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1. Introduction. A well-known unsolved problem in number theory
concerns the distribution of (3/2)n (mod 1). This sequence is believed to
be uniformly distributed, which is the case for almost all real numbers θn

(mod 1), but it is not even known to be dense in [0, 1]. One of the few
positive results known for (non-integer) rational θ = p/q is that of Vija-
yaraghavan (1940), who showed that the set (p/q)n (mod 1) has infinitely
many limit points. Vijayaraghavan later remarked that it was striking that
one could not even decide whether or not (3/2)n (mod 1) has infinitely
many limit points in [0, 1/2) or in [1/2, 1). Both these latter assertions
would follow if one could show that

lim sup
n→∞

{(

3

2

)n}

− lim inf
n→∞

{(

3

2

)n}

>
1

2
.

This remains unsettled. However, in this paper we will show that

(1.1) lim sup
n→∞

{(

3

2

)n}

− lim inf
n→∞

{(

3

2

)n}

≥ 1

3
,

as a special case of more general results.
One approach to such questions is to study the distribution of {ξθn} :=

ξθn (mod 1), where ξ > 0 is an arbitrary real number. Already Pisot (1938),
Chapitre IV, studied such quantities for certain algebraic θ, followed by
Vijayaraghavan (1941)–(1948) and Pisot (1946). More recently Choquet
(1981) and Pollington (1978), (1979), (1981) have separately studied the
distribution of general sequences ξθn (mod 1), and have shown that a wide
variety of behaviors can occur. We shall obtain the result (1.1) by showing
the stronger result that

(1.2) lim sup
n→∞

{

ξ

(

3

2

)n}

− lim inf
n→∞

{

ξ

(

3

2

)n}

≥ 1

3

holds for all real ξ > 0. This fact depends on the specific nature of 3/2,
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because if θ = λ2 where λ is a totally real Pisot number, e.g. θ = (3+
√

5)/2,
then for any ε > 0 one can find a positive real ξ with

(1.3) lim sup
n→∞

{ξθn} − lim inf
n→∞

{ξθn} < ε.

More generally, for any Pisot or Salem number θ and any ε > 0 there exists
ξ with ‖ξθn‖ < ε for all n = 0, 1, . . . , where ‖x‖ is the distance of x to the
nearest integer, cf. Bertin et al . (1992), Theorem 5.2.4. For θ = λ2 where λ
is a totally real Pisot number one has 1− ε < {ξθn} < 1 for all n = 0, 1, . . .
on taking ξ = θk for large enough k, which yields (1.3).

The main focus of the paper is the study of ξ, θ for which all ξθn (mod 1)
stay inside a subinterval [s, s + t) which is strictly contained in [0, 1). Let
Zθ(s, s + t) denote the set of all positive real ξ which have this property.
We exclusively consider the case of (non-integer) rationals θ = p/q, where
p > q ≥ 2 are relatively prime. Thus we study the set Zp/q(s, s + t) given
by those positive real numbers ξ satisfying

(1.4) s ≤
{

ξ

(

p

q

)n}

< s + t for all n ≥ 0.

We call members of Zp/q(s, s+ t) generalized Z-numbers, extending the ter-
minology of Mahler (1968), who used the term Z-numbers for the members
of Z3/2(0, 1/2). It is known that Zp/q(s, s + t) is either countable (possibly
empty) or else has cardinality the power of the continuum (1).

In this paper we study conditions guaranteeing that Zp/q(s, s + t) be
countable. We consider the following properties:

(A) Zp/q(s, s + t) contains at most one number in each unit interval
[m,m + 1) for all m ∈ Z

+. (Here Z
+ denotes the set of integers m ≥ 0.)

(B) Property (A) holds and in addition there is some γ < 1 such that

#{ξ ≤ x : ξ ∈ Zp/q(s, s + t)} = O(xγ) as x → ∞.

(C) Zp/q(s, s + t) = ∅.
Properties (A) and (B) naturally arise out of the method of Mahler

(1968), who originally considered Z3/2(0, 1/2). He conjectured that no Z-
numbers exist, a problem which still remains unsolved. What Mahler proved
was that properties (A) and (B) hold for Z-numbers, and he obtained the

bound O(xγ) with γ = log2
1+

√
5

2
∼= .70. Later Flatto (1992) improved the

bound to γ = log2(3/2)
∼= .59. In a complementary direction, Tijdeman

(1972) found an elementary method which permits one to show for certain
p/q and t that Zp/q(0, t) contains exactly one element in every unit interval
[n, n + 1) for every integer n ≥ 1.

(1) This fact can be proved without recourse to the continuum hypothesis, using the
rather simple topological structure of Zp/q(s, s+ t), cf. Flatto (1992).
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The essential idea of Mahler’s method, as explained in Flatto (1992), is
the observation that, for any Z-number ξ, the integer parts gn = [ξ(3/2)n]
and fractional parts xn = {ξ(3/2)n} have the following three properties:

(i) The sequence {gn} is produced by iterating a fixed map F3/2 : Z
+ →

Z
+.

(ii) The sequence {2xn} is produced by iterating a fixed map f3/2 :
[0, 1] → [0, 1].

(iii) Certain symbolic dynamics of the iterates {gn} for F3/2 and of the
iterates {2xn} for f3/2 are identical.

The map F3/2 is given by

F3/2(m) =

{

3m/2 if m ≡ 0 (mod 2),
(3m + 1)/2 if m ≡ 1 (mod 2),

and the map f3/2 is given by

f3/2(x) = 3
2
x (mod 1).

The latter is a special case of the well-studied β-transformation

(1.5) fβ(x) = βx (mod 1), 0 ≤ x < 1,

where β > 1. We call the properties (i)–(iii) above a “decoupling condition”,
because the integer parts and the (scaled) fractional parts of ξ(3/2)n are
then separately describable by iterating independent maps F3/2 and f3/2.
Property (iii) provides the connection between the integer and fractional
parts.

More generally, we say that Zp/q(s, s + t) satisfies a “decoupling con-
dition” if appropriate analogues of properties (i)–(iii) above hold, as given
in Proposition 2.1 in Section 2. Flatto (1992) showed that a “decoupling
condition” holds for Zp/q(0, t) whenever 0 ≤ t ≤ 1/q.

This paper extends Mahler’s method to more general sets Zp/q(s, s + t)
where s > 0. Our first result gives conditions under which property (A)
holds, and slightly stronger conditions under which property (B) holds. Let
⌈x⌉ denote the smallest integer n ≥ x.

Theorem 1.1. Suppose that p > q ≥ 2 are relatively prime integers, and

that the interval [s, s + t) ⊂ [0, 1] is such that

(C1) 0 < t ≤ 1/q,(1.6)

(C2) {(p − q)s} ≤ q − pt.(1.7)

Then the set Zp/q(s, s+t) contains at most one element in each unit interval

[m,m + 1), for all nonnegative integers m. In addition

(1.8) #{ξ : 0 ≤ ξ ≤ x and ξ ∈ Zp/q(s, s + t)} = O(xγ)

where γ = min(logq(p/q), logq(⌈pt + {(p − q)s}⌉)) as x → ∞.
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This theorem is proved by establishing the “decoupling condition” for
Zp/q(s, s+t) whenever conditions (C1) and (C2) hold. In particular, for any
fixed rational p/q > 1 the “decoupling condition” holds for all sufficiently
short intervals, namely for all intervals [s, s + t) with 0 ≤ t ≤ 1/p. The
complicated conditions (C1) and (C2) are somewhat difficult to appreciate,
but seem to be the natural limits of validity of the “decoupling condition”.
Of importance for our later results is that the general version of property
(ii) of the “decoupling condition” involves a linear mod one transformation

fβ,α(x) = βx + α (mod 1).

We note that the conditions (C1) and (C2) are interdependent as follows:
For p ≤ q2 − q condition (C1) implies (C2), while for p ≥ q2 condition (C2)
implies (C1).

Theorem 1.1 usually verifies property (B), for it gives an exponent γ < 1
unless both p > q2 and pt + {(p − q)s} > q − 1. However, Corollary 1.3a
below shows that the bound γ = 1 is actually sharp in some cases. At the
other extreme, we show that property (C) holds in some circumstances (see
Section 3 and Corollary 1.4a below).

Our second result shows that property (A) holds for some Zp/q(s, s + t)
not covered by Theorem 1.1. It was originally developed in the thesis of
Pollington (1978).

Theorem 1.2. Suppose that p > q ≥ 2 are relatively prime integers, and

that the interval [s, s + t] ⊂ [0, 1] is such that

(C1∗) t ≥ 1/q,(1.9)

(C2∗) qt − 1 ≤ (p − q)s ≤ q − pt.(1.10)

Then the set Zp/q(s, s+t) contains at most one element in each unit interval

[m,m + 1), for all nonnegative integers m.

This result applies only when q < p ≤ q2, because if p > q2 then (C1∗)
gives q − pt ≤ q − p/q < 0, which violates (C2∗).

Theorem 1.2 is proved by establishing a “partial decoupling condition”
for Zp/q(s, s + t), in which an analogue of property (i) holds, i.e. gn =
[ξ(p/q)n] is described by an iterated map Tp/q : Z

+ → Z
+, and furthermore

there is a simple deterministic relation between gn and xn = {ξ(p/q)n}.
However, in these circumstances we do not know of any analogue of prop-
erty (ii).

We illustrate Theorem 1.2 for p/q = 3/2. The widest interval which
Theorem 1.2 yields is [1/5, 4/5], obtained by taking s = 1/5, t = 3/5.
This fact is complemented by a result of Pollington (1981) stating that,
for γ = 4/65, Z3/2(γ, 1 − γ) has positive Hausdorff dimension, hence is
uncountable.
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Our third result gives circumstances under which property (A) holds and
property (B) does not, and is proved by the method of Tijdeman (1972).

Theorem 1.3. Let p > q ≥ 2 be relatively prime integers with p ≥ 2q− 1
and suppose that a is an integer with 0 ≤ a ≤ p − 2q + 1. Then for q−1

p−q
<

t ≤ p−q−a
p−q the set Zp/q

(

a
p−q , a

p−q + t
)

contains at least one element ξ in each

interval
[

m + a
p−q

,m + a+q−1
p−q

]

, for all nonnegative integers m.

Combining this theorem with Theorem 1.1 immediately yields:

Corollary 1.3a. Let p > q ≥ 2 be relatively prime integers and suppose

p > q2, so that q
p > q−1

p−q . Then for

q − 1

p − q
< t ≤ q

p

and for any integer 0 ≤ a ≤ p−2q, the set Zp/q

(

a
p−q

, a
p−q

+t
)

contains exactly

one Z-number in each interval [m,m + 1), for all nonnegative integers m.

Finally we come to the most significant result of this paper.

Theorem 1.4. Let p > q ≥ 2 be relatively prime integers. Then for all

positive real ξ

(1.11) lim sup
n→∞

{

ξ

(

p

q

)n}

− lim inf
n→∞

{

ξ

(

p

q

)n}

≥ 1

p
.

This result implies that any interval containing all {ξ(p/q)n} for n ≥ 0
is of length at least 1/p, which yields (1.2).

The proof of Theorem 1.4 is based on showing that, for given p, q and
t = 1/p, property (C) holds for a dense set of values of s in [0, 1− 1/p]. The
proof of this fact uses Theorem 1.1 and a detailed analysis of the iteration of
linear mod one transformations. The methods in the proof can also be used
to verify that property (C) holds for certain specific intervals [s, s + 1/p) by
a finite computation. For example, we show:

Corollary 1.4a. Z3/2(s, s + 1/3) = ∅ for s = 0, 1/6, 1/3, 1/2, and 2/3.

The case s = 0 of this corollary was obtained in Pollington (1978).

To put Theorem 1.4 in more perspective, define for arbitrary real θ > 1
the quantity

Ω(θ) := inf
ξ>0

(lim sup
n→∞

{ξθn} − lim inf
n→∞

{ξθn}).

Tijdeman (1972) shows by an intervals construction that Zθ(0, 1/(θ−1)) 6= ∅,
whence

(1.12) Ω(θ) ≤ 1

θ − 1
.
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In particular, Ω(p/q) ≤ q/(p − q). In comparison Theorem 1.4 asserts that

Ω(p/q) ≥ 1/p.

For q = 2 the ratio of the upper to the lower bound is bounded, and ap-
proaches 2 as p → ∞. This gives a sense in which Theorem 1.4 is close to
best possible. As already mentioned, Ω(θ) = 0 when θ = λ2 for any totally
real Pisot number λ. There are, however, only countably many θ such that

(1.13) Ω(θ) ≤ 1

2(1 + θ)2
,

see Bertin et al . (1992), Theorem 5.6.1. Boyd (1969) gives another related
result (2).

In Section 2 we prove Theorems 1.1–1.3, and in Section 3 we analyze
linear mod one transformations and prove Theorem 1.4 on the range of
{ξ(p/q)n}.

2. Generalized Z-numbers and linear mod one transformations.

The idea underlying Mahler’s method is, for certain special intervals [s, s+t),
to show that all ξ ∈ R

+ for which

s ≤
{

ξ

(

p

q

)k}

< s + t for all k ≥ 0,

have the property that the integer and fractional parts of ξ(p/q)k separately

obey iterations of simple maps on Z
+ and [0, 1), respectively. This “de-

coupling” of integer and fractional parts permits their separate study. For
Theorem 1.1 the relevant maps are special cases of Tβ,α : Z

+ → Z
+ with

Tβ,α(n) = ⌈βn + α⌉, and the linear mod one transformation

fβ,α(x) = βx + α (mod 1), 0 ≤ x < 1.

If β = p/q and α = a/q are both rational, with a ∈ Z
+, then the function

Tβ,α has the alternative expression

(2.1) Tp/q,a/q(g) =
pg + a + ij

q
if g ≡ j (mod q),

where 0 ≤ ij ≤ q − 1 is determined by

(2.2) ij ≡ −pj − a (mod q).

For a general map G : X → X one prescribes a symbolic dynamics by an
auxiliary map S : X → Σ onto a symbol space Σ. Letting G(k)(x) denote

(2) Boyd shows that, for all integers m ≥ 3, each interval [m,m + 1) contains un-
countably many θ for which there exists a ξ such that ‖ξθn‖ ≤ (2eθ(θ + 1)(1 + log ξ))−1

for n = 0, 1, 2, . . .
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the kth iterate of G(x), one associates to x the itinerary

I(x) := (x,G(x), G(2)(x), . . .)

and the symbolic itinerary

I∗S(x) := (S(x), S(G(x)), S(G(2)(x)), . . .).

In interesting cases the symbolic itinerary I∗S(x) determines x. There is a
natural symbolic dynamics associated with T = Tp/q,a/q , which assigns to
each n ∈ Z

+ the integer ST (n) = j where 0 ≤ j ≤ q− 1 and n ≡ j (mod q);
thus Σ = {0, 1, . . . , q − 1}. Linear mod one transformations f = fβ,α also
have a natural symbolic dynamics, which assigns to each x∈ [0, 1) the integer

(2.3) Sf (x) = [βx + α].

In this case the symbol space Σ = {0, 1, . . . , [β + α]}. For the two maps
T = Tp/q,a/q and f = fβ,α, the symbolic itineraries of m ∈ Z

+ and of
x ∈ [0, 1) will be referred to respectively as the T -expansion of m and
f -expansion of x. For both these maps the symbolic itineraries of an input
uniquely determines that input.

The proof of Theorem 1.1 is based on the following Proposition 2.1, which
is a precise version of the “decoupling condition”. To simplify notation,
assume p, q and s are fixed, and let T and f stand for Tp/q,[(p−q)s]/q and
fp/q,{(p−q)s}, respectively. Also let {an} be the T -expansion of g ∈ Z

+,
i.e. an = ST (T n(g)), and let {bn} denote the f -expansion of θ ∈ [0, 1), i.e.
bn = Sf (fn(θ)).

Proposition 2.1. Let p > q ≥ 2 be relatively prime integers and let

[s, s + t) ⊂ [0, 1) be an interval satisfying :

(C1) 0 < qt ≤ 1,
(C2) {(p − q)s} ≤ q − pt.

Then ξ ∈ Zp/q(s, s + t) if and only if

(S1) The quantity θ := q({ξ} − s) has

(2.4) 0 ≤ f (n)(θ) < qt for all n ≥ 0.

(S2) The T -expansion {an} of g = [ξ] and the f -expansion {bn} of θ =
q({ξ} − s) are related by

σ(an) = bn for all n ≥ 0,

where σ is the permutation of {0, 1, . . . , q − 1} given by

(2.5) σ(i) ≡ −pi − [(p − q)s] (mod q).

Furthermore, if (S1), (S2) are satisfied then

(2.6) T (n)(g) =

[

ξ

(

p

q

)n]

, f (n)(θ) = q

({

ξ

(

p

q

)n}

−s

)

for all n ≥ 0.
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Note that if qt = 1, then the condition (S1) automatically holds, hence
is superfluous.

Proposition 2.1 is an immediate consequence of repeated application of
the following Lemma 2.1. We set

(2.7a) g := [ξ], g′ :=

[

p

q
ξ

]

,

and

(2.7b) θ := q({ξ} − s), θ′ := q

({

p

q
ξ

}

− s

)

,

to simplify notation.

Lemma 2.1. Let p > q ≥ 2 be relatively prime integers, and let [s, s + t)
be an interval satisfying conditions (C1), (C2). Suppose ξ > 0 satisfies

s ≤ {ξ} < s + t, i.e. 0 ≤ θ < qt. Then

s ≤
{

p

q
ξ

}

< s + t

holds if and only if

(i) 0 ≤ f(θ) < qt,

(ii) σ(ST (g)) = Sf (θ).

Furthermore, (i) and (ii) together imply that

(2.8) g′ = T (g), θ′ = f(θ).

P r o o f. From (2.7) we have

(2.9) ξ = [ξ] + {ξ} = g + s + θ/q,

where g ∈ Z and 0 ≤ θ < qt ≤ 1, the last inequality guaranteed by condi-
tion (C1). Also (2.7) gives

(2.10)
p

q
ξ =

[

p

q
ξ

]

+

{

p

q
ξ

}

= g′ + s +
θ′

q

where g′ ∈ Z and 0 ≤ s + θ′/q < 1, whence

(2.11) g′ ∈ Z
+ and − qs ≤ θ′ < −qs + q.

Multiplying (2.9) by p/q and subtracting from (2.10) yields
(

g′ − p

q
g

)

+

(

1 − p

q

)

s +
1

q

(

θ′ − p

q
θ

)

= 0.

Multiplying by q and rearranging terms yields

(2.12a) q(g′−T (g))+ ig +θ′ =
p

q
θ+{(p− q)s} =

[

p

q
θ+{(p− q)s}

]

+f(θ),
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where by definition of T , 0 ≤ ig < q satisfies

(2.12b) ig ≡ −pg − [(p − q)s] (mod q).

Now g′ and θ′ are the solutions to (2.12) uniquely determined by the re-
quirements (2.11). Equating the integer and fractional parts of both sides
of (2.12a), we find that

0 ≤ θ′ < qt

holds if and only if θ and g satisfy the two conditions

(2.13) 0 ≤ f(θ) < qt,

and

(2.14)

[

p

q
θ + {(p − q)s}

]

− ig ≡ 0 (mod q),

the last condition being equivalent to g′ ∈ Z.

Now, by condition (C2),

(2.15) 0 ≤
[

p

q
θ + {(p − q)s}

]

≤ p

q
θ + {(p − q)s} < pt + {(p − q)s} ≤ q.

Because 0 ≤ ig < q, (2.14) is equivalent to

(2.16)

[

p

q
θ + {(p − q)s}

]

= ig.

Equations (2.13) and (2.16) are conditions (i), (ii) of Lemma 2.1.

Finally, if (2.13) and (2.16) hold then equating the integer and fractional
parts of (2.12a) yields g′ = T (g), θ′ = f(θ), respectively.

We remark that condition (C1) is crucial for Lemma 2.1, in that simple
arguments show that (S1) fails when (C1) fails.

Lemma 2.1 will be shown below to imply property (A); the following
lemma is needed to establish the density result (1.6) of Theorem 1.1, which
yields property (B).

Lemma 2.2. Let p > q ≥ 2 be relatively prime integers. Then for any

integer a ≥ 0, the map T = Tp/q,a/q : Z
+ → Z

+ has the property that for

each k ≥ 1, the sequence of k symbols

(ST (g), ST (T (g)), . . . , ST (T (k−1)(g)))

is determined by g (mod qk) and each of the qk possible symbol strings in

{0, 1, . . . , q − 1}k occurs exactly once for 0 ≤ g ≤ qk − 1.

P r o o f. For any g ∈ Z
+ and i ∈ Z

+

(2.17) T (g + bi) = T (g) + pi.
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The integers i+ qj with 0 ≤ i < q− 1, 0 ≤ j ≤ qk−1 − 1 form a complete
residue system (mod qk). Let g ≡ i + qj (mod qk), i.e. g = i + qj + qkm,
m an integer. By (2.17), T (g) = T (i) + pj + pqk−1m, so

T (g) ≡ T (i) + pj (mod qk−1).

Since (p, q) = 1, we see that, for any given i, {T (i) + pj : 0 ≤ j < qk−1}
runs through a complete residue system (mod qk−1). Both statements of the
lemma then follow by induction on k, assuming the induction hypothesis for

(ST (g′), ST (T (g′)), . . . , ST (T (k−2)(g′))).

The base case k = 1 is obvious.

Lemma 2.2 asserts that all possible finite symbol sequences occur when
iterating Tp/q,a/q on the domain Z

+.

P r o o f o f T h e o r e m 1.1. To prove the first assertion, if there is some
ξ ∈ Zp/q(s, s + t) with ξ ∈ [g, g + 1) for g ∈ Z

+, then by Proposition 2.1
the symbolic dynamics of f applied to θ is completely determined by the
symbolic dynamics of T applied to g = [ξ]. It is well known that linear mod
one transformations fβ,α have at most one input 0 ≤ θ < 1 with any given
symbol sequence (S0, S1, S2, . . .) (see Parry (1960), Rényi (1957)). As the
map from ξ to θ = q({ξ} − s) is a bijection from [s, s + t] to [0, qt) ⊂ [0, 1),
it follows that g uniquely specifies {ξ}, whence ξ = g + {ξ} is uniquely
determined.

To get bounds for the cardinality of {ξ ≤ x : ξ ∈ Zp/q(s, s + t)} we

observe first that Lemma 2.2 shows that the all integers 0 ≤ g < qk have
distinct symbol sequences for T (g) for their first k symbols. We proceed
to bound the number of possible symbol sequences of length k that f(x0)
could possibly have. For any 0 < γ < 1, let Lk

β,α(0, γ) count the number
of different symbol sequences of length k for fβ,α, such that there is some θ
with 0 ≤ f (i)(θ) < γ, 0 ≤ i ≤ k − 1, having such a symbol sequence. Now
(2.7) asserts that

(2.18) 0 ≤ f (i)(θ) < qt for all i ≥ 0,

hence

(2.19) #{α ≤ qk : α ∈ Zp/q(s, s + t)} ≤ Lk
p/q,{(p−q)s}(0, qt).

We bound this quantity in two different ways. First, the quantity
Lk

β,α(0, qt) is bounded above by Lk
β,α(0, 1), which is just the lap number

Lk,β,α which counts all possible allowed symbol sequences of length k for
fβ,α. It is studied (3) in Flatto and Lagarias (1994), who show that for

(3) See Flatto, Lagarias and Poonen (1994) for detailed information on the asymptotics
of Lkβ,α as k→∞, in the special case that α = 0.
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β > 1 there is a constant cβ,α with

(2.20) Lk,β,α ≤ cβ,αβk.

Substituting this bound in (2.19) gives

#{α ≤ qk : α ∈ Zp/q(s, s + 1)} ≤ c

(

p

q

)k

= cqk logq(p/q).

On taking qk−1 ≤ x < qk we obtain (2.6), with exponent γ = logq(p/q).

An alternative bound is obtained by observing that the allowed symbol
sequences satisfying (2.18) can only use symbols that appear in [0, qt), and
these are exactly {0, 1, . . . , ℓ − 1} where ℓ =

⌈

p
q (qt) + {(p − q)s}

⌉

. Thus

(2.21) Lk
p/q,{(p−q)s}(0, qt) ≤ (⌈pt + {p − q}s⌉)k.

Substituting this bound in (2.19) yields (2.6) with exponent γ = logq(⌈pt +
{(p − q)s}⌉).

It is clear that the bound (2.21) should be further improvable in special
cases.

P r o o f o f T h e o r e m 1.2. Write

ξ

(

p

q

)n

= gn + xn, n ≥ 0,

where gn = [ξ(p/q)n], xn = {ξ(p/q)n}. We claim that if ξ ∈ Zp/q(s, s + t),
then

(2.22) gn+1 = Tp/q,0(gn) =

⌈

p

q
gn

⌉

,

and

(2.23) xn+1 =
p

q
xn − 1

q
a∗

n,

where

(2.24) a∗
n =

{

0 if gn ≡ 0 (mod q),
q − k if gn ≡ k (mod q), 1 ≤ k ≤ q − 1.

If this is shown, then (2.24) gives

x0 =
1

p

[

a∗
0 +

q

p
a∗
1 + . . . +

(

q

p

)n

a∗
n

]

+

(

q

p

)n+1

xn+1.

Since (q/p)n+1xn+1 → 0, we get

x0 =
1

p

( ∞
∑

j=0

(

q

p

)j

a∗
n

)

,
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so x0 is determined by the sequence {a∗
n : n = 0, 1, . . .}, which is just the

symbolic dynamics of the map Tp/q,0 applied to g0. Thus there is at most
one such ξ in each interval [g, g + 1) for g ∈ Z

+, as required.
To establish the claims it proves convenient to rewrite the left and right

inequalities of (C2∗) as

(2.25)
p

q
s +

1

q
≥ s + t,

and

(2.26)
p

q
(s + t) ≤ 1 + s,

respectively. We also use

(2.27) gn+1 + xn+1 =
p

q
gn +

p

q
xn.

Assume now that ξ ∈ Zp/q(s, s + t), i.e. that

(2.28) s ≤ xn < s + t for all n ≥ 0.

We prove the claim in two cases.

C a s e 1: pgn ≡ 0 (mod q). Here we must show that necessarily

(2.29) gn+1 =
p

q
gn, xn+1 =

p

q
xn.

By (2.27), p
q gn ≤ gn+1 + xn+1. But p

q gn is an integer in this case, so

p

q
gn ≤ [gn+1 + xn+1] = gn+1.

Hence gn+1 = p
q
gn + j, j ≥ 0, for j some integer. This, together with (2.27),

gives

(2.30) xn+1 =
p

q
xn − j.

We must show j = 0. If j > 0, then (2.26), (2.28) and (2.30) give

xn+1 =
p

q
xn − j <

p

q
(s + t) − 1 ≤ s,

contradicting xn+1 ≥ s, thus proving (2.29).

C a s e 2: pgn ≡ k (mod q) for some 1 ≤ k ≤ q − 1. Here we must show
that

(2.31) gn+1 =
p

q
gn +

q − k

q
, xn+1 =

p

q
xn − q − k

q
.

By (2.27), (pqn − k)/q ≤ gn+1 +xn+1. As (pgn − k)/q is an integer, we have
(pgn − k)/q ≤ gn+1. From this and (2.27),

gn+1 =
p

q
gn − k

q
+ j, xn+1 =

p

q
xn +

k

q
− j,

for some integer j ≥ 0. To obtain (2.31) we must show that j = 1.
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Suppose first that j = 0. Then by the above and using (2.27), then
(2.25),

xn+1 ≥ p

q
xn +

1

q
≥ p

q
s +

1

q
≥ s + t,

contradicting (2.28). Next suppose that j ≥ 2. Then by the above and
using (2.28) then (2.26),

xn+1 ≤ p

q
xn +

k

q
− 2 <

p

q
(s + t) − 1 ≤ s,

contradicting (2.28). Thus j = 1 is established.

R e m a r k s. 1. The proof of Theorem 1.2 is still valid with (C1∗) replaced
by (C1). However, when (C1) holds the condition (C2∗) implies (C2). Thus
when (C1), (C2∗) hold, the proofs of Theorems 1.1 and 1.2 are both valid.
Theorem 1.2 uses Tp/q,0 while Theorem 1.1 uses Tp/q,a/q with a = [(p− q)s],
and (C1), (C2∗) permit a 6= 0 to occur. Hence the two proofs combined
establish the extra fact that if (C1), (C2∗) hold, then Tp/q,a/q and Tp/q,0

have identical itineraries when started at any integer g such that [g, g + 1)
contains an element of Zp/q(s, s + t).

2. In comparing the proofs of Theorems 1.2 and 1.1, we see that in
Theorem 1.2, {gn} is still prescribed by iterating a fixed map T on Z

+,
however {xn} is apparently no longer describable in terms of iterating a fixed
map f on [0, 1], but remains deterministically coupled to g0 via the symbolic
itinerary of g0 under T . We do not know whether the property that x0, g0

satisfy (2.22) and (2.23) for all n ≥ 0 guarantees that g0+x0 ∈ Zp/q(s, s+t).

P r o o f o f T h e o r e m 1.3. Let n0 ≥ 0 be an integer, and set

nk = T
(k)
p/q,a/q(n0) for all k ≥ 0.

Set β = p/q, and we have

βnk +
a

q
≤ nk+1 ≤ βnk +

a + q − 1

q
.

Dividing by βk+1, we obtain

(2.32)
a

qβk+1
≤ nk+1

βk+1
− nk

βk
≤ a + q − 1

qβk+1
.

Summation of the right inequality in (2.32) over k yields

(2.33)
nk

βk
≤ n0 +

(

a + q − 1

q

)(

1

β
+

1

β2
+ . . .

)

= n0 +
a + q − 1

q(β − 1)
.

Now (2.32) shows that the sequence {nk/βk : k = 0, 1, . . .} is monotonically
increasing, and (2.33) shows that it is contained in the interval

[

n0, n0 +
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a+q−1
q(β−1)

]

, so has a limit

(2.34) ξ ∈
[

n0 +
a

q(β − 1)
, n0 +

a + q − 1

q(β − 1)

]

.

As

ξ − nk

βk
=

∞
∑

j=k

(

nj+1

βj+1
− nj

βj

)

,

we conclude from (2.32) that

a

qβk(β − 1)
=

a

q

(

1

βk+1
+

1

βk+2
+ . . .

)

≤ ξ − nk

βk
≤ a + q − 1

qβk(β − 1)
.

Multiplying this by βk, we obtain

a

p − q
≤

(

p

q

)k

ξ − nk ≤ a + q − 1

p − q
,

for all k ≥ 0.

P r o o f o f C o r o l l a r y 1.3a. As 0 ≤ a ≤ p − 2q, we have

s + t ≤ p − 2q

p − q
+

q

p
< 1.

Also

tq ≤ q2/p < 1, {(p − q)s} + pt = pt ≤ q,

so that conditions (C1), (C2) of Theorem 1.1 are satisfied. Corollary 1.3a
then follows from Theorems 1.1 and 1.3, observing that (2.34) implies ξ ∈
[n0, n0 + 1).

3. The range of {ξ(p/q)n}. We shall derive Theorem 1.4 as a direct
consequence of the following result.

Theorem 3.1. Let p > q ≥ 2 be relatively prime integers. Then the

set of s such that Zp/q(s, s + 1/p) = ∅ is dense in [0, 1 − 1/p], and always

includes s = 0 and s = 1 − 1/p.

We remark that the conclusion of Theorem 3.1 conceivably holds for all
s ∈ [0, 1 − 1/p]. However, we cannot prove this. The weaker statement
above suffices to establish Theorem 1.4, as we now show.

P r o o f o f T h e o r e m 1.4. We argue by contradiction. Suppose the
assertion is false, so that there exists some ξ > 0 with

lim sup
n→∞

{

ξ

(

p

q

)n}

− lim inf
n→∞

{

ξ

(

p

q

)n}

<
1

p
.
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Then we may find ξ′ > 0 and an interval [s′, s′ + t′) with t′ < 1/p such that

s′ ≤
{

x′
(

p

q

)n}

< s′ + t′ for all n = 0, 1, 2, . . . ,

by choosing ξ′ = ξ(p/q)k for a sufficiently large integer k. Thus Zp/q(s
′,

s′ + t′) 6= ∅.
However, using Theorem 3.1 we can always find an interval [s, s + 1/p)

with [s′, s′+t′) ⊆ [s, s+1/p) such that Zp/q(s, s+1/p) = ∅. Namely, if s′ = 0
take s = 0, and if s′ ≥ 1 − 1/p take s = 1 − 1/p, while if 0 < s′ < 1 − 1/p,
then choose some s slightly smaller than s′ with Zp/q(s, s + 1/p) = ∅. Thus
Zp/q(s

′, s′ + t′) ⊆ Zp/q(s, s + 1/p) = ∅, a contradiction.

Theorem 3.1 is an immediate consequence of the following two theorems.

Theorem 3.2. Let p > q ≥ 2 be relatively prime integers and f =
fp/q,{(p−q)s}. Suppose there exist only a finite number of x ∈ [0, 1) such that

(3.1) 0 ≤ fn(x) < q/p for all n = 0, 1, 2, . . .

Then Zp/q(s, s + 1/p) = ∅.
Let Rp/q(s) denote the set of x ∈ [0, 1) such that (3.1) holds.

Theorem 3.3. Given p > q ≥ 2 relatively prime integers, the set of s for

which Rp/q(s) is finite is dense in [0, 1 − 1/p] and contains the two points

s = 0 and s = 1 − 1/p.

P r o o f o f T h e o r e m 3.2. We argue by contradiction. The interval
[s, s+1/p) satisfies conditions (C1) and (C2) of Proposition 2.1. Thus any Z-
number ξ ∈ Zp/q(s, s+1/p) has associated with it a quantity θ := q({ξ}−s)
such that 0 ≤ fn(θ) < q/p for n = 0, 1, 2, . . . , whence θ falls in the finite
set given by the hypothesis above. Each θk := f (k)(θ) also lies in this
finite set, thus repetition must occur, so some θk is a purely periodic point
of f , and θk has a purely periodic f -expansion {bk}. Now ξ′ := ξ(p/q)k

is automatically a Z-number since ξ is, and Proposition 2.1 states that
θk = g({ξ(p/q)k}− s). Suppose l is the period of the f -expansion of θk, and
consider ξ′′ := ξ(p/q)k+l. Now ξ′′ is also a Z-number, and since θk = θk+l,
property (S2) of Proposition 2.1 for ξ′ and for ξ′′ shows that g′ = [ξ′]
and g′′ = [ξ′′] have identical T -expansions. But ξ′ < ξ′′ and Theorem 2.1
states there is at most one Z-number in each interval [m,m + 1), hence
we conclude g′ 6= g′′. This contradicts the uniqueness of T -expansions of
different integers, hence we conclude Zp/q(s, s + 1/p) = ∅ after all. (The
uniqueness of T -expansions follows from Lemma 2.2, for any g 6= g′ there
exists some power qj such that g 6≡ g′ (mod qj), whence their T -expansions
differ somewhere in the first j symbols.)
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Next we prove Theorem 3.3. The proof is lengthy and is based on sev-
eral preliminary results concerning linear mod one transformations (Theo-
rems 3.4 and 3.5).

Theorem 3.4. Let f(x) = fβ,α(x) = {βx+α}, with β > 1 and 0 ≤ α < 1,
and let Sβ,α denote the set of points x ∈ [0, 1) for which 0 ≤ f (n)(x) < 1/β
for all n ≥ 0. Suppose that 0 6∈ Sβ,α, thus there is a smallest positive integer

N with f (N)(0) ≥ 1/β. Then Sβ,α is a finite set. If f (N)(0) > 1/β then

Sβ,α contains exactly N elements, and they are cyclically permuted under

the action of f . If f (N)(0) = 1/β then Sβ,α is empty.

For fixed β, we call the values α where Sβ,α is not a finite set exceptional

values. Some conjectures concerning exceptional values and the structure
of the corresponding sets Sβ,α are stated at the end of this section.

Theorem 3.4 is proved by a detailed analysis of the inverse images of the
interval I0 = [1/β, 1) under f . Let Sc denote the complement of S = Sβ,α

in [0, 1), i.e.,

Sc := {0 ≤ x < 1 : {f (n)(x) : n ≥ 0} intersects I0}.
In the rest of this section the term interval always means one which is closed
on the left and open on the right. We prove three lemmas which gradually
build up a precise description of Sc, from which Theorem 3.4 will follow.
Lemma 3.1 expresses Sc as an infinite union of disjoint sets In := f (−n)(I0)
and shows that Sc contains N intervals I0, I1, . . . , IN−1. To obtain Sc we
“glue” on to the Ij ’s an infinite sequence of intervals Li and Ri contiguous
to these on their left and right sides, respectively, which are described in
Lemmas 3.2 and 3.3. These fill in the gaps between the intervals I0, . . . , In−1

except for the finite set S, and show that none of the Ii are contiguous
intervals. The intervals Ii, Li and Ri are depicted in Figure 3.2 below.

We begin by collecting obvious properties of the function f restricted
to the interval [0, 1/β). The graph of this restriction of f is sketched in
Figure 3.1.

Fig. 3.1. Restriction of f = fβ,α to [0, 1/β)
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The restricted f is linear of slope β mapping [0, (1−α)/β) onto [α, 1) and
[(1−α)/β, 1/β) onto [0, α), which exhibits the key fact that f is a bijection
from [0, 1/β) onto [0, 1). In what follows we let f−1 denote the inverse of
this restriction, i.e. for x ∈ [0, 1),

f−1(x) =











1

β
x +

1 − α

β
, 0 ≤ x < α,

1

β
x − α

β
, α ≤ x < 1.

Thus f−1 is piecewise linear and continuous except on the left at α. We let
f−n := (f−1)(n).

Lemma 3.1. (1) If I0 = [1/β, 1) then the sets In = f−n(I0) are nonempty ,
mutually disjoint sets and Sc := [0, 1) − S =

⋃∞
i=0 Ii.

(2) If N is minimal with f (N)(0) ∈ I0, then the sets Ik for 0 ≤ k ≤ N −1
are each nonempty intervals contained in the open interval (0, 1), and α ∈
IN−1.

P r o o f. (1) The sets Ik are nonempty by virtue of f−1 having do-
main [0, 1), and by definition Sc =

⋃∞
i=0 Ii. We establish mutual disjoint-

ness by induction on n, it being trivially true for n = 0. Suppose now
that I0, f

−1(I0), . . . , f
−n(I0) are mutually disjoint. Apply f−1 to conclude

that f−1(I0), . . . , f
−(n+1)(I0) are mutually disjoint, since f−1 is one-to-one.

However all these sets lie in [0, 1/β), hence are disjoint from I0 = [1/β, 1),
completing the induction step.

(2) Since f (N)(0) = f (N−1)(α) ∈ I0 where N is minimal with this prop-
erty, we have α ∈ IN−1 and 0 ∈ IN . Now we prove by induction on k ≥ 0
that each Ik is an interval contained in (0, 1). It is certainly true for k = 0.
Suppose Ik is an interval in (0, 1) and 0 ≤ k ≤ N − 2. Then α 6∈ Ik

by the mutual disjointness property of the Ik, so Ik does not overlap the
discontinuity point of f−1, whence Ik+1 is an interval.

The intervals {Ii : 0 ≤ i ≤ N − 1} are not contiguous, as we will show
later. The interval IN−1 contains the point α, and we set L−1 = IN−1∩[0, α)
and R−1 = IN−1 ∩ [α, 1), which we call the left and right halves of IN−1.
Certainly R−1 6= ∅, since α ∈ R−1, and L−1 6= ∅ except when α is the left
endpoint of IN−1, which happens exactly when f (N)(0) = 1/β. Now set

Ln := f−(n+1)(L−1), Rn := f−(n+1)(R−1) for n ≥ 0.

Lemma 3.2. The sets {Ik : 0 ≤ k ≤ N − 1}, {Lk : k ≥ 0} and {Rk :
k ≥ 0} are all mutually disjoint intervals. The Rk’s are nonempty. The Lk’s

are all nonempty unless L−1 = ∅, in which case all Lk’s are empty.

P r o o f. Since IN−1 = L−1 ∪ R−1, a disjoint union, IN+n = Ln ∪ Rn

for all n ≥ 0 is also a disjoint union. The property that each Ln and Rn



142 L. Flatto et al.

is an interval is proved by induction on n. It is true for n = 0 because the
intervals L−1 and R−1 do not cross over the discontinuity point of f−1. Since
α ∈ IN−1, Lemma 3.1 gives α 6∈ IN+n = Ln ∪ Rn. Thus the induction step
is completed by observing that no Ln or Rn contains the discontinuity point
α. The assertions that all Rk are nonempty and that all Lk are nonempty
if and only if L−1 is nonempty, follow from f−1 having domain [0, 1).

We now come to the main Lemma 3.3, which describes the precise
way the intervals Ik, Lk, and Rk’s interlace. Roughly speaking Lk, Lk+N ,
Lk+2N , . . . line up contiguously to the left of Ik while Rk, Rk+N , Rk+2N , . . .
line up contiguously to its right. Here R0, RN , . . . are contiguous to 0 and
are viewed as sitting to the right of I0 under the (mod 1) interpretation.
The content of Lemma 3.3 is pictured in Figure 3.2.

Fig. 3.2. How intervals in Sc interlace

Lemma 3.3. (1) Each interval Lk is contiguous with and to the left of Ik

for 0 ≤ k ≤ N − 1. For all k ≥ 0, Lk+N is contiguous with and to the left

of Lk.

(2) The interval R0 has 0 for left endpoint , and each other Rk is con-

tiguous with and to the right of Ik for 1 ≤ k ≤ N − 1. For all k ≥ 0, Rk+N

is contiguous with and to the right of Rk.

P r o o f. (1) We may assume L−1 6= ∅, otherwise there is nothing to
prove. Since f−1 has positive slope and maps [0, α) onto [(1 − α)/β, 1/β),
and L−1 is a subinterval of [0, α) having the right end point α, we conclude
that L0 = f−1(L−1) is a subinterval of [(1−α)/β, 1/β) having the right end
point 1/β. Thus L0 is contiguous with and to the left of I0. The intervals
Lk, Ik, 0 ≤ k ≤ N − 2 are disjoint from R−1 and thus do not contain α. It
follows from Lk+1 = f−1(Lk), Ik+1 = f−1(Ik) and an induction argument
that Lk is contiguous with and to the left of Ik for 0 ≤ k ≤ N − 1. Since
L−1 is the left half of IN−1, we conclude that LN−1 is contiguous and to the
left of L−1. As α 6∈ LN−1, L−1, we obtain LN = f−1(LN−1) is contiguous
and to the left of L0 = f−1(L1). Finally, Lk+1 = f−1(Lk) and none of
Lk’s contain α, so another induction argument on k shows that Lk+N is
contiguous with and to the left of Lk, for k ≥ 0.

(2) The proof of (2) is similar to that of (1), except for minor details.

Observe that, since the Rk’s are nonempty, we conclude from Lem-
ma 3.3(2) that no two intervals {Ik : 0 ≤ k ≤ N − 1} are contiguous.
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P r o o f o f T h e o r e m 3.4. Lemma 3.3 implies that the set Sc “glues”
together into N + 1 connected components, the first being the union of
R0, RN , R2N , . . . , the second being I0 and all its neighboring L0, LN ,
L2N , . . . , and the other N − 1 components consisting of each Ik for 1 ≤
k ≤ N − 1, together with all of its neighboring Rk+jN and Lk+jN . The
complement S thus consists of at most N components.

We show that each of the components of S is degenerate, i.e., is either
a point or the empty set, by proving S has Lebesgue measure λ(S) = 0.
This amounts to showing λ(Sc) = 1. Now λ(I0) = 1 − 1/β, and since
f−1 is piecewise linear with slope 1/β, we have λ(Ik) = β−k(1 − 1/β). By
Lemma 3.1 all the Ik are disjoint, whence

(3.2) λ(Sc) =

∞
∑

k=0

λ(Ik) = (1 − 1/β)

∞
∑

k=0

β−k = 1.

It remains to decide under what circumstances the components of S are
points or the empty set. Let pn denote the left endpoint of Rn for n ≥ 0,
and set

qk = lim
j→∞

pk+jN , 0 ≤ k ≤ N − 1.

If f (N)(0) = 1/β then by Lemma 3.2 all the Lk’s are empty, in which case
each qk coincides with a left endpoint of some Ij , 0 ≤ j < N−1, hence S = ∅
in this case. If f (N)(0) 6= 1/β then by Lemma 3.2 all the Lk’s are nonempty,
and Figure 3.2 puts into evidence the fact that each qk cannot be in S, so
S = {q0, q1, . . . , qN−1}. A continuity argument shows that f−1(qk) = qk+1,
except f−1(qN−1) = q0, so f(qk+1) = qk except f(q0) = qN−1, whence the
qi are cyclically permuted by f .

The next theorem shows that the condition 0 6∈ Sβ,α of Theorem 3.4 is
often true, i.e. for any given β > 1, this condition holds for a dense set of
α. In fact we have the somewhat stronger result:

Theorem 3.5. For any β > 1 and any δ with 0 < δ < 1, let Kδ := Kδ(β)

denote the set of α ∈ [0, 1) such that there is some finite N with f
(N)
β,α (0) ∈

[1 − δ, 1). Then Kδ is dense in [0, 1).

In what follows we treat β as fixed and abbreviate fβ,α to fα. The proof
depends on a study of the fα-expansion of 0 as α varies, which we give in
Lemmas 3.4 and 3.5 below.

We use the symbolic dynamics of fβ,α. For 0 ≤ α < 1 − {β} the graph
of fβ,α consists of ⌈β⌉ straight line segments, while for 1 − {β} ≤ α < 1 it
consists of ⌈β⌉ + 1 straight line segments. Let the jth piece be

Ij := {0 ≤ x < 1 : [βx + α] = j}
and represent it with the symbol j, see Figure 3.3.
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Fig. 3.3. Graphs of fβ,α for β = 3
1
3

In all cases the symbol set is contained in {0, 1, . . . , ⌈β⌉}, although ⌈β⌉
never occurs if 0 ≤ α < 1 − {β}.
Lemma 3.4. Let β > 1 be fixed. For any integer n ≥ 0, let C0, C1, . . . , Cn

be an arbitrary sequence from the alphabet {0, 1, . . ., ⌈β⌉}. Let J [C0C1. . . Cn]

:= {α ∈ [0, 1) : f
(k)
α (0) ∈ ICk

, 0 ≤ k ≤ n}. Then

(i) J [C0C1 . . . Cn] is an interval closed on the left and open on the right.

(Possibly J [C0 . . . Cn] = ∅.)
(ii) There is a constant A[C0C1 . . . Cn] depending on C0, C1, . . . , Cn and

β, such that if α ∈ J [C0C1 . . . Cn] then

(3.3) f (n+1)
α (0) = A[C0C1 . . . Cn] + (1 + β + . . . + βn)α.

P r o o f. We prove (i) and (ii) simultaneously by induction on n. For

n = 0, f
(0)
α (0) = 0 for all α, hence J [0] = [0, 1), while J [i] = ∅ for all i ≥ 1.

Also f
(n)
α (0) = α so we take A[0] = 0 and (ii) holds. For the induction step,

suppose (i) and (ii) are true for n. By (3.3) for 0 ≤ j ≤ ⌈β⌉,
J [C0 . . . Cnj] = J [C0 . . . Cn] ∩ {α ∈ J [C0 . . . Cn] : f (n+1)

α (0) ∈ Ij}
= J [C0 . . . Cn] ∩ {α : (j − α)/β ≤ A[C0 . . . Cn]

+ (1 + β + . . . + βn)α < (j + 1 − α)/β}

= J [C0 . . . Cn] ∩
[

j − βA[C0 . . . Cn]

1 + β + . . . + βn−1
,
j + 1 − βA[C0 . . . Cn]

1 + β + . . . + βn−1

)

,

hence (i) holds for J [C0C1 . . . Cnj].

We also note for later use that the set of values of j for which

(3.4)
j − βA[C0C1 . . . Cn]

1 + β + . . . + βn−1
∈ Int(J [C0C1 . . . Cn])

form a consecutive string of integers (possibly empty). If l is the length
of this string, then j[C0 . . . Cn] is partitioned into l + 1 distinct nonempty
intervals J [C0C1 . . . Cnj].
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To verify (ii) suppose α ∈ J [C0C1 . . . Cnj]. Then α ∈ J [C0 . . . Cn] so by
induction hypothesis (ii)

f (n+1)(0) = A[C0 . . . Cn] + (1 + β + . . . + βn)α.

Now f (n+1)(0) ∈ Ij so

f (n+2)(0) = f(f (n+1)(0)) = α + βf (n+1)(0) − j

= (βA[C0 . . . Cn] − j) + (1 + β + . . . + βn+1)j

and (ii) holds with A[C0 . . . Cnj] = βA[C0 . . . Cn] − j. This completes the
induction step.

Lemma 3.5. For all choices of n + 1 symbols C0C1 . . . Cn from {0, 1, . . .
. . . , ⌈β⌉} the Lebesgue measure

λ(J [C0C1 . . . Cn]) ≤ 1

1 + β + . . . + βn
.

P r o o f. Let V [C0C1 . . . Cn] denote the total variation of f
(n+1)
α (0) as α

ranges over J [C0C1 . . . Cn]. By Lemma 3.4(ii),

(3.5) V (C0C1 . . . Cn) = (1 + β + . . . + βn)λ(J [C0C1 . . . Cn]).

However, 0 ≤ f
(n+1)
α (0) < 1 for all α and all n, hence

(3.6) V (C0C1 . . . Cn) ≤ 1.

Comparing (3.5) and (3.6) proves the lemma.

P r o o f o f T h e o r e m 3.4. Let ∆n be the partition of [0, 1) consisting
of the nonempty intervals J [C0C1 . . . Cn] and set

‖∆n‖ := max{λ(J [C0C1 . . . Cn]) : J(C0 . . . Cn) ∈ ∆n}.
Then limn→∞ ‖∆n‖ = 0 by Lemma 3.5. It therefore suffices to show for any
J [C0 . . . Cn] 6= ∅ that J [C0 . . . Cn]∩Kδ 6= ∅ for sufficiently small δ > 0, since
Kδ ⊆ Kδ′ whenever δ ≤ δ′.

We refer to any J [C0 . . . Cn] 6= ∅ as a Jn+1-interval . Lemma 3.5 im-
plies that there must be a smallest integer m ≥ n such that J [C0 . . . Cn]
is not identical to a Jm+2-interval, i.e. J [C0 . . . Cn] ≡ J [C0 . . . Cm] but
J [C0 . . . Cm] splits into at least two different Jm+2-intervals. As shown in
the proof of Lemma 3.4 there must then be some j with 1 ≤ j ≤ [β] + 1
with

j − βA[C0 . . . Cm]

1 + β + . . . + βm+1
∈ Int(J [C0C1 . . . Cm]).

Hence for any sufficiently small δ > 0,

αδ :=
j − βA[C0 . . . Cm] − δ/2

1 + β + . . . + βm+1
∈ Int(J [C0C1 . . . Cm]).
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Now Lemma 3.4 yields

f (m+1)
αδ

(0) = A[C0C1 . . . Cm] + (1 + β + . . . + βm)αδ =
j − αδ − δ/2

β
.

Thus for all sufficiently small δ,

f (m+2)
αδ

(0) = fαδ

(

j − αδ − δ/2

β

)

= 1 − δ

2
> 1 − δ,

hence αδ ∈ Kδ and αδ ∈ J [C0C1 . . . Cm].

We now complete the:

P r o o f o f T h e o r e m 3.3. By their definitions, Rp/q(s) = Sβ,α with
β = p/q and α = {(p − q)s}. Combining Theorems 3.4 and 3.5 we see that
Sβ,α is finite for a dense set of α in [0, 1]. Under the map α = {(p − q)s},
this dense set of α pulls back to a set of s dense on [0, 1 − 1/β] for which
Rp/q(0) is finite.

It remains to check that Rp/q(s) is finite for s = 0 and s = 1 − 1/p.
For s = 1 − 1/p, α = q/p. Thus f(0) = fβ,1/β(0) = 1/β, and we conclude
from Theorem 3.4 that Rp/q(1 − 1/p) = Sβ,1/β . For s = 0, α = 0. Thus

f(x) = {βx} = βx for 0 ≤ x < 1/β. For 0 < x < 1/β, f (k)(x) = βkx until
some iterate occurs with f (k)(x) > 1/β, which must happen since β > 1.
Hence Rp/q(0) = Sβ,0 consists of 0 alone and so is again finite.

P r o o f o f C o r o l l a r y 1.4a. The case p/q = 3/2 and t = 1/3, and
the case s = 0, follow by the proof above. For s = 1/6, 1/3, 1/2, 2/3, the
result follows using the criterion of Theorem 3.2, since f (N)(0) ≥ 2/3 for
N = 3, 2, 3, 1 respectively.

Finally, we state some open questions. Let

Vp/q := {s : Zp/q(s, s + 1/p) 6= ∅},
and let Eβ denote the set of exceptional values for β, i.e.

Eβ := {α : Sβ,α is an infinite set}.
Theorem 3.2 says that if s ∈ Vp/q then α = {(p − q)s} ∈ Ep/q . As far as
we know the set Vp/q is empty for all p/q. However we doubt that Ep/q is
empty. Indeed, we make the following two conjectures.

(I) For all β, Eβ is a nonempty perfect set.

(II) For all α ∈ Eβ , Sβ,α is a nonempty perfect set.

Theorem 3.4 shows that all Sβ,α have Lebesgue measure zero. Possibly
the same is true for all Eβ .
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A. R ény i (1957), Representations for real numbers and their ergodic properties, Acta
Math. Acad. Sci. Hungar. 8, 472–493.

R. Ti jdeman (1972), Note on Mahler’s 32 -Problem, K. Norske Vidensk. Selsk. Skr. 16,
1–4.

T. Vi jayaraghavan (1940), On the fractional parts of the powers of a number , I , J.
London Math. Soc. 15, 159–160.

T. Vi jayaraghavan (1941), On the fractional parts of the powers of a number , II , Proc.
Cambridge Philos. Soc. 37, 349–357.

T. Vi jayaraghavan (1942), On the fractional parts of the powers of a number , III , J.
London Math. Soc. 17, 137–138.

T. Vi jayaraghavan (1948), On the fractional parts of powers of a number , IV , J. Indian
Math. Soc. (N.S.) 12, 33–39.

AT&T BELL LABORATORIES BRIGHAM YOUNG UNIVERSITY

MURRAY HILL, NEW JERSEY 07974, U.S.A. PROVO, UTAH 84602, U.S.A.

E-mail: LEOPOLD@RESEARCH.ATT.COM E-mail: ANDY@HAMBLIN.MATH.BYU.EDU

JLC@RESEARCH.ATT.COM

Received on 4.10.1993

and in revised form on 18.7.1994 (2497)


