
ACTA ARITHMETICA
LXX.4 (1995)

On arithmetic progressions having only few different
prime factors in comparison with their length

by

Pieter Moree (Princeton, N.J.)

1. Introduction. For positive integers a, d, k with (a, d) = 1 and k > 2
we will study the number of distinct prime factors of the integers in the
arithmetic progression a, a+d, . . . , a+(k−1)d. To fix notation, let Da,d,k =
a(a + d) . . . (a + (k − 1)d) and ω(a, d, k) = ω(Da,d,k) where, as usual, ω(n)
is the number of distinct prime factors of the integer n.

By Dickson’s prime k-tuplets Conjecture (a special case of Schinzel’s
Conjecture H [Ri, p. 312]), we expect that there are infinitely many integers
d for which each of the numbers 1 + d, 1 + 2d, . . . , 1 + (k − 1)d is prime, so
that ω(a, d, k) = k − 1 infinitely often for each k. On the other hand, it is
easy to show (see the proof of Lemma 1) that if ω(a, d, k) ≤ k − 2, then

(1) a(a+ d) ≤ (k − 1)!,

so that ω(a, d, k) ≤ k−2 occurs only finitely often for each k. Inequality (1)
has the important implication that in order to prove that an upper bound
≤ k−2 holds with only finitely many exceptions (a, d, k), it suffices to prove
that k is bounded from above (independently of a and d).

The value of ω(1, 2, k) is exactly π(2k) − 1, where π(2k) is the number
of primes up to 2k, which is ∼ 2k/ log k by the Prime Number Theorem.
We thus see that ω(a, d, k) can be as small as a multiple of k/ log k for at
least one pair (a, d) for each k. It is the purpose of this paper to study, in
more detail, when ω(a, d, k) is less than some given multiple k/ log k and to
produce methods to determine all possible such triples (a, d, k).

The following inequalities are due to Shorey and Tijdeman (see [ST1]
respectively [ST2]),

(2) ω(a, d, k) ≥ π(k)
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and

(3) ω(a, d, k) ≥ k
(

1− log k
log(a+ (k − 1)d)

)
− 1.

Provided ω(a, d, k) ≤ k − 2, the latter inequality may be written as

(4) a+ (k − 1)d ≤ kk/(k−1−ω(a,d,k)).

It is a powerful result for, with this, one can deduce:

Theorem 0. Fix a constant δ > 0. One can determine all triples (a, d, k)
of integers a ≥ 1, d ≥ 2e3δ, k ≥ 3, (a, d) = 1 for which

(5) ω(a, d, k) ≤ min
(
k − 2, δ

k

log k

)
.

P r o o f. If k < e20δ then, by (1), there are only finitely many possibilities
for a and d. So now assume k ≥ e20δ. Then ω ≤ k/20 and k ≥ 20. On using
that 1/(1−x) ≤ 1+(4/3)x for 0 < x ≤ 1/10, it follows that k/(k−1−ω) <
1 + 3ω/k. Using (4) this gives that a + (k − 1)d ≤ k1+3δ/ log k = ke3δ, and
so d < 2e3δ.

The range for d in Theorem 0 can be enlarged to something better than
d > eδ.

Theorem 1. Fix a constant δ > 0. One can determine all triples satis-
fying (5) with a ≥ 1, k ≥ 3, (a, d) = 1 and

δ < log d+
∑

p|d

log p
p− 1

.

Our main result will help us determine the critical bound for δ in Theo-
rem 1.

Theorem 2. Fix an integer d ≥ 2 and define

%(d) :=
d

ϕ(d)

∑

1≤m≤d
(m,d)=1

1
m
.

For any given ε > 0,

(i) there are only finitely many pairs (a, k) for which

ω(a, d, k) ≤ min
(
k − 2, (%(d)− ε) k

log k

)
;

(ii) if k is sufficiently large and 1 ≤ a < k with (a, d) = 1 then

ω(a, d, k) ≤ (%(d) + ε)
k

log k
.
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Note that

%(d) =
∏

p|d

(
1− 1

p

)−1 ∑

m≤d
(m,d)=1

1
m
>
∑

m≤d

1
m
> log d.

In Lemma 3 we show that

%(d) = log d+
∑

p|d

log p
p− 1

+ γ +Rd,

where γ is Euler’s constant and the “error term”, |Rd| → 0 as d→∞. Hence
%(d) is asymptotically γ (≈ .577) larger than the bound for δ in Theorem 1.

By Theorem 2(ii) we observe that if %(d) < δ for some d then there will
be infinitely many solutions to (5). We must therefore split the d’s into two
classes to give a more precise version of Theorem 1.

Corollary 1. Fix a constant δ > 0.

(i) There are only finitely many triples (a, d, k) of integers with a ≥ 1,
%(d) > δ, k ≥ 3, (a, d) = 1 satisfying (5).

(ii) For any given integers a ≥ 1, d ≥ 2, (a, d) = 1, with %(d) < δ, there
are infinitely many integers k satisfying (5).

P r o o f. (i) If k−2 ≤ δk/ log k, then k is bounded, whence, by (1), a and
k are bounded. Otherwise, by Theorem 1, we need only consider the triples
(a, d, k) with d ≤ eδ. Hence we may assume that d is fixed. Now we apply
part (i) of Theorem 2 with ε = %(d)− δ.

(ii) Apply part (ii) of Theorem 2 with ε = δ − %(d).

The appearance of the constant %(d) in Theorem 2 is not surprising. To
illustrate this we consider the case a < d, (a, d) = 1. Put x = a + (k − 1)d
and denote the number of primes ≤ x satisfying p ≡ a (mod d) by π(x; d, a).
There are π(x; d, a) primes p ≡ a (mod d) contributing to ω(a, d, k), and in
general π(x/m; d, a/m) primes p ≡ a/m (mod d) contributing to ω(a, d, k),
where 1 ≤ m ≤ d and (m, d) = 1. The set {a/m (mod d) | 1 ≤ m ≤ d,
(m, d) = 1} forms a reduced residue system modulo d, since (a, d) = 1.
Applying the Prime Number Theorem for arithmetic progressions, which
states that provided (α, d) = 1,

π(x; d, α) ∼ x

ϕ(d) log x
(x→∞),

we find that

ω(a, d, k) ∼ x

ϕ(d) log x

∑

m≤d
(m,d)=1

1
m
∼ k

log k
%(d) (as k →∞).
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The reason that we are not able to assert that we can effectively deter-
mine all triples (a, d, k) in part (i) of Corollary 1 is that there is no explicit
version of the Prime Number Theorem for arithmetic progression available as
given by Rosser and Schoenfeld [RS1] for the Prime Number Theorem itself.
McCurley has given some explicit result in case d = 3 [Mc1] and for sev-
eral other moduli in [Mc2]. Recently his work was improved by Ramaré and
Rumely [RRu] using computations of zeros of L-functions by Rumely [Ru].
These results are very useful for determining all triples satisfying explicit in-
equalities related to (5). We shall describe a practical method for achieving
this. As an illustration we shall establish the following conjecture of Shorey
and Tijdeman on the cases in which equality in (1) holds:

Theorem 3. The only solution to ω(a, d, k) = π(k) with (a, d) = 1, k ≥ 4
and d > 1 is ω(1 · 3 · 5 · 7 · 9) = 3 = π(5).

Theorem 3 corresponds with δ = 1. Since %(d) > log d, it is easy to
deduce that %(d) ≥ 2 for all d ≥ 2, with equality only for d = 2. Therefore
if δ < 2 then, by Corollary 1(i), we deduce that there are only finitely
many solutions to (5). The following result gives a precise description of the
boundary case.

Theorem 4. There are only finitely many triples (a, d, k) with (a, d) = 1
and d ≥ 2, for which ω(a, d, k) < π(2k−1)−1. On the other hand ω(1, 2, k) =
π(2k − 1)− 1 whenever k ≥ 3.

The finitely many triples of Theorem 4 can be effectively computed,
this is the content of Theorem 3′ of [Mo2, Chapter 7]. In the proof of this
theorem the small values of d create difficulties, in particular d = 3. These
problems are solved by using sharp estimates for the number of primes
in arithmetic progressions with difference 1 and 3 and the corresponding
θ-functions. Following its line of proof an algorithm can be constructed to
decide the conjecture of the author that (1, 3, 10) is in fact the only such
triple. Since one is dealing with the boundary case, one would expect that
the computational effort in this case exceeds the computational effort needed
to establish Theorem 1. Some preliminary work confirms this.

In Section 2 we derive a refinement of (1) and use it to prove Theorem 2(i)
provided that a > k. This section is based on an elementary method due to
Erdős. The Prime Number Theorem for arithmetic progressions is used in
Section 3 to complete the proof of Theorem 2(i) and in Section 4 to prove
Theorem 2(ii). Some more results of Erdős and a result from Section 1 are
used to prove Theorem 1. To prove Theorem 3 we follow the argument of the
proof of Theorem 1, but make all estimates explicit. The proof of Theorem 4
is similar to that of Theorem 1.

For the proofs of (2), (3) and further results on ω(a, d, k) see [ST1,2,3,4].
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2. The case a > dk of the proof of Theorem 2(i). The proof is
based on the following refinement of inequality (1). The symbol p will be
exclusively used to denote primes.

Lemma 1. Let θd(k) be the largest divisor of (k − 1)! which is composed
only of prime factors of d. Then

(6) a(a+ d) . . . (a+ (k − 1− ω(a, d, k))d) ≤ (k − 1)!
θd(k)

.

P r o o f. For every prime p dividing Da,d,k leave out a term a + id such
that pm | (a + id) and that pm+1 divides none of the other terms of the
progression. In this way at most ω(a, d, k) terms are left out. The remaining
terms are divisible only by primes less than k coprime with d. Notice that
the contribution of such a prime p to the remaining terms is at most pe(p),
where e(p) is the exponent of p in (k − 1)!, that is,

e(p) =
∞∑

i=1

[
k − 1
pi

]
.

Thus the product of the remaining terms is

≤
∏

p≤k−1, (p,d)=1

pe(p) =
(k − 1)!
θd(k)

.

On the other hand, the product of the remaining terms is at least
a(a+ d) . . . (a+ (k − 1− ω(a, d, k))d).

Corollary.

(7) a(a+ d) . . . (a+ (k − 1− ω(a, d, k))d) ≤ (k − 1)!

and , if ω(a, d, k) ≤ k − 2,

(1) a(a+ d) ≤ (k − 1)!.

Inequality (7) will be called the Erdős inequality and inequality (6) the
sharp form of the Erdős inequality . The Erdős inequality has the convenient
property that its right hand side does not depend on d.

The contribution of θd(k) is estimated in the following lemma. Put

(8) α(d) = d
∏

p|d
p1/(p−1).

Lemma 2. For any given d and ε > 0, there exists an effectively deter-
minable constant kd(ε) such that for every k ≥ kd(ε),

k

(
log
(
α(d)
d

)
− ε
)
≤ log θd(k) ≤ (k − 1) log

(
α(d)
d

)
.
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P r o o f. For every n ∈ N and any prime p we have

(k − 1)(1− p−n)
p− 1

− n ≤
∞∑

i=1

[
k − 1
pi

]
≤ k − 1
p− 1

.

Using these inequalities and the identities

log θd(k) =
∑

p|d
log p

∞∑

i=1

[
k − 1
pi

]
and log

(
α(d)
d

)
=
∑

p|d

log p
p− 1

,

the result is easily deduced. The upperbound is immediate, the lowerbound
follows on taking n, n ≥ 1, so large that 2−n < ε/(2ω(d)) < 21−n (without
loss of generality we may assume that ε < 2). Then

log θd(k) ≥ (k − 1)
(

log
(
α(d)
d

)
− ε

2

)
− log

(
4ω(d)
ε

)/
log 2

and the result follows with

kd(ε) =
2 log

(α(d)
d

)
+ 2

log 2 log
( 4ω(d)

ε

)

ε
.

The relation between α(d) and %(d) becomes clear in the next lemma.

Lemma 3. For every d ≥ 2 and ε > 0,

%(d) = logα(d) + γ +Rd = log d+
∑

p|d

log p
p− 1

+ γ +Rd,

with

|Rd| ≤ |R2| ≤ .0366 and |Rd| = Oε(d
log 2+ε
log log d−1).

P r o o f. Let µ denote the Möbius function. We have

∑

m≤d
(m,d)=1

1
m

=
d∑

m=1

{ ∑

δ|(m,d)

µ(δ)
} 1
m

(9)

=
∑

δ|d
µ(δ)

d∑
m=1
δ|m

1
m

=
∑

δ|d

µ(δ)
δ

d/δ∑
m=1

1
m

=
∑

δ|d

µ(δ)
δ

(
log d− log δ + γ + δ

E2

d

)
,

with |E2| ≤ 2. Here we use the fact that
∑

m≤d

1
m

= log d+ γ +
E1

d
, with |E1| ≤ 2,
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which can be derived using Euler summation. On noticing that
∑
δ|d µ(δ)/δ

= ϕ(d)/d, we can rewrite the right hand side of (9) in the form

(10)
ϕ(d)
d

(log d+ γ)−
∑

δ|d

µ(δ)
δ

log δ + E3
2ω(d)

d
,

with |E3| ≤ 2. Let e(p) denote the exponent of p in d. Then we have
∑

δ|d

µ(δ)
δ

log δ =
∑

p|d
log p

∑

pδ|d

µ(pδ)
pδ

= −
∑

p|d

log p
p

∑

δ|dp−e(p)

µ(δ)
δ

= −
∑

p|d

log p
p
· ϕ(dp−e(p))

dp−e(p)
= −ϕ(d)

d

∑

p|d

log p
p− 1

.

Inserting this in (10) and multiplying by d/ϕ(d), we obtain on using the fact
that |E3| ≤ 2,

|Rd| ≤ 2ω(d)+1

ϕ(d)
.

On using the estimate ω(d) ≤ (log d)(log log d)−1(1 + ε/2), which holds
for any given ε > 0 for all d sufficiently large, and the estimate ϕ(d) ≥
(log 2)d/ log(2d) [Ri, p. 172], we see that |Rd| is of the required order. Note
that |Rd| tends to zero as d tends to infinity.

To complete the proof we will show that

max
d≥2
|Rd| = |R2| = 2− log 4− γ ≈ .0365.

For d in [3, 30029] we first compute 2ω(d)+1/ϕ(d). In case this number
exceeds .036 we compute |Rd|, otherwise we proceed to the next integer
d. We find that |Rd| is bounded above by .036 in this interval. Now as-
sume d ≥ 30030 (= 2 · 3 · 5 · 7 · 11 · 13). In case ω(d) ≥ 6, we have
2ω(d)+1/ϕ(d) ≤ 27/ϕ(30030) < .036. In case ω(d) ≤ 5 we have, by the
estimate ϕ(d) ≥ (log 2)d/ log(2d) and the fact that d/ log(2d) is increasing
for d ≥ 3,

2ω(d)+1

ϕ(d)
≤ 26

log 2
· log(60060)

30030
< .036.

Thus the result follows.

R e m a r k 1. At the cost of more computation, the above argument can be
considerably simplified. The initial interval, for which we now take [3, 92600],
is handled as before. For d > 92600 we have, by the inequality 2

√
p/(p− 1)

< 1 valid for all p ≥ 7,

|Rd| ≤ 2
∏

pe||d

2
pe − pe−1 =

2√
d

∏

pe||d

2p
pe/2(p− 1)
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≤ 2√
d

∏

pe||d

2
√
p

p− 1
≤ 2
√

30√
d

< .036.

R e m a r k 2. Lemma 3 sharpens Lemma 3 of Granville [G], who gives an
estimate for %(d) with error term O(dω(d)/ϕ(d)).

Theorem 5. Let c > 0 and ε > 0 be fixed. Let d ≥ 2 be a fixed integer.
One can determine all pairs (a, k) with a > cdk, ω(a, d, k) ≤ k − 2 and

(11) ω(a, d, k) ≤
[

logα(d) + log c+ (c+ 1) log
(

1 +
1
c

)
− ε
]

k

log k
.

P r o o f. Let f(k) denote the greatest integer part of the right hand side
of (11). Take k0 so large that f(k) ≤ k − 2 for k ≥ k0. Assume that the
triple (a, d, k) with k ≥ k0 satisfies (11). Using the sharp form of the Erdős
inequality (6) it follows that

(12)
(a+ d(k − 1− f(k)))!

(a− d)!

≤ {a(a+ d) . . . (a+ d(k − 1− f(k)))}d ≤
(

(k − 1)!
θd(k)

)d
.

Notice that the left hand side of (12) is monotonically increasing in a. Using
the estimate log k! = k log k − k + O(log k), Lemma 2 in the weaker form
log θd(k) = k log(α(d)/d)+od(k) and taking for a the smallest integer ≥ ckd
it follows that

log{[a+ d(k − 1− f(k))]!}
= dk

[
(c+ 1) log[kd(c+ 1)]− c− 1− f(k) log k

k
+ od(1)

]

and

log[(a− d)!{(k − 1)!}dθd(k)−d]

= dk

[
c log(cdk) + log k − c− 1− log

(
α(d)
d

)
+ od(1)

]
.

From this and (12) it follows that

f(k)
log k
k

+ od(1) ≥ logα(d) + log c+ (c+ 1) log
(

1 +
1
c

)
.

So there are only finitely many possibilities for k. Since by assumption
ω(a, d, k) ≤ k − 2, it follows by (1) that there are only finitely many pos-
sibilities for a. In order to prove that the finitely many pairs (a, k) can
be determined, it suffices to show that the ineffective estimates occurring,
log k! = k log k − k +O(log k) and log θd(k) = k log(α(d)/d) + od(k), can be
made effective. Since log(k!) is in [k log k − k, (k + 1) log k] for k ≥ 7 and
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θd(k) can be effectively estimated from above and below by Lemma 2, this
is indeed the case.

Corollary. Let d ≥ 2 be a fixed integer. One can determine all pairs
(a, k) with a > dk and

ω(a, d, k) ≤ min
(
k − 2, (%(d) + .76)

k

log k

)
.

P r o o f. We apply Theorem 5 with c = 1. By Lemma 3 we have

logα(d) > %(d)− γ − .04 > %(d)− .62.

3. The case a ≤ dk of the proof of Theorem 2(i). We show in
Lemma 4 that all primes in a certain union of finite arithmetic progressions
divide Da,d,k. Then we apply the Prime Number Theorem for arithmetic
progressions. First we introduce some notation.

If j is coprime to d we denote by π(x; d, a/j) the number π(x; d, c) where
c is any integer such that cj ≡ a (mod d). By

∑(d)

j≤n we denote the sum over
the positive integers j ≤ n with (j, d) = 1. Again we write x = a+ (k− 1)d.

Lemma 4. Put n = min(d, a/k). If k > d then

ω(a, d, k) ≥
∑(d)

j≤d
π

(
x

j
; d,

a

j

)
−
∑(d)

j≤n
π

(
a

j
−1; d,

a

j

)
+
∑(d)

j≤n
π

(
k−1; d,

a

j

)
.

P r o o f. If p is a prime with p < k and p - d, then p |Da,d,k. Therefore
there are at least π(k − 1) − ω(d) primes less than k which divide Da,d,k.
Note that the elements of {a/j : 1 ≤ j ≤ d, (j, d) = 1} form a complete
system of primitive residues mod d, since (a, d) = 1. Hence

π(k − 1)− ω(d) =
∑(d)

j≤d
π

(
k − 1; d,

a

j

)
.

Let j be an integer with 1 ≤ j ≤ d and (j, d) = 1. Let p ≥ k be a prime
such that p ≡ a/j (mod d) and a/j ≤ p ≤ x/j. Then jp ≡ a (mod d) and
a ≤ jp ≤ x, whence p |Da,d,k. The number of primes p ≥ k with p ≡ a/j
(mod d) and p |Da,d,k is therefore at least

π

(
x

j
; d,

a

j

)
− π

(
a

j
− 1; d,

a

j

)
if a ≥ jk

and

π

(
x

j
; d,

a

j

)
− π

(
k − 1; d,

a

j

)
if a < jk.
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It follows that the number of primes p ≥ k dividing Da,d,k is at least
∑(d)

j≤d
π

(
x

j
; d,

a

j

)
−
∑(d)

j≤n
π

(
a

j
− 1; d,

a

j

)
−

∑(d)

a/k<j≤d
π

(
k − 1; d,

a

j

)
,

On combining both lower bounds, the lemma follows.

P r o o f o f T h e o r e m 2(i). We distinguish three cases. Without loss
of generality we may assume that k is sufficiently large.

(a) a < k. Then by Lemma 4,

ω(a, d, k) ≥
∑(d)

j≤d
π

(
x

j
; d,

a

j

)
∼ x

ϕ(d) log x

∑(d)

j≤d

1
j

≥ (k − 1)d
ϕ(d) log(k(d+ 1))

∑(d)

j≤d

1
j

& k

log k
%(d).

(b) k < a ≤ kd. By Lemma 4 again,

ω(a, d, k) ≥
∑(d)

j≤d
π

(
x

j
; d,

a

j

)
−
∑(d)

j≤d
π

(
a

j
− 1; d,

a

j

)

& 1
ϕ(d)

{∑(d)

j≤d

x/j

log(x/j)
−
∑(d)

j≤d

a/j

log(a/j)

}

& 1
ϕ(d)

∑(d)

j≤d

(x− a)/j
log k

=
k − 1
log k

%(d),

where in the derivation of the latter asymptotic inequality we use the fact
that a/k, k/a, x/k and k/x are all bounded from above.

(c) a > kd. Apply the Corollary to Theorem 5.

4. Proof of Theorem 2(ii)

Lemma 5. If a < k and d < k, then

ω(a, d, k) =
∑(d)

j≤d
π

(
x

j
; d,

a

j

)
.

P r o o f. In view of Lemma 4 we need only prove the ≤ case. If the prime
p ≥ k divides Da,d,k, then there is precisely one i with 0 ≤ i < k and one
integer j such that jp = a + id. By (a, d) = 1, we have (j, d) = 1. Since
a < k, we have jp < k(d+ 1) whence j ≤ d. It follows that p ≡ a/j (mod d)
and k ≤ p ≤ x/j. Therefore the total number of primes p ≥ k dividing
Da,d,k is at most

∑(d)

j≤d

(
π

(
x

j
; d,

a

j

)
− π

(
k − 1; d,

a

j

))
.
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Every prime p < k dividing Da,d,k is coprime to d. Hence the number of
such primes is at most

∑(d)

j≤d
π

(
k − 1; d,

a

j

)
.

P r o o f o f T h e o r e m 2(ii). Let d be any positive integer. Let k be
any “large” positive integer. Let a < k. Then

ω(a, d, k) =
∑(d)

j≤d
π

(
x

j
; d,

a

j

)
∼
∑(d)

j≤d

x/j

log(x/j)
· 1
ϕ(d)

. x

log x
· 1
ϕ(d)

∑(d)

j≤d

1
j

. k

log kd
%(d) ≤ k

log k
%(d).

5. Proof of Theorem 1. As in the proof of the Theorem 0 we can show
that d is bounded. Hence we may assume that d is fixed. Recall that if we
can find an upper bound for k then, by (1), a and d are bounded. So we
may assume that k is large. Again we write α(d) = d

∏
p|d p

1/(p−1). Further
we put

Pk(a, d) =
1
k!

∏

p|d
p[k/(p−1)]

k∏
m=1

(a+md).

We shall use the following elementary results due to Erdős.

Lemma 6. Let a < d. Then

(i) Pk(a, d) is an integer.
(ii) If pm||Pk(a, d) then pm ≤ (k + 1)d.

(iii) Pk(a, d) > (α(d))k/d.

P r o o f. See Erdős [E].

We observe that for k ≥ d the prime decompositions of Pk(a, d) and∏k
m=1(a+md) differ only for the prime factors ≤ k. We shall use Lemma 6

to estimate the number ω1 of distinct prime factors p ≥ k in Da,d,k. This
will yield the following result.

Lemma 7. Let δ > 0 be fixed. One can determine all triples satisfying

ω(a, d, k) ≤ min
(
k − 2, δ

k

log k

)

with a ≥ 1, k ≥ 3, (a, d) = 1, a < d and δ < logα(d).
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P r o o f. Let ε > 0. Using Lemma 6(ii) and
∑
p≤x log p ∼ x we find

Pk(a, d) ≤
∏

p≤
√

(k+1)d

(k + 1)d
∏

√
(k+1)d<p≤k

p
∏

p>k
p|Da,d,k

p
∏

p|a+kd

p(13)

≤ ((k + 1)d)
√

(k+1)de(1+ε)k(kd)ω1 for k large.

Hence by Lemma 6(iii),

ω1 log(kd) ≥ k(logα(d)− 1− ε)− log d−
√

(k + 1)d log((k + 1)d).

This implies, for all k sufficiently large

ω1 ≥ k

log k
(logα(d)− 1− 2ε).

The number of primes p < k dividing Da,d,k equals

ω(a, d, k)− ω1 = π(k − 1)− ω(d) ≥ k

log k
(1− ε),

for all k sufficiently large. Hence, for all k sufficiently large,

ω(a, d, k) ≥ k

log k
(logα(d)− 3ε).

Choose ε < (1/3)(logα(d) − δ) and take k so large that the latter inequal-
ity for ω(a, d, k) holds. Then we have a contradiction with (5). Thus k is
bounded.

Next we relax the condition on a.

Lemma 8. The statement of Lemma 7 is still true if the condition a < d
is replaced by a < k.

P r o o f. Suppose a, d and k are such that (5) holds with a ≥ 1, k ≥ 3,
(a, d) = 1, a<k and δ< logα(d). Let b be such that b ≡ a (mod d), 0<b≤d.
Put l = (a− b)/d. Every prime factor of b(b+d) . . . (a−d) is less than k and
coprime to d and therefore a prime factor of a(a+d) . . . (a+(k−1)d) = Da,d,k.
It follows that

ω(a, d, k) = ω(b, d, k + l) ≥ ω(b, d, k).

Notice that the triple (b, d, k) was already found in Lemma 7. Since k is
therefore bounded and a < k, we can determine all triples (a, d, k) which
satisfy the conditions of Lemma 8.

P r o o f o f T h e o r e m 1. Recall that we may assume that d is fixed.
By Lemma 8 we can determine all triples (a, d, k) with a < k which satisfy
the conditions of Theorem 1. If a ≥ k then we apply Theorem 5 with c = 1/d
and use the fact that ε := log 1

d +
(

1
d + 1

)
log(1 + d) > 0 for every d ≥ 1.
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6. Proof of Theorem 4. Suppose (a, d, k) satisfies

(14) ω(a, d, k) < π(2k − 1)− 1.

It suffices to prove that k is bounded. By (4) we have

a+ d(k − 1) ≤ k k
k−1−ω(a,d,k) ≤ k1+ π(2k−1)

k−π(2k−1) .

Using the Prime Number Theorem we deduce that the right hand side of
the latter inequality divided by k−1 is < 8 for every k sufficiently large, and
so in this case d ≤ 7. For d = 3, . . . , 7 and k sufficiently large, π(2k− 1)− 2
≤ 2.24k/ log k < 9

4k/ log k ≤ %(d)k/ log k and so by Theorem 2(i) the inte-
gers k such that (14) is satisfied for some a with ω(a, d, k) < π(2k−1)−1 are
bounded above. So it remains to show that if (a, 2, k) satisfies (14), then k is
bounded above. In the case a ≤ k+1 we have ω(a, 2, k) = π(a+2(k−1))−1 ≥
π(2k − 1) − 1 and there are no solutions. So suppose that a ≥ k + 2. By
Theorem 5 the k satisfying ω(a, 2, k) ≤ .5 log(108)k/ log k (≈ 2.341k/ log k)
are bounded and so, using the Prime Number Theorem again, it follows that
the k satisfying (14) are bounded.

7. Proof of Theorem 3. The key ingredient in the proof of Theorem 3
is Lemma 10. The proof exploits the idea of the proof of Lemma 7. This
time, however, we are a bit more careful in estimating. We use some explicit
estimates for π(x) and θ(x) of simple form due to Rosser and Schoenfeld.
Here θ(x), Chebyshev’s θ-function, is defined by θ(x) =

∑
p≤x log p.

Lemma 9.

(i) π(x) < 1.2551
x

log x
.

(ii)
x

log x

(
1 +

1
2 log x

)
< π(x) <

x

log x

(
1 +

3
2 log x

)
for x ≥ 59.

(iii) |θ(x)− x| < x

40 log x
(x ≥ 678407).

P r o o f. Proofs of part (i) and (ii) can be found in [RS1] and that of (iii)
in [RS2].

Let P (n) denote the greatest prime factor of n.

Lemma 10. Let d ∈ N and ε > 0 be arbitrary and fixed. If there exists
an effectively computable constant m such that

(15a) (logα(d)− 1− ε)m
≥ 2.512

√
(m+ 1)d+ 2 log d+ log(m+ 1) + log(md)ω(d)

and for every k ≥ m,

(15b) θ(k) ≤ (1 + ε)k,
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then the solutions (a, d, k) of ω(a, d, k) ≤ π(k) with a < d and k ≥ 4 satisfy
k ≤ max{P (d),m− 1} and can be effectively determined.

P r o o f. Denote the third product in the right hand side of (13) by Q.
Suppose k ≥ m. Using Lemma 9(i) and θ(k) ≤ (1 + ε)k we find

logPk(a, d) ≤ (π(
√

(k + 1)d) + 1) log[(k + 1)d] + θ(k) + logQ

≤ 2.512
√

(k + 1)d+ (1 + ε)k + log(k + 1) + log d+ logQ.

From the latter estimate and Lemma 6(iii) it follows that

logQ > (logα(d)− 1− ε)k − 2.512
√

(k + 1)d− 2 log d− log(k + 1).

The derivative of the right hand side of (15a) with respect to k equals
1.256d/

√
(k + 1)d+ 1/(k + 1) + ω(d)/k and on using (15a) and k ≥ m, we

find that the derivative is

≤
1.256

√
md m

m+1 + m
m+1 + ω(d)

m
< logα(d)− 1− ε

and is less than the derivative of the left hand side. Thus

(logα(d)− 1− ε)k ≥ 2.512
√

(k + 1)d+ 2 log d+ log(k + 1) + log(kd)ω(d)

and so

(16) Q =
∏

p>k
p|Da,d,k

p > (kd)ω(d).

Now assume that k > P (d) and that (a, d, k) is a solution of ω(a, d, k) ≤
π(k). Then the contribution of the primes exceeding k to ω(a, d, k) exceeds
ω(d) by (16). Taking also into account the contribution of the primes ≤ k,
which is π(k)−ω(d), we conclude that ω(a, d, k) > π(k). This contradiction
shows that k ≤ max{P (d),m − 1}. Using this estimate and (1), it follows
that the solutions (a, d, k) with a < d can be effectively determined.

R e m a r k 1. It is rather straightforward how to work with this lemma
in practice. For a given d we try to calculate a number k(d) satisfying (15),
where the numbers in (15a) are rounded off in such a way that if k satisfies
the inequalities with the rounded off quantities, this still implies that k
satisfies (15a). For α = 1, . . . , d with (α, d) = 1, we write down α, α+ d, α+
2d, . . . , α + k(d)d and factorize these numbers. Whenever we stumble on a
prime factor not previously encountered, we put it “on the stack” (for each
α we start with an empty stack). If i terms of the progression are treated in
this way, compare the cardinality of the stack n, say, with π(i). If (and only
if) n ≤ π(i) store (α, d, i); it is a solution of ω(a, d, k) ≤ π(k). If i > k(d)
stop; we have found all solutions with a ≡ α (mod d).
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R e m a r k 2. Erdős [E] used the function Pk(a, d) to obtain results on
Bertrand’s Postulate for arithmetic progressions. In [Mo1] his method is
worked out further in this context.

P r o o f o f T h e o r e m 3. Assume (a, d, k) is a solution of

(17) ω(a, d, k) ≤ π(k).

Then ω(a, d, k) ≤ π(k) ≤ k − 2.
In first instance we can restrict ourselves to the case where k ∈ K := {k :

k > 3, k = 4 or k is prime}. Whenever k 6∈ K, let l be the largest number
< k which is in K. Then

ω(a, d, l) ≤ ω(a, d, k) ≤ π(k) = π(l).

So to any solution with k 6∈ K corresponds a solution with k in K. Further-
more, if (a, d, k) is a solution with k ∈ K, then it extends at most to finitely
many easily computable other solutions (a, d, k + i), with 1 ≤ i < k1 − k,
where k1 is the smallest prime exceeding k.

If k = 4 one finds a(a+d) ≤ 6 by (1). This leaves four potential solutions
(a, d, 4), none of which satisfies (17). Next assume that k is a prime ≥ 5.
Using (7) it follows that

(k − 1− π(k))!dk−1−π(k) < a(a+ d) . . . (a+ (k − 1− ω(a, d, k))d) ≤ (k − 1)!

and so

(18) dk−1−π(k) < (k − 1) . . . (k − π(k)).

So d is bounded for fixed k. In Table 1 below for each 5 ≤ k ≤ 19, k prime,
the maximal value of d satisfying (18) is recorded. First assume k ≥ 23.
Using Lemma 9(i) it follows that

1 + π(k)
k

<
1.256
log k

+
1
k
< .45

and so by (18),

log d <
π(k) log k

k − 1− π(k)
<

1.256(
1− 1+π(k)

k

) < 2.29

and therefore d < 9.9. For k = 11, 13, 17 and 19 the inequality d ≤ 9 follows
from Table 1. So either k = 5 or k = 7 or 2 ≤ d ≤ 9. For k = 5 or k = 7
we have respectively a(a + d) ≤ 24 and a(a + d)(a + 2d) ≤ 120 by the
Erdős inequality (7). There are 29 respectively 33 pairs (a, d) with a and d
coprime and d > 1, satisfying these inequalities. For each of them we then
check whether (17) is satisfied. We find that (a, d, k) = (1, 2, 5) is the only
solution of (17) with k = 5 or 7. Hence we may assume from now on that
k ≥ 11.
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Table 1

k π(k) Maximum value of d
5 3 23
7 4 18

11 5 7
13 6 9
17 7 7
19 8 8

Table 2

d ω(d) α(d) logα(d) k(d) d · k(d)
2 1 4.000 1.386 142 284
3 1 5.196 1.647 80 240
4 1 8.000 2.079 42 168
5 1 7.476 2.011 55 275
6 2 20.78 3.033 24 144
7 1 9.681 2.270 48 336
8 1 16.00 2.772 30 240
9 1 15.58 2.745 34 306

Table 3

k α+ d(k − 1) ω(a, d, k) π(k) Successive additions to stack
11 61 9 5 7, 13, 19, 5, 31, 37, 43, 11, 61
13 73 11 6 67, 73
17 97 14 7 79, 17, 97
19 109 16 8 103, 109
23 133 18 9 23, 127

For d = 2, . . . , 9 the computable constant m of Lemma 10 is bounded
above by k(d). These numbers are recorded in Table 2. In computing them
the result that (15b) holds with ε = .0011 for k ≥ 1 ([RS2]) was used.
Carrying through the procedure given in Remark 1 following Lemma 10,
one finds that there are no solutions with a < d, 11 ≤ k ≤ k(d) − 1, and
2 ≤ d ≤ 9. Using Lemma 10 we conclude that there are no solutions with
a < d, k ≥ 11 and 2 ≤ d ≤ 9 and so, reasoning as in the proof of Lemma 8,
no solutions with a ≤ k + 1, k ≥ 11 and 2 ≤ d ≤ 9. Some details of
the calculations are given in Table 3. It remains to find the solutions with
a ≥ k + 2, k ≥ 11 and 2 ≤ d ≤ 9.

First we assume that a ≥ k+ 2, k ≥ 11 and d = 2. Using the sharp form
of the Erdős inequality (6) we find that

(3k − 2π(k))! ≤ (k!)3k−2θd(k)−2.
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Using Lemma 9(i) it follows that 3k − 2π(k) ≥ 2k, since k ≥ 11. On using
that

θ2(k) ≥ 2[(k−1)/2]+[(k−1)/4]+[(k−1)/8] ≥ 23k/4−2

and the Stirling inequalities in the form

kke−k < k! < kk+1e−k

it follows that
9
2

log 2− 2π(k) log k
k

≤ (log 2− 1)
2π(k)
k

+
log(16k)

k
.

(Use that (3k − 2π(k))! ≥ (3k − 2π(k)) log(3k − 2π(k)) − 3k + 2π(k) ≥
(3k−2π(k)) log(2k)−3k+2π(k).) This is false by Lemma 9(i), since k ≥ 11.

Finally assume that a ≥ k + 2, k ≥ 11 and d ≥ 3. Using the Erdős
inequality we find that

a(a+ 3) . . . (a+ (k − 1− π(k))3) ≤ (k − 1)!

for a = k, k + 1 and k + 2. On multiplying these three inequalities together
and multiplying both sides by (k − 1)!, we find that

(19) (4k − 1− 3π(k))! ≤ {(k − 1)!}4 = (k!)4/k4.

Using Lemma 9(i) it follows that 4k − 1 − 3π(k) ≥ 2.65k for k ≥ 19. Then
proceeding as above it follows that

(20) 4α− 3π(k) log k
k

≤ 3π(k)
k

(α− 1) +
log k − 1 + α

k
(k ≥ 19)

where α := log(2.65). On using Lemma 9(i) it follows that k ≤ 17. For the
three remaining primes 11, 13 and 17 we check (19) directly. It is found that
none of them is a solution.

On gathering the results of all cases, we arrive at the conclusion that
(1, 2, 5) is the only solution of (17) with k = 4 or a prime ≥ 5. It is easily
seen that the solution (1, 2, 5) does not extend to further solutions (cf. the
beginning of the proof). (Since ω(1, 2, 5) = 4 = π(5), the only candidate is
(1, 2, 6) which does not satisfy (17).) So Theorem 3 is proved.

C o n c l u d i n g r e m a r k. In this paper we limited ourselves to solving
(17). In [Mo2, Chapter 7] the more general problem of solving ω(a, d, k) ≤
f(k) is considered, where f : N → N is a non-decreasing function. In that
case Lemma 10 holds true with π(k) replaced by f(k) and the condition
k ≥ 4 by k ∈ Kf := {k : k ≥ 2 and f(k) ≤ k − 2}. In solving (17) we first
solved for the k in {k > 3 : k = 4 or k is prime}, in general this set has to
be replaced by {k ∈ Kf : f(k) 6= f(k − 1) or k − 1 6∈ Kf}.
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