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0. Introduction. Since Z is a principal ideal domain, every finitely gen-
erated torsion-free Z-module has a finite Z-basis; in particular, any fractional
ideal in a number field has an “integral basis”. However, if K is an arbitrary
number field the ring of integers, A, of K is a Dedekind domain but not
necessarily a principal ideal domain. If L/K is a finite extension of number
fields, then the fractional ideals of L are finitely generated and torsion-free
(or, equivalently, finitely generated and projective) as A-modules, but not
necessarily free. Beginning with some classical results of Artin and Cheval-
ley (Propositions 1.1 and 1.2), we give some criteria for the existence or
nonexistence of A-bases for ideals in L or for the ring of integers of L in
the case where L/K is unramified (Theorem 1.10 and Corollary 2.3). In
particular, we show how the existence of an integral basis is (under mild
hypotheses) determined by purely group-theoretic properties of the Galois
group of the normal closure of L/K. We prove the main results for arbi-
trary finite separable field extensions L/K. The arguments were suggested
by reading [4].

1. Unramified extensions. We begin by recalling some of the basic
facts about lattices (finitely generated torsion-free modules) over a Dedekind
domain. If P is a lattice over the Dedekind domain A, then P ∼= I1⊕ . . .⊕In
where I1, . . . , In are ideals of A and furthermore I1⊕ . . .⊕In ∼= J1⊕ . . .⊕Jm
if and only if n = m and I1 . . . In ∼= J1 . . . Jm. Note also that if I and J are
fractional ideals of A, then I ∼= J if and only if [I] = [J ], where [K] denotes
the class of the ideal K in Cl(A), the ideal classgroup of A. It follows that the
module P ∼= I1⊕. . .⊕In is determined up to isomorphism by its rank, n, and
the class [I1 . . . In] ∈ Cl(A), called the Steinitz class of P and denoted c(P ).
For example, if J ⊆ A is an ideal representing c(P ) then P ∼= A⊕(n−1) ⊕ J .
In particular P has an A-basis (i.e., P is free as an A-module) if and only if
c(P ) = 1. (For details, see for example [1], [3] or [5].)

Suppose now that A is a Dedekind domain with field of fractions K and
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that L/K is a finite separable extension of fields of degree n. Let B be the
integral closure of A in L. Then B is a Dedekind domain and any fractional
ideal I of B is an A-lattice of rank n. We recall the following basic results
on the Steinitz class of such a lattice:

Proposition 1.1. If I is any fractional ideal of B then

c(I) = c(B)NL/K [I].

Proposition 1.2. If δB/A is the relative discriminant of B over A and
if dL/K is the discriminant of any K-basis of L, then

δB/A = J2(dL/K)

where J is a fractional ideal of A representing the ideal class c(B).

(For proofs, see [3].)
Here are some simple corollaries:

Corollary 1.3. There exists an ideal of B which has an A-basis if and
only if

c(B) ∈ NL/K(Cl(B)).
P r o o f. By 1.1, I is A-free ⇔ 1 = c(I) = NL/K [I]c(B) ⇔ c(B) =

NL/K [I−1].

Corollary 1.4.

c(B)2 = [δB/A] = NL/K [DB/A]

where DB/A is the different of B relative to A.

P r o o f. This is immediate from 1.2.

Corollary 1.5. If n is odd , there exists an ideal of B which has an
A-basis.

More generally , if the torsion abelian group Cl(A)/NL/KCl(B) has no
nontrivial 2-torsion there exists a fractional ideal of B with an A-basis.

P r o o f. Since [c(B)NL/KCl(B)]2 = 1 in Cl(A)/NL/KCl(B), by 1.4, the
hypothesis implies that c(B) ∈ NL/KCl(B) and hence there exists an A-free
fractional ideal of B.

We will give an explicit example below of an extension of number fields
L/K where no fractional ideal of L has a basis over the ring of integers of
K (Example 1.14).

Recall that if no prime of A ramifies in B, then δB/A = A.

Corollary 1.6. If no prime of A ramifies in B and if Cl(A) has no
nontrivial 2-torsion, then B has an A-basis.

P r o o f. Since δB/A = A, we have c(B)2 = [δB/A] = 1 by 1.4 and hence
c(B) = 1 by hypothesis.
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If D is a Dedekind domain, let U(D) denote the group of units of D.
Thus we have:

Corollary 1.7. Suppose that no prime of A ramifies in B and that
dL/K is the discriminant of any K-basis of L. Then B has an A-basis if and
only if dL/K = ua2 with u ∈ U(A) and a ∈ K∗.

P r o o f. By 1.2, A = J2(dL/K) where J represents c(B). Thus, (dL/K) =
J−2 and hence B is A-free ⇔ J is a principal ideal ⇔ (dL/K) is the square
of a principal ideal ⇔ dL/K = ua2.

Suppose now that θ is a primitive element for L/K. Let E be the normal
closure of L/K and let G be the Galois group of E/K, H the Galois group of
E/L. Let {σ1, . . . , σn} be a set of representatives for the elements of the coset
space G/H. Let d = d(θ) = dL/K(1, θ, . . . , θn−1) =

∏
i 6=j(σi(θ) − σj(θ)) =

α(θ)2 where α = α(θ) =
∏
i<j(σi(θ)− σj(θ)). Finally, let C be the integral

closure of A in E.

Lemma 1.8. If no prime of A ramifies in B and if either U(C)2 ∩K =
U(A)2 or [E : L] is odd and U(B)2 ∩K = U(A)2, then B has an A-basis if
and only if α ∈ K.

P r o o f. If α ∈ K then d = α2 in K and hence B is A-free by 1.7 (without
the added hypotheses on squares of units). Conversely, suppose that B is A-
free. Then α2 = d = ua2 ⇒ (a−1α)2 = u⇒ u ∈ U(C)2∩K ⇒ u ∈ U(A)2 ⇒
α2 = (va)2 for some v ∈ U(A) ⇒ α = ±va ∈ K if U(C)2 ∩K = U(A)2. If
[E : L] is odd then α ∈ L and thus in the argument just given, a−1α ∈ L
and hence u ∈ U(B)2 ∩K.

Note. The condition on units U(B)2∩K = U(A)2 is not very restrictive.
In the number field case, for instance, there are only finitely many quadratic
extensions of the field K of the form K(

√
u)/K where u is a unit of K and

the condition simply says that any such extension is not contained in L.

Recall that if σ is a permutation of the set {x1, . . . , xn}, then σ is an
even permutation if and only if

σ
(∏

i<j

(xi − xj)
)

=
∏

i<j

(xi − xj).

Thus α(θ) ∈ K ⇔ σ(α(θ)) = α(θ) for all σ ∈ G ⇔ σ acts as an even
permutation on {σ1(θ), . . . , σn(θ)} for all σ ∈ G ⇔ each σ ∈ G acts evenly
on the G-set G/H since the map G/H → {σ1(θ), . . . , σn(θ)}, σiH 7→ σi(θ)
is an isomorphism of G-sets.

We will say that the group G acts evenly on the G-set X if each element
of G acts on X as an even permutation. Otherwise we will say that G acts
oddly on X.
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Lemma 1.9. Let G be a finite group and H a subgroup of odd order. Then
G acts oddly on G/H if and only if the Sylow 2-subgroups of G are nontrivial
and cyclic.

P r o o f. Since every element of odd order in a permutation group is even,
G acts oddly on a set X if and only if some element of G of 2-power order
acts oddly. Suppose that σ ∈ G, σ 6= 1 has 2-power order and let C be the
cyclic subgroup of G generated by σ. Let τ ∈ G and consider the orbit of
τH ∈ G/H under C. The stabilizer of C on τH is C ∩ τHτ−1 = 1 since
τHτ−1 has odd order and C has 2-power order. Thus G/H decomposes into
[G : H]/|C| orbits each of length |C|. Thus, as a permutation, σ factors as
a product of [G : H]/|C| cycles, each of length |C|. But each cycle of length
|C| in turn factors as a product of |C|−1 transpositions and hence σ factors
as a product of [G:H]

|C| (|C| − 1) transpositions. Since |C| − 1 is odd, σ acts
oddly ⇔ [G : H]/|C| is odd ⇔ C is a Sylow 2-subgroup of G.

Combining 1.8 and 1.9 we obtain:

Theorem 1.10. Suppose that L/K is a finite separable extension of fields
and that E is the normal closure of L/K. Suppose that A is a Dedekind
domain with field of fractions K and that B and C are the integral closures
of A in L and E respectively. If [E : L] is odd and U(B)2 ∩ K = U(A)2

and if no prime of A ramifies in B then B has an A-basis if and only if the
Sylow 2-subgroup of G is not nontrivial and cyclic.

This generalises the result (see [3]) that if L/K is Galois, unramified
of odd degree, then B has an A-basis. However, here is an example of an
unramified extension L/K of odd degree for which B is not free as an A-
module.

Example 1.11. Let F be the splitting field of f(X) = X3−X+1 over Q.
The discriminant of f(X) is −23, so Gal(F/Q) = S3, the symmetric group
on three letters. Let E = F (

√
2) and K = Q(

√−46). E is the splitting field
of f(X) over Q(

√
2) and hence E is unramified (at any finite prime) over

Q(
√−23,

√
2) by the arguments of Uchida [6] (Theorem 1 and Corollary).

Q(
√−23,

√
2) is in turn unramified over K and thus E/K is a Galois unram-

ified extension with Gal(E/K) = S3. Let H be any subgroup of Gal(E/K)
of order 2 and let L = EH . Let A, B and C be the rings of integers of K, L
and E respectively. Since U(A) = {±1} and

√−1 6∈ Q(
√−23,

√
2) it follows

that U(C)2 ∩K = U(A)2. Since S3 acts oddly on S3/H, α 6∈ K and thus B
is not a free A-module by 1.8.

If [E : L] = |H| is even, then 1.9 is easily seen to fail and there is no simple
criterion for G to act oddly on G/H. However, in certain circumstances one
can provide criteria. We will consider this below.
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For the present we specialize to the case where L/K is an extension of
number fields and A is the ring of integers of L. In this situation classfield
theory allows us to control the norm map NL/K : Cl(B)→ Cl(A):

Lemma 1.12. Let K1 be the Hilbert classfield of K. Let %K : Cl(A) →
Gal(K1/K) be the Artin isomorphism. Then %K induces an isomorphism
NL/K(Cl(B))→ Gal(K1/K1 ∩ L).

P r o o f. Let L1 be the Hilbert classfield of L. Then L1 ⊇ K1 and if
%L : Cl(B)→ Gal(L1/L) is the Artin isomorphism for L and resL/K is the
restriction map Gal(L1/L) → Gal(K1/K), then %KNL/K = resL/K%L and
hence %K induces an isomorphism NL/K(Cl(B)) → resL/K(Gal(L1/L)) =
Gal(K1/L ∩K1).

Corollary 1.13. Suppose that L/K is unramified and that L contains
the maximal abelian unramified 2-extension of K. Then there exists an ideal
of B with an A-basis if and only if B has an A-basis.

P r o o f. L/K unramified⇒ c(B)2 = 1 and since L contains the maximal
abelian unramified 2-extension of K, NL/K(Cl(B)) has odd order by 1.12.
Thus c(B) = 1⇔ c(B) ∈ NL/K(Cl(B)).

Example 1.14. Let K = Q(
√−14), F = K(

√
2), L = K(

√
2
√

2− 1).
Then L is the Hilbert classfield of K (see, for example, Cox [2]). Clearly
Gal(L/K) ∼= Cl(A) is cyclic of order 4 and Gal(F/K) is cyclic of order 2.
Let B be the ring of integers of L and let C be the ring of integers of F .
Note that U(A) = {±1} and that

√−1 6∈ L (for otherwise we would have√−1 ∈ F = Q(
√−14,

√
2) which is clearly false). It follows that U(B)2∩K =

U(C)2 ∩K = U(A)2 = 1. Thus neither B nor C has an A-basis by 1.9. No
ideal of B is A-free by 1.13.

However NF/K(Cl(C)) is the unique subgroup of order 2 in Cl(A) by 1.12
and thus, since c(C)2 =1 (because F/K is unramified), c(C)∈NF/K(Cl(C))
and so there exist ideals of C which are A-free.

2. “Odd” group actions. In this section we prove a few results on
oddness of transitive group actions where the stabilizer has even order. In the
case where the stabilizer has a normal complement, a criterion for oddness
can be given:

Theorem 2.1. Suppose that G is a finite group with subgroup H. Suppose
that H has a normal complement N . Let S be a Sylow 2-subgroup of H and
suppose the elements σ1, . . . , σr, of orders 2m1 , . . . , 2mr , generate S. Then
G acts oddly on G/H if and only if either the Sylow 2-subgroups of N are
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nontrivial and cyclic or
mi−1∑

k=0

2mi−k−1|CN (σ2k
i )| 6≡ (2mi − 1)|N | mod 2mi+1

for some i ∈ {1, . . . , r} where CN (τ) = {µ ∈ N | µτ = τµ} for τ ∈ G.

P r o o f. Since G = HN and since a product of two even permutations is
even, G acts oddly on G/H if and only if either H or N acts oddly on G/H.
Now, the bijection of sets N ↔ G/H induces an isomorphism of N -sets
if N acts on N by left multiplication and a bijection of H-sets if H acts
on N by conjugation. Thus N acts oddly on G/H if and only if the Sylow
2-subgroup of N is nontrivial and cyclic by Lemma 1.9 (with G = N and
H = 1). Clearly H acts oddly on N by conjugation if and only if S does. S
acts oddly on N if and only if some σi does. It remains to show that σi acts
as an odd permutation if and only if

mi−1∑

k=0

2mi−k−1|CN (σ2k
i )| 6≡ (2mi − 1)|N | mod 2mi+1.

Fix i and let σ = σi, m = mi. Let rk = |CN (σ2k)|. Consider the action of
σ on N by conjugation. N decomposes as a union of orbits of length 2k,
k ≤ m. If τ ∈ N , then the orbit of τ has length 2k if and only if σ2k fixes τ
but σ2k−1

does not; i.e., if and only if τ ∈ CN (σ2k)− CN (σ2k−1
). Thus the

number of orbits of length 2k is

sk =
1
2k

(rk − rk−1).

Thus the permutation σ factors as a product of the form
m∏

k=1

( sk∏

j=1

σkj

)

where σkj is a 2k-cycle. Hence σkj in turn factors as a product of 2k − 1
transpositions and hence σ factors as a product of t transpositions where

t =
m∑

k=1

(2k − 1)sk =
m∑

k=1

(2k − 1)
1
2k

(rk − rk−1)

=
1

2m

m∑

k=1

(2m − 2m−k)(rk − rk−1)

=
1

2m

{
2m(rm − r0)−

m∑

k=1

2m−k(rk − rk−1)
}

=
1

2m
{(2m − 1)rm − 2m−1r0 − 2m−2r1 − . . .− rm−1}.
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Thus σ acts oddly ⇔ t 6≡ 0 mod 2 ⇔ 2mt 6≡ 0 mod 2m+1 ⇔
m−1∑

k=0

2m−k−1rk 6≡ (2m − 1)rm mod 2m+1

proving the result since rm = |CN (σ2m)| = |CN (1)| = |N |.
Corollary 2.2. Suppose G is a Frobenius group with kernel N and

complement H. If |H| is odd , then G acts evenly on G/H. If |H| is even,
then G acts oddly on G/H if and only if the Sylow 2-subgroups of H are
cyclic of order 2m and 2m+1 does not divide |N | − 1.

P r o o f. Since it can easily be shown that the Sylow 2-subgroups of N
cannot be nontrivial cyclic, it follows that if H has odd order then G acts
evenly on G/H by 1.8. Suppose, on the other hand, that H has even order. If
σ ∈ H−{1} then CN (σ) = 1. Suppose σ ∈ H of order 2m. Then |CN (σ2k)| =
1 for k ≤ m−1. Thus, by the proof of Theorem 2.1, σ acts oddly on G/H ⇔

2m − 1 6≡ (2m − 1)|N | mod 2m+1

⇔ 2m+1 does not divide |N | − 1. However, if σ does not generate a Sylow
2-subgroup of H then the order of such a group is 2k with k ≥ m + 1 and
hence σ acts evenly since 2k divides |N |− 1 (because |H| does). This proves
the result.

A special case of 2.2 is the case where G is dihedral of order 2m with m
odd and H is a subgroup of order 2. Then G acts oddly on G/H if and only
if m 6≡ 1 mod 4.

Corollary 2.3. Suppose E/K is a Galois extension of fields with
Gal(E/K) = G a Frobenius group with complement H. Let L be the fixed
field of H. Suppose that A is a Dedekind domain with field of fractions K
and that B and C are the integral closures of A in L and E respectively.
Suppose that no prime of A ramifies in B and that U(C)2 ∩ K = U(A)2.
Then B has an A-basis if and only if one of the following holds: (i) |H| is odd
or (ii) the Sylow 2-subgroup of H is not cyclic or (iii) the Sylow 2-subgroup
of H is cyclic of order 2m and 2m+1 divides [L : K]− 1.

P r o o f. This follows at once from 2.2 and 1.8.

Of course we could have stated a more general result using Theorem 2.1
rather than 2.2.
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