we have
wlar +b;) =¢lap+b;) (i=2,...,1—-1),
@(ar +b1) = p(ar +by) = p(ax + by)
while all the sums above are pairwise distinct:
a1 +bi<ar+ba<...<ar+b_1<a+h
<ap+by<...<ap+b_1<ar+b.
In either case, (5) holds, and thus (4) implies
A+ B|<(k+21—-3-06)—1=|A|+|B| -2,

which in view of Kneser’s theorem shows that A + B is periodic. Put H =
H(A+ B) C Z, so that H = dZ, for some d|q, d > 0 (the requirement
d > 0 effectively means |H| > 1). Moreover, if d = 1, then H = Z,, that is,
A+ B = Z,, and hence

A+ B| > |A+ B|+l=q+1=a,+]1,

which was to be proved. We now assume d > 1 and show that d | (a1, ..., ax),
in contradiction with the assumptions of the lemma.
Denote by o the canonical homomorphism ¢ : Z, — Z,/H, and let

A=0A, B=0B. Since
|A+H|=|A||H|, [B+H|=|B|H|. [|A+B|=|A+BJ|H]|,
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Kneser’s theorem gives
(6) A+ B| = |A]+|B| -1,
(1) A+ H)\A[+|(B+H)\ B| = |H| - (|A] + [B] — |4 + BJ).

Each element ¢ € A + B satisfies either opc € B, or opc € (A+ B)\ B.
We will now separately count the number of elements ¢ of both types:
1. Since B + H C A + B, we have

(8)  #{ccA+Bl|opce BY=#{cc A+B|gce B+ H}
>l+#{ce A+B|ce B+ H}
=1+ |B+H|=1+|B|H|

2. We have

#{ce A+Blopce (A+B)\Bt= >  #{c€eA+B|opc=2c}.

¢e(A+B)\B

For each ¢ € (A+ B)\ B fixa € A, b € B in such a way that ¢ = @ + b.
Then

#{ce A+ B|opc=c}> oo an A+ o o 'bN B|
>l lotanAl+ e o bN Bl -1
> o 'anAl+ o bNB| -1
>2/H| —1—|(A+H)\ Al - |(B+ H)\ B
= |H|—1+|A|+|B| - |A+ B
(we used here (7)). Therefore, in view of (6),
(9) #{ce A+B|opce (A+B)\ B}
> [(A+ B)\ B|(|H| -1+ |A|+|B| - |4+ B)
— (1A= D(H| — 1+ |4 + B - |3+ B,
Summing up (8) and (9) and taking into account (6), we obtain
|A+ B| > 1+|B||H|+ (|A| - 1)(|H| = 1+ |A| + |B| - |A + B|)
— 1+ (] + B - DIH| + (A - 1)(|A] + |B| - |3+ B| - 1)
=1+ |A+ B|+ (A —1)(|A| +|B| — |A+ B| - 1).
Now (4) gives |[A+ B| < (k—1)+ (I —=8) +1—2 = |A| + |B| + 1 — 2, hence
Al +|B|+1—2>1+|A+ B|+ (A - 1)(|A| + |B| - |A+ B| - 1),
that is,
1+ (|A| - 2)(JA| +|B| - |A+ B| - 1) <0,
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and the obtained inequality shows that |A| = 1. But in view of 0 € A this
means d|(ay,...,a), a contradiction. m

4. Consequences. Two situations permanently arise in applications and
are worth mentioning here.

The first is when B is a subset of A. This is an additional information,
and we use it to reject in Theorem 2 the restriction concerning the greatest
common divisor of elements of A. This also allows us to put the conclusion
of the theorem in a more compact form, like that of Lemma 1.

The second situation is when we cannot decide in advance which one
of the two sets A and B is longer. We have to pay for this uncertainty by
relaxing the estimates in Theorem 2.

In this section, we do not assume that the minimal elements of A and B
are (0, so the definition of § should be changed, to say, as follows:

5= { 1 if A and B are of the same length,
0 otherwise.
Here by the length of a set we mean the difference between its maximal and
minimal elements.

We need also the notion of reduced length. For A = {a1,...,ax} put
a,=a; —ay (i=1,...,k), and denote by d the greatest common divisor of
the elements of the set A" = {a],...,a,}. Then the reduced length of A is
defined by a = a},/d.

THEOREM 5. Let A be a finite set of integers of reduced length a, and
B C A. Then

|A+ B| > min{a,k+1—2—6} + 1.
Proof. We define A’ and d as above and put
al = a;/d (i=1,...,k), A"={d},... al},
b = (b —b1)/d (i=1,...,1), B"={b/,....b},

so that a} = a is the reduced length of A. Then our theorem follows imme-
diately from Lemma 1 as applied to the sets A” and B”. =

The second situation of the two discussed above is covered by

THEOREM 6. Define d = (ai,...,ap,b},...,b)), a = a}/d, b = b)/d
(where a}, = a; — a1, b, =b; — by) and put ¢ = max{a,b}. Then

|A+ B| > min{c,k+1—2— 6} + min{k, [}.
Proof. We may assume d = 1, a; = b3 = 0 and also (due to the sym-

metry between A and B) ¢ = ax > b;. Then in the case of (ay,...,a;) =1
we apply Lemma 1, and otherwise, Lemma 2. =
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It should be pointed out that theorems of this type are usually utilized
to estimate the length for a given value of |A + B|, like the following:

COROLLARY 1. Let A, B,a be as in Theorem 5, and assume that T =
A+ B|<k+20—2—06. Thena <T —1.

COROLLARY 2. Let A, B,c be as in Theorem 6, and assume that T =
|A+ B| < k+ 1+ min{k,l} —2—0. Then ¢ <T — min{k,l}.
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