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Notation and conventions. IfX is any set we denote the characteristic
function of X by χX .

The set of positive integers or natural numbers is denoted by N, the
set of non-negative integers by N0. If x is a real number the symbols bxc,
dxe denote respectively the greatest integer ≤ x and the least integer ≥ x.
The fractional part x − bxc of x is denoted by 〈x〉 and the toral norm
min(x − bxc, dxe − x) by |x|T. The residue class of an integer h modulo a
fixed prime will be denoted by h.

The symbol γ denotes Euler’s constant.
The Fourier transform of a 1-periodic function f will be denoted by f̂ .
If f and g are real functions we use the notation f � g to mean the

same as f = O(g). If limx→∞ f(x)/g(x) = 1 we write f ∼ g.

1. Introduction. Let θ be any number in [1,∞). The sequence Bθ =
{bθnc : n ∈ N} is called the Beatty sequence determined by θ. Beatty se-
quences have been the subject of intensive investigation in recent years on
account of their connection with semigroups (see for example [8] and the
references therein); however this connection does not appear to be relevant
to the question we consider in the present paper. A classical result in prime
number theory (see [2], Theorem 9.9) states that for each irrational θ the
sequence Bθ contains infinitely many primes. Equivalently this result states
that for each irrational θ we have

lim inf
n→∞

τ(bθnc) = 2,

where as usual τ(n) denotes the number of divisors of n. In the present
paper we consider the average behaviour of τ(bθnc). This does not appear
to have been investigated before.

We write
T (θ;x) =

∑

n≤x/θ
τ(bθnc) =

∑

n≤x, n∈Bθ
τ(n).

[195]
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We shall see that the behaviour of T (θ;x) is related to the behaviour of
sums of the form

T (λ, x) =
∑

n≤x
τ(n)e2πinλ

which have been studied by S. Chowla [1] and others. Making use of this
relationship we shall prove the following:

Theorem I. For all irrational θ > 1 we have

T (θ;x) ∼ θ−1T (1;x).

Theorem II. For almost all θ ≥ 1 with respect to Lebesgue measure and
for each ε > 0 we have

(1.1) T (θ;x) = θ−1T (1;x) +O(x5/7+ε),

where the O-constant may depend on θ and on ε.

The term T (1;x) appearing on the right in Theorems I and II is just the
well-known sum

∑
n≤x τ(n). An account of some of the work done on the

evaluation of this sum may be found in [3]. However, only the elementary
estimate

T (1;x) = x log x+ (2γ − 1)x+O(x1/2)
is relevant in the present context since the more refined estimates introduce
main terms that are absorbed in our error term. The author does not know
whether or to what extent the exponent 5/7 in the statement of Theorem
II can be improved.

It is easy to see that Theorem I becomes false if the hypothesis that θ 6∈ Q
is dropped: in particular it follows from Lemma 2.3 below that T (p;x) ∼
p−1T (1;x) does not hold for any prime p. The reader might wonder however
whether a version of Theorem II, possibly with a poorer error term, might
hold with “all irrational θ” in place of “almost all θ”. In fact we shall see
that this is not the case. More precisely we shall prove the following:

Theorem III. Let g : R → R be positive, increasing and unbounded.
Then for uncountably many numbers θ > 1 there exist arbitrarily large pos-
itive x such that the relation

(1.2) |T (θ;x)− θ−1T (1;x)| ≤ T (1;x)/g(x)

does not hold.

2. Some lemmata. In this section we collect together some lemmata
required for the proofs of our main results.

We begin with estimates involving the divisor function τ .

Lemma 2.1 ([6], Theorem 6 · 5 · 2). For each ε > 0 we have

τ(n) = O(nε).



Beatty sequences 197

Lemma 2.2 ([1], Theorem 5). For each irrational λ we have

T (λ, x) = o(T (1;x)).

For integers h, k we write

T (h, k;x) =
∑

n≤x, n≡h (mod k)

τ(n).

The following lemma is a special case of a formula given by D. R. Heath-
Brown in [4] but implicit in earlier work of Ramanujan ([9], p. 82).

Lemma 2.3. For each prime p we have

T (h, p;x) ∼





2p− 1
p2 T (1;x) if p | h,

p− 1
p2 T (1;x) otherwise.

We shall require some results from Diophantine approximation theory.
Let θ > 0 be an irrational number and let (pn/qn)n∈N0 be the sequence
of best rational approximations to θ, that is, we take p0 to be the nearest
integer to θ and q0 = 1, while for n ∈ N we choose pn, qn ∈ N minimising qn
subject to the condition ∣∣∣∣θ −

pn
qn

∣∣∣∣ <
∣∣∣∣θ −

pn+1

qn+1

∣∣∣∣.

For any increasing function g : R → R satisfying g(1) = 1 we say that
θ is of principal cotype g if given any B ≥ 1 we have B ≤ qn ≤ Bg(B)
for some n. The following lemma is a simple consequence of Khintchine’s
theorem on metric Diophantine approximation ([7], Ch. II, Theorem 4).

Lemma 2.4. Given ε > 0, for almost all θ with respect to Lebesgue
measure there exists a function g = gθ : R→ R such that

g(x) = O(log1+ε x)

and such that θ is of principal cotype g.

The next result is taken from [7], p. 42. The reader will observe that our
definition of principal cotype is slightly more restrictive than the definition
in [7]: in Lang’s notation, we are assuming g(B0) = B0 = 1. The statement
of the following lemma has been modified accordingly.

Lemma 2.5. For any irrational θ of principal cotype g we have
∑

1≤n≤x
|cscπnθ| � x log x+ xg(x).

Here the implied constant does not depend on θ.
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Given an irrational number θ and a positive number x the discrepancy
D(θ;x) is defined by setting

D(θ;x) = sup
0≤a<b≤1

∣∣∣b− a− x−1
∑

1≤n≤x
χ[a,b)〈nθ〉

∣∣∣.

The following lemma is taken from [5], p. 96.

Lemma 2.6. Let θ be irrational , let (pn/qn)n∈N0 be the sequence of best
rational approximations to θ, and for x ≥ 1 let h(x) = hθ(x) be the greatest
integer satisfying qh(x) ≤ x. Then for all x ≥ 1 we have

D(θ;x) ≤ 8x−1
∑

0≤n≤h(x)

qn+1

qn
.

It is well known (see for example [7], Ch. I) that for any irrational θ the
numbers qn satisfy qn+2 ≥ qn+1 + qn. Therefore the function hθ defined in
the statement of Lemma 2.6 satisfies hθ(x)� log x. Thus using Lemma 2.6
we obtain the following:

Corollary 2.7. For any irrational θ of principal cotype g we have

D(θ;x)� x−1g(x) log x.

Let M be a natural number. For each integer m write m̃ = m/(M + 1)
and for m 6= 0 set

am = −πm̃(1− |m̃|) cot(πm̃) + |m̃|
2πim

.

J. D. Vaaler in [10] (see also [3], p. 111) found that the trigonometric
polynomials

ψM (t) =
∑

1≤|m|≤M
ame

2πimt

are exceptionally good approximations to the “sawtooth” function ψ given
by ψ(t) = 〈t〉 − 1/2. To be precise we have the following (see [3],
Theorem A6):

Lemma 2.8. For each natural number M we have

|ψM (t)− ψ(t)| ≤ (2M + 2)−1
∑

0≤|m|≤M
(1− m̃)e2πimt.

We end this section by deriving from Lemma 2.8 a more convenient
bound for the “error” |ψM (t)− ψ(t)|.

Corollary 2.9. For each natural number M we have

|ψM (t)− ψ(t)| ≤ 1
2

(M + 1)−2|csc(πt)|2.
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P r o o f. Using Lemma 2.8 we have

|ψM (t)− ψ(t)| ≤ 1
2

(M + 1)−1
∑

|m|≤M
(1− |m̃|)e2πimt

=
1
2

(M + 1)−2
∑

|m|≤M
(M + 1− |m|)e2πimt

=
1
2

(M + 1)−2
∑

0≤M ′≤M

∑

−M ′≤m≤M ′
e2πimt

=
1
2

(M + 1)−2
∑

0≤M ′≤M

e2πi(M ′+1)t − e−2πiM ′t

1− e2πit

≤ 2(M + 1)−2|1− e2πit|−2 =
1
2

(M + 1)−2|csc(πt)|2

as required.

3. Proofs of Theorems I and II. For each θ ≥ 1 we shall denote by
ξθ the characteristic function of the set

{t ∈ R : 1− θ−1 ≤ 〈t〉 < 1}.
Our proofs of Theorems I and II both start from the easily verified identity

(3.1) T (θ;x) =
∑

n≤x
τ(n)ξθ(n/θ).

Since ξθ is 1-periodic we can use Fourier methods to approximate the right
hand side of (3.1) by a linear combination of the sums

T (m/θ, x) =
∑

n≤x
τ(n)e2πimn/θ.

Estimating these sums by Lemma 2.2 yields Theorem I directly but a more
delicate analysis is needed to obtain Theorem II.

P r o o f o f T h e o r e m I. Let θ be a fixed irrational number in (1,∞)
and write ξ = ξθ. For a given ε > 0 let ξ−, ξ+ be continuously differentiable
1-periodic functions satisfying

0 ≤ ξ− ≤ ξ ≤ ξ+

and

(3.2) θ−1 − ε/3 ≤
1∫

0

ξ−,
1∫

0

ξ+ ≤ θ−1 + ε/3.

The Fourier series ξ̂−(n), ξ̂+(n) are absolutely convergent, so we may choose
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M = M(ε) satisfying

(3.3) max
( ∑

|m|>M
|ξ̂−(m)|,

∑

|m|>M
|ξ̂+(m)|

)
≤ ε/3.

By Lemma 2.2 we may choose X ∈ R so large that x > X implies

(3.4)

∑

n≤x
τ(n)

∑

1≤|m|≤M
ξ̂−(m)e2πimn/θ ≤ ε

3
T (1;x),

∑

n≤x
τ(n)

∑

1≤|m|≤M
ξ̂+(m)e2πimn/θ ≤ ε

3
T (1;x).

From (3.2) we obtain

(3.5) θ−1 − ε/3 ≤ ξ̂−(0), ξ̂+(0) ≤ θ−1 + ε/3.

Hence we find using (3.3), (3.4) and (3.5) that

T (θ;x) =
∑

n≤x
τ(n)ξ(n/θ) ≥

∑

n≤x
τ(n)ξ−(n/θ)

=
∑

n≤x
τ(n)

(
ξ̂−(0) +

( ∑

1≤|m|≤M
+
∑

|m|>M

)
ξ̂−(m)e2πimn/θ

)

≥ (θ−1 − ε)T (1;x)

for all x > X and similarly

T (θ;x) ≤ (θ−1 + ε)T (1;x).

Since ε > 0 was arbitrary the theorem is proved.

P r o o f o f T h e o r e m II. Fix ε > 0 and let g : R→ R be an increasing
function satisfying

g(1) = 1, g(x) = O(log1+ε x).

Let θ > 1 be a fixed irrational number such that θ−1 is of principal cotype
g. We will show that (1.1) holds for such a θ: Theorem II is an immediate
consequence of this fact in conjunction with Lemma 2.4.

We write ξ = ξθ and observe that for t outside the countable set Z ∪
(Z− θ−1) we have

(3.6) ξ(t) = θ−1 + ψ(t)− ψ(t+ θ−1).

Since θ is irrational we have n/θ ∈ Z∪(Z−θ−1) only when n = 0 or n = −1,
so using (3.6) in (3.1) we obtain

T (θ;x) = θ−1T (1;x) +
∑

n≤x
τ(n)

(
ψ

(
n

θ

)
− ψ

(
n+ 1
θ

))
(3.7)

= θ−1T (1;x) +R(θ;x),
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say. We note that for fixed M ∈ N (to be determined later) we have

|R(θ;x)| ≤
∣∣∣∣
∑

n≤x
τ(n)ψM

(
n

θ

)∣∣∣∣+
∣∣∣∣
∑

n≤x
τ(n)ψM

(
n+ 1
θ

)∣∣∣∣(3.8)

+
∑

n≤x
τ(n)RM (n)

= |S0|+ |S1|+ S2,

say, where we define

RM (n) =
∣∣∣∣ψM

(
n

θ

)
− ψ

(
n

θ

)∣∣∣∣+
∣∣∣∣ψM

(
n+ 1
θ

)
− ψ

(
n+ 1
θ

)∣∣∣∣.

We establish bounds for |S0| and |S1| as follows. Using the easily verified
inequality

|x(1− x) cot(πx)| ≤ 1

(valid for 0 ≤ x ≤ 1), we see that the coefficients am of ψM satisfy |am| ≤
|m|−1. We thus have

|Sj | =
∣∣∣∣
∑

n≤x
τ(n)ψM

(
n+ j

θ

)∣∣∣∣(3.9)

=
∣∣∣
∑

|m|≤M
ame

2πijm
∑

n≤x
τ(n)e2πimn/θ

∣∣∣

≤ 2
∑

1≤m≤M
m−1|T (m/θ, x)|.

Now (cf. [1], p. 552) we have

T (m/θ, x) = 2
∑

l≤(x/m)1/2

∑

l≤n≤x/l
e2πilmn/θ +O(x1/2m1/2)(3.10)

= O
( ∑

l≤(x/m)1/2

|csc(πlm/θ)|
)

+O(x1/2m1/2).

Since θ−1 is of principal cotype g, Lemma 2.5 implies
∑

l≤(x/m)1/2

|csc(πlm/θ)| ≤
∑

l≤x1/2m1/2

|csc(πl/θ)|(3.11)

� x1/2m1/2(log(x1/2m1/2) + g(x1/2m1/2))

� (x1/2m1/2)1+ε

for any ε > 0. Combining (3.9), (3.10) and (3.11) we obtain

(3.12) Sj � (x1/2M1/2)1+ε

for j = 0 or 1.
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We now establish a bound for S2. By Corollary 2.9 we have

S2 �M−2
∑

n≤x
τ(n)(|csc(πn/θ)|2 + |csc(π(n+ 1)/θ)|2)

�M−2
∑

n≤x
τ(n)

(∣∣∣∣
n

θ

∣∣∣∣
−2

T
+
∣∣∣∣
n+ 1
θ

∣∣∣∣
−2

T

)
,

where | |T denotes toral norm. We partition the natural numbers ≤ x into
disjoint sets A and B in the following way: we put n ∈ A if

min
(∣∣∣∣
n

θ

∣∣∣∣
T
,

∣∣∣∣
n+ 1
θ

∣∣∣∣
T

)
≤M−2/3

and n ∈ B otherwise. Then since trivially |ψM − ψ| ≤ 1 we have

(3.13) S2 �
∑

n∈A
τ(n) +M−2/3

∑

n∈B
τ(n).

By Corollary 2.7 we have

|#(A)− 2xM−2/3| � log2+ε x

so that

#(A)� xM−2/3.

Using Lemma 2.1 we find that
∑

n∈A
τ(n)� x1+εM−2/3

(for any ε > 0), while
∑

n∈B
τ(n) ≤ T (1;x) ≤ x1+ε.

Substituting in (3.13) we have

(3.14) S2 � x1+εM−2/3.

Combining (3.8), (3.12) and (3.14), and choosing M = dx3/7e we obtain

R(θ;x)� x5/7+ε

and using this in (3.7) we see that (1.1) holds for θ as claimed. As we men-
tioned previously, this fact together with Lemma 2.4 yields the Theorem.

4. Proof of Theorem III. We have already remarked that if θ is ra-
tional then in general we do not have T (θ;x) ∼ θ−1T (1;x). Suppose now
that θ = θ1 + θ′ where θ1 = p/q is rational and θ′ > 0 is small. Then we
have bθnc = bθ1nc for n ≤ x, say, where x is comparable with q/θ′. This
implies T (θ;x) = T (θ′;x). Given a function g satisfying the hypothesis of
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Theorem III and a large positive x, we find that if θ = θ1 + θ′ for suitable
rational θ1 and small enough θ′ > 0 we can ensure

|T (θ;x)− θ−1T (1;x)| > T (1;x)/g(x).

We will prove Theorem III by showing that there are uncountably many
θ each having arbitrarily close rational approximations of this kind. Our
method in this section is vaguely reminiscent — especially as regards the ap-
peal to Dirichlet’s theorem on primes in progressions — of Chowla’s method
in [1], Section 15.

P r o o f o f T h e o r e m III. For an arbitrary real function G we will
call a sequence p1 < p2 < . . . of primes G-good if for each natural number n
we have

pn+1 ≡ 1 (mod pn),(4.1)

pn+1

pn+2 − 1
≤
(

pn
pn+1 − 1

)2

(4.2)

and

(4.3) pn+1 ≥ 1 +G(pn).

Dirichlet’s theorem on primes in arithmetic progressions implies that
there are uncountably many G-good sequences (for fixed G).

For any sequence P = (pj)j∈N of primes and for each j ≥ 1 write

p′j =
pj

pj+1 − 1
.

We set P0 = 1 and for n ≥ 1 we set Pn =
∏
j≤n p

′
j . Also if P satisfies (4.2)

we can clearly define a real number θP by setting

θP = p1 +
∑

n∈N
Pn.

We claim that for G-good sequences P the map P 7→ θP is injective: it
follows that there exist uncountably many real numbers θ > 1 such that
θ = θP for some G-good P.

Thus let P = (pj), Q = (qj) be distinct sequences of primes satisfying
(4.1) and (4.2), and define (q′j), (Qj) analogously with (p′j), (P ′j): we must
show that θP 6= θQ. If p1 6= q1 one checks easily that

bθPc = p1 6= q1 = bθQc
so that certainly θP 6= θQ in this case. If p1 = q1 let m > 1 be the least
integer such that p′m 6= q′m and suppose without loss of generality that
p′m < q′m. We will show that θP < θQ. We have clearly

(4.4) θQ − θP =
∑

n≥m
(Qn − Pn).
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Now since pm = qm, condition (4.1) implies that pm+1−qm+1 ≥ qm, so that

q′m − p′m = qm

(
1

qm+1 − 1
− 1
pm+1 − 1

)

= qm

(
pm+1 − qm+1

(qm+1 − 1)(pm+1 − 1)

)

≥ q2
m

(qm+1 − 1)(pm+1 − 1)
= q′mp

′
m.

Thus if p′m ≥ 2
3q
′
m we have

q′m − p′m ≥
2
3

(q′m)2

while if p′m ≤ 2
3q
′
m the same conclusion follows from the observation that

necessarily q′m ≤ 1
2 . Hence in any case

(4.5) Qm − Pm = Qm−1(q′m − p′m) ≥ 2
3
Qm−1(q′m)2 =

2
3
Qmq

′
m.

Also for each n > m we have

Pn = Pm−1p
′
m . . . p

′
n = Qm−1p

′
m . . . p

′
n < Qmp

′
m+1 . . . p

′
n.

Because of (4.2) the numbers p′n decrease with increasing n and moreover
p′m+1 ≤ (p′m)2. Therefore we have

∑
n>m

Pn < Qn
∑

n≥m+1

p′m+1 . . . p
′
n ≤ Qm

∑

n≥1

(p′m+1)n

≤ Qm
∑

n≥1

(p′m)2n < Qm
∑

n≥1

(q′m)2n = Qm
(q′m)2

1− (q′m)2 .

Since q′m ≤ 1
2 and the function x 7→ x

1−x2 is increasing for 0 ≤ x < 1 it
follows that

(4.6)
∑
m>n

Pn <
2
3
Qmq

′
m.

Combining (4.4)–(4.6) we have

θQ − θP =
∑

n≥m
(Qn − Pn) > Qm − Pm >

∑
n>m

Pn > 0

as claimed.
We can now complete the proof of Theorem III as follows. Let g be a

function satisfying the hypothesis of the theorem. We will show that there
exists a function G (depending on g) such that (1.2) fails whenever θ = θP
for some G-good sequence P.
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For P satisfying (4.1) and (4.2) we set θ = θP and write

θk = p1 +
∑

1≤j<k
Pj .

One checks easily that for k ≥ 1 we have

(4.7) θk = pkPk−1.

We claim that for each k and each n ≤ 1/(2p′k) we have

(4.8) bθnc = bθknc.
To see this observe that otherwise there exists some n ≤ 1/(2p′k) such that
θkn < bθnc, and then using (4.7) it follows that

θkn ≤ bθnc − Pk−1 ≤ θn− Pk−1

which implies

(4.9) θ − θk ≥ n−1Pk−1 ≥ 2Pk−1p
′
k = 2Pk.

But also we clearly have

θ − θk =
∑

j≥k
Pj < 2Pk

(since Pj+1/Pj = p′j+1 ≤ 1/2 for each j), and this contradicts (4.9). Hence
(4.8) holds as claimed.

Clearly P−1
k−1 < pk, and using (4.7) it follows that the set

{bθnc : n ≤ 1/(2p′k)} = {bθknc : n ≤ 1/(2p′k)}
can be written in the form {n : n ≤ θ/(2p′k)} ∩ E, where E is the union
of P−1

k−1 residue classes modulo pk. We observe that the residue class 0 is a
subset of E.

For any prime p we can define a function rp on the set of residue classes
modulo p by setting

rp(0) =
2p− 1
p2

and

rp(h) =
p− 1
p2 if h 6= 0.

Then because 0 ⊂ E we have (using (4.7))

∑

h̄⊂E
rpk(h) = P−1

k−1

(
pk − 1
p2
k

)
+

1
pk

= θ−1
k −

θ−1
k

pk
+

1
pk
,

so that
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∑

h̄⊂E
rpk(h)− θ−1 ≥

∑

h̄⊂E
rpk(h)− θ−1

k(4.10)

≥ 1− θ−1
k

pk
≥ 1− p−1

1

pk
≥ 1

2pk
.

We can define a real-valued function G0 on the set of primes by putting

G0(p) = max
h

min
{
N ∈ N : x > N ⇒ |T (h, p;x)− rp(h)T (1;x)| ≤ T (1;x)

4p2

}

(note that Lemma 2.3 is needed to ensure that the set on the right is non-
empty for each choice of h and p). We can choose a function G : R → R
satisfying

(4.11) G(p) > 2pG0(p)

for each prime p and also increasing rapidly enough to ensure that

(4.12) g(G(x)/(2x)) > 4x

for all x ∈ R. Now let P be G-good and set θ = θP . We write x = 1/(2p′k)
and observe using (4.3) and (4.11) that then x > G0(pk). It follows using
(4.8), (4.10) and the definition of G0(pk) that

(4.13) |T (θ;x)− θ−1T (1;x)|
= |T (θk;x)− θ−1T (1;x)|

≥
(∑

h̄⊂E
rpk(h)− θ−1

)
T (1;x)−

∑

h̄⊂E
|T (h, pk;x)− rpk(h)T (1;x)|

≥
(

1
2pk
− 1

4pk

)
T (1;x) =

1
4pk

T (1;x).

Because x > G(pk)/(2pk) and g is increasing, the relation (4.12) implies
that g(x) > 4pk. Hence using (4.13) we have

|T (θ;x)− θ−1T (1;x)| > T (1;x)
g(x)

.

Thus (1.2) fails for x = 1/(2p′k) and by (4.2) such an x can be chosen as
large as we please. The proof is complete.
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