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0. Introduction. Since Z is a principal ideal domain, every finitely gen-
erated torsion-free Z-module has a finite Z-basis; in particular, any fractional
ideal in a number field has an “integral basis”. However, if K is an arbitrary
number field the ring of integers, A, of K is a Dedekind domain but not
necessarily a principal ideal domain. If L/K is a finite extension of number
fields, then the fractional ideals of L are finitely generated and torsion-free
(or, equivalently, finitely generated and projective) as A-modules, but not
necessarily free. Beginning with some classical results of Artin and Cheval-
ley (Propositions 1.1 and 1.2), we give some criteria for the existence or
nonexistence of A-bases for ideals in L or for the ring of integers of L in
the case where L/K is unramified (Theorem 1.10 and Corollary 2.3). In
particular, we show how the existence of an integral basis is (under mild
hypotheses) determined by purely group-theoretic properties of the Galois
group of the normal closure of L/K. We prove the main results for arbi-
trary finite separable field extensions L/K. The arguments were suggested
by reading [4].

1. Unramified extensions. We begin by recalling some of the basic
facts about lattices (finitely generated torsion-free modules) over a Dedekind
domain. If P is a lattice over the Dedekind domain A, then P = I1 ®...® 1,
where Iy, ..., I, are ideals of A and furthermore Iy ®...®I, 2 J1®...®J,,
if and only if n=mand Iy ...I, = J;...J,,. Note also that if I and J are
fractional ideals of A, then I = .J if and only if [I] = [J], where [K] denotes
the class of the ideal K in CI(A), the ideal classgroup of A. It follows that the
module P =2 I1&...61, is determined up to isomorphism by its rank, n, and
the class [I; ... 1,] € CI(A), called the Steinitz class of P and denoted c(P).
For example, if J C A is an ideal representing ¢(P) then P = A®(»=1) g .
In particular P has an A-basis (i.e., P is free as an A-module) if and only if
¢(P) = 1. (For details, see for example [1], [3] or [5].)

Suppose now that A is a Dedekind domain with field of fractions K and
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that L/K is a finite separable extension of fields of degree n. Let B be the
integral closure of A in L. Then B is a Dedekind domain and any fractional
ideal I of B is an A-lattice of rank n. We recall the following basic results
on the Steinitz class of such a lattice:

ProrosiTiOoN 1.1. If I is any fractional ideal of B then
c(I) = ¢(B)Np/k[1].
PROPOSITION 1.2. If 6p/a is the relative discriminant of B over A and
if dp Kk 18 the discriminant of any K-basis of L, then
Sp/a=J*(drK)
where J is a fractional ideal of A representing the ideal class ¢(B).
(For proofs, see [3].)
Here are some simple corollaries:
COROLLARY 1.3. There exists an ideal of B which has an A-basis if and
only if
¢(B) € Np,k(CU(B)).
Proof. By 1.1, I is A-free & 1 = ¢(I) = Ny g[I]c(B) & ¢(B) =
Nyl
COROLLARY 1.4.

o(B)* = [0pja] = Np/k[Dp/al

where Dp /4 is the different of B relative to A.

Proof. This is immediate from 1.2.

COROLLARY 1.5. If n is odd, there exists an ideal of B which has an
A-basis.

More generally, if the torsion abelian group CI(A)/Np,xCI(B) has no
nontrivial 2-torsion there exists a fractional ideal of B with an A-basis.

Proof. Since [¢(B)Ny/xCl(B)]* =1 in CI(A)/Np,kCIl(B), by 1.4, the
hypothesis implies that c¢(B) € N, xCI(B) and hence there exists an A-free
fractional ideal of B.

We will give an explicit example below of an extension of number fields
L/K where no fractional ideal of L has a basis over the ring of integers of
K (Example 1.14).

Recall that if no prime of A ramifies in B, then dp,4 = A.

COROLLARY 1.6. If no prime of A ramifies in B and if CI(A) has no
nontrivial 2-torsion, then B has an A-basis.

Proof. Since 6p/4 = A, we have c(B)? = [0B/a] = 1 by 1.4 and hence
¢(B) =1 by hypothesis.
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If D is a Dedekind domain, let U(D) denote the group of units of D.
Thus we have:

COROLLARY 1.7. Suppose that no prime of A ramifies in B and that
dp Kk 1s the discriminant of any K-basis of L. Then B has an A-basis if and
only if dp )k = ua® with u € U(A) and a € K*.

Proof. By 1.2, A= J2(dL/K) where J represents ¢(B). Thus, (dr k) =
J~2 and hence B is A-free < J is a principal ideal < (d, /K) is the square
of a principal ideal < dr/x = ua?.

Suppose now that € is a primitive element for L/ K. Let E be the normal
closure of L/K and let G be the Galois group of E/K, H the Galois group of
E/L.Let {o1,...,0,} be aset of representatives for the elements of the coset
space G/H. Let d = d(9) = dp/x(1,6,...,6"") = [1ir(0i(0) — 0;(0)) =
a(0)? where a = a(0) = [Ii<;(0i(0) — 0;()). Finally, let C' be the integral
closure of A in E.

LEMMA 1.8. If no prime of A ramifies in B and if either U(C)?° N K =
U(A)? or [E : L] is odd and U(B)* N K = U(A)?, then B has an A-basis if
and only if o € K.

Proof. Ifa € K then d = o? in K and hence B is A-free by 1.7 (without
the added hypotheses on squares of units). Conversely, suppose that B is A-
free. Then a? =d =ua? = (e 'a)’ =u=u e U(C)’NK = uec U(A)? =
a? = (va)? for some v € U(A) = a=tva € KifU(C)*NK =U(A)> If
[E : L] is odd then a € L and thus in the argument just given, a " la € L
and hence u € U(B)?* N K.

Note. The condition on units U(B)?2N K = U(A)? is not very restrictive.
In the number field case, for instance, there are only finitely many quadratic
extensions of the field K of the form K(y/u)/K where u is a unit of K and
the condition simply says that any such extension is not contained in L.

Recall that if ¢ is a permutation of the set {zi,...,x,}, then ¢ is an
even permutation if and only if

U(H(fﬂz‘ - fﬁj)) =@ —=)).
i<j 1<yj

Thus a(f) € K < o(a(f)) = «a(f) for all 0 € G < o acts as an even
permutation on {o1(),...,0,(0)} for all o € G < each o € G acts evenly
on the G-set G/H since the map G/H — {01(0),...,0,(0)},0.H — 0,(0)
is an isomorphism of G-sets.

We will say that the group G acts evenly on the G-set X if each element
of G acts on X as an even permutation. Otherwise we will say that G acts
oddly on X.
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LEMMA 1.9. Let G be a finite group and H a subgroup of odd order. Then
G acts oddly on G/H if and only if the Sylow 2-subgroups of G are nontrivial
and cyclic.

Proof. Since every element of odd order in a permutation group is even,
G acts oddly on a set X if and only if some element of G of 2-power order
acts oddly. Suppose that ¢ € G,0 # 1 has 2-power order and let C' be the
cyclic subgroup of G generated by o. Let 7 € G and consider the orbit of
7H € G/H under C. The stabilizer of C on 7H is CN7H7~! = 1 since
TH7~! has odd order and C has 2-power order. Thus G/H decomposes into
[G : H]/|C| orbits each of length |C|. Thus, as a permutation, o factors as
a product of [G : H]/|C| cycles, each of length |C|. But each cycle of length
|C| in turn factors as a product of |C'| —1 transpositions and hence o factors

as a product of [C‘;(jﬂ (|C] — 1) transpositions. Since |C| — 1 is odd, o acts

oddly & [G: H]/|C| is odd < C'is a Sylow 2-subgroup of G.

Combining 1.8 and 1.9 we obtain:

THEOREM 1.10. Suppose that L/ K is a finite separable extension of fields
and that E is the normal closure of L/K. Suppose that A is a Dedekind
domain with field of fractions K and that B and C are the integral closures
of A in L and E respectively. If [E : L] is odd and U(B)>? N K = U(A)?
and if no prime of A ramifies in B then B has an A-basis if and only if the
Sylow 2-subgroup of G is not nontrivial and cyclic.

This generalises the result (see [3]) that if L/K is Galois, unramified
of odd degree, then B has an A-basis. However, here is an example of an
unramified extension L/K of odd degree for which B is not free as an A-
module.

EXAMPLE 1.11. Let F be the splitting field of f(X) = X3— X +1 over Q.
The discriminant of f(X) is —23, so Gal(F/Q) = S3, the symmetric group
on three letters. Let E = F(v/2) and K = Q(y/—46). E is the splitting field
of f(X) over Q(v/2) and hence E is unramified (at any finite prime) over
Q(v/—23,v2) by the arguments of Uchida [6] (Theorem 1 and Corollary).
Q(v/—23,+/2) is in turn unramified over K and thus E/K is a Galois unram-
ified extension with Gal(E/K) = S3. Let H be any subgroup of Gal(E/K)
of order 2 and let L = E¥. Let A, B and C be the rings of integers of K, L
and E respectively. Since U(A) = {1} and v/—1 ¢ Q(/—23,v/2) it follows
that U(C)?2N K = U(A)?. Since S3 acts oddly on S3/H, o ¢ K and thus B
is not a free A-module by 1.8.

If[E: L] = |H| is even, then 1.9 is easily seen to fail and there is no simple
criterion for G to act oddly on G/H. However, in certain circumstances one
can provide criteria. We will consider this below.
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For the present we specialize to the case where L/K is an extension of
number fields and A is the ring of integers of L. In this situation classfield
theory allows us to control the norm map Ny, /i : Cl(B) — CI(A):

LEMMA 1.12. Let Ky be the Hilbert classfield of K. Let px : Cl(A) —
Gal(K1/K) be the Artin isomorphism. Then ok induces an isomorphism

Proof. Let Ly be the Hilbert classfield of L. Then L; O K; and if
or : Cl(B) — Gal(Ly/L) is the Artin isomorphism for L and res/k is the
restriction map Gal(L1/L) — Gal(K1/K), then oxNp /i = resy/kxor and
hence g induces an isomorphism Ny, (Cl(B)) — resy /x(Gal(L1/L)) =
Gal(Kl/L N Kl)

COROLLARY 1.13. Suppose that L/ K is unramified and that L contains
the maximal abelian unramified 2-extension of K. Then there exists an ideal
of B with an A-basis if and only if B has an A-basis.

Proof. L/K unramified = ¢(B)? = 1 and since L contains the maximal
abelian unramified 2-extension of K, N,k (CI(B)) has odd order by 1.12.
Thus ¢(B) =1 < ¢(B) € N, (CI(B)).

EXAMPLE 1.14. Let K = Q(v/—14), F = K(V/2), L = K(v/2v2 - 1).
Then L is the Hilbert classfield of K (see, for example, Cox [2]). Clearly
Gal(L/K) = CI(A) is cyclic of order 4 and Gal(F'/K) is cyclic of order 2.
Let B be the ring of integers of L and let C' be the ring of integers of F'.
Note that U(A) = {#1} and that /=1 ¢ L (for otherwise we would have
V=1 € F = Q(v/—14,+/2) which is clearly false). It follows that U (B)?>NK =
U(C)>N K = U(A)? = 1. Thus neither B nor C has an A-basis by 1.9. No
ideal of B is A-free by 1.13.

However N, i (C1(C)) is the unique subgroup of order 2 in CI(A) by 1.12
and thus, since ¢(C)?=1 (because F'//K is unramified), ¢(C) € Np,x (C1(C))
and so there exist ideals of C' which are A-free.

2. “0Odd” group actions. In this section we prove a few results on
oddness of transitive group actions where the stabilizer has even order. In the
case where the stabilizer has a normal complement, a criterion for oddness
can be given:

THEOREM 2.1. Suppose that G is a finite group with subgroup H. Suppose
that H has a normal complement N. Let S be a Sylow 2-subgroup of H and
suppose the elements oq,...,0., of orders 2™*,...,2™"  generate S. Then
G acts oddly on G/H if and only if either the Sylow 2-subgroups of N are
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nontrivial and cyclic or

mi—l

S 2k Oy (02| # (2™ — 1)|N| mod 27!
k=0

for some i € {1,...,r} where Cy(17) ={p € N | ur =7u} for v € G.

Proof. Since G = HN and since a product of two even permutations is
even, G acts oddly on G/H if and only if either H or N acts oddly on G/H.
Now, the bijection of sets N «» G/H induces an isomorphism of N-sets
if N acts on N by left multiplication and a bijection of H-sets if H acts
on N by conjugation. Thus N acts oddly on G/H if and only if the Sylow
2-subgroup of N is nontrivial and cyclic by Lemma 1.9 (with G = N and
H =1). Clearly H acts oddly on N by conjugation if and only if S does. S
acts oddly on N if and only if some o; does. It remains to show that o; acts
as an odd permutation if and only if

m;—1

Y 2k Oy (02| # (27— 1)|N] mod 27,

k=0
Fix i and let 0 = 04, m = m;. Let rp = \CN(J2k)|. Consider the action of
o on N by conjugation. N decomposes as a union of orbits of length 2%,
k < m.If 7 € N, then the orbit of 7 has length 2* if and only if o2 fixes 7
but 02" does not; i.e., if and only if € Cn (02" ) — Cn(c2" ). Thus the
number of orbits of length 2 is

Sk — 2ik(7’/f — T‘kfl).

Thus the permutation o factors as a product of the form

(1)

where oy; is a 2k—cycle. Hence o0} in turn factors as a product of 2k _ 1
transpositions and hence o factors as a product of ¢ transpositions where

m m

b= 3@ s = Y (@ - 1)2i(7«k 1)

k=1 k=1

= (2" =2 F) (k= )

k
= o2 —r0) - S 2m k(- i)
k=1

1
= —{(2" = Drp —2""trg = 2" 2 — . =11}
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Thus o acts oddly < t# 0mod 2 < 2™t # 0 mod 2™+ &

m—

-

om—k=lp = (2™ — 1)r,, mod gmtl1
k=0

proving the result since 7, = |Cn(c2")| = [Cn(1)| = |N|.

COROLLARY 2.2. Suppose G is a Frobenius group with kernel N and
complement H. If |H| is odd, then G acts evenly on G/H. If |H| is even,
then G acts oddly on G/H if and only if the Sylow 2-subgroups of H are
cyclic of order 2™ and 2™ %! does not divide |[N| — 1.

Proof. Since it can easily be shown that the Sylow 2-subgroups of N
cannot be nontrivial cyclic, it follows that if H has odd order then G acts
evenly on G/H by 1.8. Suppose, on the other hand, that H has even order. If
o € H—{1} then Cy(0) = 1. Suppose o € H of order 2. Then \CN(U2k)\ =
1 for k < m—1. Thus, by the proof of Theorem 2.1, ¢ acts oddly on G/H <

2™ — 1 # (2™ — 1)|N| mod 2™

& 2™+ does not divide |N| — 1. However, if o does not generate a Sylow
2-subgroup of H then the order of such a group is 2* with & > m + 1 and
hence o acts evenly since 2* divides [N| —1 (because |H| does). This proves
the result.

A special case of 2.2 is the case where G is dihedral of order 2m with m
odd and H is a subgroup of order 2. Then G acts oddly on G/H if and only
if m # 1 mod 4.

COROLLARY 2.3. Suppose E/K is a Galois extension of fields with
Gal(E/K) = G a Frobenius group with complement H. Let L be the fized
field of H. Suppose that A is a Dedekind domain with field of fractions K
and that B and C are the integral closures of A in L and E respectively.
Suppose that no prime of A ramifies in B and that U(C)>* N K = U(A)2%.
Then B has an A-basis if and only if one of the following holds: (i) |H| is odd
or (ii) the Sylow 2-subgroup of H is not cyclic or (iil) the Sylow 2-subgroup
of H is cyclic of order 2™ and 2™+ divides [L : K] — 1.

Proof. This follows at once from 2.2 and 1.8.

Of course we could have stated a more general result using Theorem 2.1
rather than 2.2.
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