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1. Introduction and statement of results. Let {uj(z)}∞1 be an or-
thonormal basis of Maass cusp forms for the modular group Γ = SL2(Z).
Suppose that uj(x+ iy) is either even or odd in x. Thus uj(z) is an eigen-
function of the Laplace operator with eigenvalue λj = sj(1 − sj), where
sj = 1/2 + itj with tj > 0, and it has the Fourier expansion

uj(z) = 2y1/2
∞∑
n=1

%j(n)Kitj (2πny) cos(2πnx)(1)

or

uj(z) = 2y1/2
∞∑
n=1

%j(n)Kitj (2πny) sin(2πnx)(2)

according to whether uj(z) is even or odd, where Kν is the K-Bessel func-
tion. The Weyl law (proved by A. Selberg [14], see also [4])

(3) ]{j : tj ≤ T} ∼ T 2/12

shows that there are infinitely many linearly independent cusp forms but
none of them have ever been constructed. The Fourier coefficients %j(n) are
the subject of various studies. There are still basic questions to be answered,
such as what is the order of magnitude of %j(n)? From the asymptotic
formula (due to Rankin [12] and Selberg [13])

(4)
∑

n≤N
(coshπtj)−1|%j(n)|2 ∼ 12π−2N

and the formula (due to Kuznetsov [8])

(5)
∑

tj≤T
(coshπtj)−1|%j(n)|2 ∼ π−2T 2

it follows that (coshπtj)−1/2%j(n) is bounded on average in n and tj . The
oscillatory behavior of %j(n) is revealed in the large sieve type inequality of

[377]
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H. Iwaniec [6]

(6)
∑

tj≤T
(coshπtj)−1

∣∣∣
∑

n≤N
an%j(n)

∣∣∣
2
� (T 2 +N1+ε)

∑

n≤N
|an|2.

Another large sieve type inequality for the twisted coefficients %j(n)nitj

was established by J.-M. Deshouillers and H. Iwaniec. They proved, among
other things, that

(7)
∑

tj≤T
(coshπtj)−1

∣∣∣
∑

n≤N
an%j(n)nitj

∣∣∣
2
� (T 2 +N2)(NT )ε

∑

n≤N
|an|2

for arbitrary complex numbers an (see Theorem 6 of [2]). Estimates for
the linear forms of type (7) are used to prove the non-vanishing of certain
automorphic L-functions at the special points s = sj which occur in the
Phillips–Sarnak theory of deformation of groups [11]. The strongest results
in this connection are established in [9].

In this paper we shall improve upon (7) substantially.

Theorem 1. For any complex numbers an we have

(8)
∑

tj≤T
(coshπtj)−1

∣∣∣
∑

n≤N
an%j(n)nitj

∣∣∣
2

� (T 2 + T 3/2N1/2 +N5/4)(NT )ε
∑

n≤N
|an|2.

The implied constant depends on ε only.

This result is stronger than (7) if N � T ; however, it is not the best
possible. In view of (6) one might expect the same bound to hold true for
(8), but we cannot prove it along the lines of this paper. In order to under-
stand the difference between (6) and (8) and the depth of (8) let us note
that (6) extends to the corresponding contribution from the continuous spec-
trum while (8) would be false if such contribution was included. Since our
approach to (8) appeals to the complete spectral resolution of the Laplace
operator via Kuznetsov’s formula we have to treat the dominating terms
from the continuous spectrum with great care. The arguments are subtle.
We shall identify the terms from Eisenstein series with a part of sums of
Kloosterman sums in the Kuznetsov formula by delicate analysis and then
cancel them out. This correspondence is not of an algebraic or combinato-
rial type, and it seems to be a novelty in the spectral topics of automorphic
forms.

Recently M. Jutila [7] has generalized (6) by allowing perturbations of
type e(f(n, tj)), where f is a smooth function which has rather small deriva-
tives. However, our result cannot be derived by his method.
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The special feature of the twisting factor nitj is better appreciated in
the context of the Hecke L-functions

(9) Lj(s) =
∞∑
n=1

λj(n)n−s,

where λj(n) = %j(n)/%j(1) are the eigenvalues of the Hecke operator (see
[15]). The series converges absolutely in <s > 1, it has analytic continuation
to an entire function and it satisfies one of the functional equations

θj(s)Lj(s) = θj(1− s)Lj(1− s),(10)

θj(1 + s)Lj(s) = −θj(2− s)Lj(1− s),(11)

according to the parity of uj(z), where

(12) θj(s) = π−sΓ
(
s+ itj

2

)
Γ

(
s− itj

2

)
.

Here the presence of two gamma factors is intrinsic for L-functions attached
to GL2 automorphic forms. However, at the special point s = sj = 1/2 + itj
the second factor is constant in tj , so that Lj(sj) behaves analytically like
an L-function for a character. The key point is that Lj(sj) can be well
approximated by partial sums of length N ∼ t

1/2
j , which is considerably

shorter than N ∼ tj , required for general fixed s. Using this approximation
one can infer by Theorem 1 the following power moment estimates:

∑

tj≤T
|Lj(sj)|4 � T 2+ε(13)

and ∑

tj≤T
|Lj(sj)|8 � T 5/2+ε.(14)

The last bound should be T 2+ε but we cannot prove it at present. This would
be a close analogy to a result of M. N. Huxley [5] for Dirichlet L-functions.

For the proof of (8) we shall deal with a smoothed sum

(15) S(A) =
∑

j

ω(tj)
∣∣∣
∑
n

an%j(n)nitj
∣∣∣
2
,

where

(16) ω(t) = 2
sinh(π − 2δ)t

sinh 2πt
, 2δ = T−1,

and A = (an) is a finite sequence of real numbers for N < n ≤ 2N . We
denote the l2-norm by

(17) ‖A‖2 =
∑

a2
n.
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We shall simultaneously consider the contribution from the Eisenstein
series

E(z, s) = ys + ϕ(s)y1−s + 2y1/2
∞∑
n=1

ηt(n)Kit(2πny) cos(2πnx)

on the line s = 1/2 + it. Here the Fourier coefficients are given explicitly by
ηt(n) = ηt(1)τt(n), where ηt(1) = 2πsζ(2s)−1Γ (s)−1 and

(18) τt(n) =
∑

d1d2=n

(d1/d2)it.

The corresponding contribution from the continuous spectrum is

(19) T (A) =
1

4π

∞∫
−∞

ω(t)
∣∣∣
∑
n

anηt(n)nit
∣∣∣
2
dt,

where (4π)−1 dt is the spectral measure. For this we shall prove directly the
following

Proposition 1. If N � T we have

(20) T (A) = (π tan δ)−1
∑
m

∑
n

amanσ(m,n) +O((N + T 2)Nε‖A‖2),

where

σ(m,n) =
∞∑
r=1

r−2S(0,m; r)S(0, n; r)

and S(0,m; r) is the Ramanujan sum.

Using the expression

S(0,m; r) =
∑

d|(m,r)
dµ(r/d)

one can easily execute the summation over r in σ(m,n) getting a finite
expression

σ(m,n) =
ζ(2)
ζ(4)

∑

αγ|m

∑

βγ|n
µ(αβ)

∏

p|αβ
(p+ p−1)−1.

Proposition 2. If N � T we have

S(A) + T (A) = (π tan δ)−1
∑
m

∑
n

amanσ(m,n)(21)

+O((T 2 + T 3/2N1/2 +N3/2T−1)Nε‖A‖2).

Combining (20) with (21) we obtain

S(A)� (T 2 + T 3/2N1/2 +N3/2T−1)Nε‖A‖2.
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Since S(A) is increasing in T one may replace T above by T +N1/2 getting

(22) S(A)� (T 2 + T 3/2N1/2 +N5/4)Nε‖A‖2.
This, of course, implies (8) if N > T . For N ≤ T we infer (8) from (7).

This work is part of my Ph.D. dissertation under the guidance of Pro-
fessor H. Iwaniec. I wish to express my gratitude to him for introducing
me to this fascinating area of research and providing valuable advice and
encouragement throughout this work.

2. An application of Kuznetsov’s formula. For m,n ∈ Z, the
Kloosterman sum is defined as

S(m,n; c) =
∑

ad≡1 mod c

e

(
ma+ nd

c

)
.

We shall transform S(A)+T (A) into a sum of Kloosterman sums S(m,n; c)
by an appeal to the Kuznetsov formula [8]

(23)
∑

j

f̂(tj)%j(m)%j(n) +
1

4π

∞∫
−∞

f̂(t)ηt(m)ηt(n) dt

= δmnf0 +
∑
c

c−1S(m,n; c)fA

(
4π
√
mn

c

)
.

Here f(y) is a smooth function for y ≥ 0 satisfying the growth conditions
f(y)� y as y → 0 and f (µ)(y)� y−3 as y →∞, for µ = 0, 1, 2, 3, and

f0 =
1

2π

∞∫
0

J0(y)f(y) dy,

f̂(t) =
πi

sinh 2πt

∞∫
0

(J2it(y)− J−2it(y))f(y)y−1 dy,

fA(x) =
∞∫

1

uxJ0(ux)
∞∫

0

J0(uy)f(y) dy du,

where Jν(x) is the J-Bessel function.
We shall also use an analogous formula for the Fourier coefficients of

holomorphic cusp forms

fjk(z) =
∞∑
n=1

ajk(n)e(nz),

where {fjk(z)}θkj=1 is an orthonormal basis for the space of cusp forms of
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weight k. We then have

(24)
∑
c

c−1S(m,n; c)fB

(
4π
√
mn

c

)

= δmnf0 +
∑

k>0, 2|k

ik(k − 1)!f̃(k − 1)
π(4π

√
mn)k−1

∑

j

ajk(m)ajk(n),

where

f̃(k − 1) =
∞∫

0

f(x)Jk−1(x)
dx

x
,

fB(x) =
1∫

0

uxJ0(ux)
∞∫

0

J0(uy)f(y) dy du.

Notice that by Hankel’s inversion formula f splits into f = fA + fB .
As in [2] we shall apply (23) for the test function

f(y) = π−1y(sinhβ)eiy cosh β ,

with

(25) β =
1
2

∣∣∣∣ log
m

n

∣∣∣∣+ iδ.

Therefore

f

(
4π
√
mn

c

)
=

2
c

(|m− n| cos δ + i(m+ n) sin δ)

× e
(
m+ n

c
cos δ

)
exp

(
− 2π

|m− n|
c

sin δ
)
.

It has been shown in [2] that

f0 =
−1
2π2 ·

coshβ
(sinhβ)2 and f̂(t) = 2

sinh(π + 2iβ)t
sinh 2πt

.

Therefore

<f̂(t) = ω(t) cos
(
t log

m

n

)
.

From these evaluations we infer by (23) the identity

(26) S(A) + T (A) =
cos δ

2π2 sin2 δ
‖A‖2 + <P (A),

where

(27) P (A) =
∑
m,n

aman
∑
c

c−1S(m,n; c)fA

(
4π
√
mn

c

)
.
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It turns out to be more convenient to work with fB than with fA. Therefore
we write fA = f − fB and put

Q(A) =
∑
m,n

aman
∑
c

c−1S(m,n; c)f
(

4π
√
mn

c

)
,(28)

R(A) =
∑
m,n

aman
∑
c

c−1S(m,n; c)fB

(
4π
√
mn

c

)
.(29)

Accordingly P (A) splits into

(30) P (A) = Q(A)−R(A).

The next sections will be devoted separately to the treatment of the above
two terms.

3. Evaluation of Q(A). We split

(31) Q(A) = 2Q1(A) cos δ + 2iQ2(A) sin δ,

where

Q1(A) =
∑
m,n

aman|m− n|
∑
c

c−2S(m,n; c)

× e
(
m+ n

c
cos δ

)
exp

(−2π|m− n|
c

sin δ
)
,

and

Q2(A) =
∑
m,n

aman(m+ n)
∑
c

c−2S(m,n; c)

× e
(
m+ n

c
cos δ

)
exp

(−2π|m− n|
c

sin δ
)
.

First we shall show that

(32) Q2(A)� δ−1N1+ε‖A‖2,
which is absorbed in (21). Since large c’s contribute little (use Weil’s bound
for Kloosterman sums) we can restrict the summation to c ≤ N8. We split
the remaining range into dyadic intervals C < c ≤ 2C ≤ N8 and denote the
corresponding contribution by Q2C(A). In Q2C(A) we split the summation
over m,n into boxes B = I×J where I, J are subintervals of [N, 2N ] of equal
length ∆ = NK−1 with K = max(1, [δC−1N1−ε]). Let Q2IJ(A) denote the
corresponding partial sum of Q2C(A). If I, J are neither equal nor adjacent
then for (m,n) ∈ B we have |m− n| > ∆ ≥ δ−1CNε, whence trivially

Q2IJ(A)� N−10‖A‖2.
All these boxes contribute O(K2N−10‖A‖2). The number of remaining
boxes to be considered is at most 3K. For these we will apply the mean
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value theorem (see [10])

(33)
∑

d mod c

∣∣∣∣
M+N∑

n=M+1

ane

(
dn

c

)∣∣∣∣
2

� (c+N)
M+N∑

n=M+1

|an|2.

To this end, we separate the variables m and n by using the Fourier integral

(34) exp(−2π|t|) =
1
π

∞∫
−∞

e(ξt)(1 + ξ2)−1 dξ.

We infer, by opening the Kloosterman sum, that

Q2IJ(A) =
∑

n,m∈B
anam(m+ n)

×
∑

C<c≤2C

c−2S(m,n; c)e
(
m+ n

c
cos δ

)
exp

(−2π|m− n|
c

sin δ
)

=
1
π

∑

C<c≤2C

c−2
∑

ad≡1 mod c

∞∫
−∞

(1 + ξ2)−1

×
∑

n,m∈B
anam(m+ n)e

(
ma+ nd

c

)
e

(
m+ n

c
cos δ

)
e

(
ξ
m− n
c

sin δ
)
dξ

� NC−1(C +∆)
(∑

m∈I
a2
m

)1/2(∑

n∈J
a2
n

)1/2
.

Summing over the boxes yields

Q2C(A)� NC−1(C +∆)‖A‖2 � δ−1N1+ε‖A‖2,
whence (32) follows.

Next we modify Q1(A) by applying the approximation

e

(
m+ n

c
cos δ

)
= e

(
m+ n

c

)
(1 + E),

where

E = e

(
− 2

m+ n

c
sin2 δ

2

)
− 1� δ2c−1N.

One can show that the error term resulting from E is admissible. Indeed,
the same argument which was applied above for Q2(A) works here except
that for separating the variables we use the Fourier transform

(35) h(t) = |t|e−2π|t| =
∞∫

−∞
ĥ(s)e(−st) ds,
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with ĥ(s) = (1− s2)/(2π2(1 + s2)2) in place of (34) and we expand E into
power series

E =
∞∑

k=1

1
k!

(−2(m+ n)
c

sin2 δ

2

)k
,

if C > δ2N1+ε in which case the series converges rapidly. We obtain

(36) Q1(A) = Q0(A) +O(N1+ε‖A‖2),

where

Q0(A) =
∑

m6=n
aman|m− n|

×
∑
c

c−2S(m,n; c)e
(
m+ n

c

)
exp

(−2π|m− n|
c

sin δ
)
.

Define

E(m,n) =
∞∑
c=1

c−2S(m,n; c)e
(
m+ n

c

)
exp

(−y
c

)
,

with y = 2π|m− n| sin δ in mind. We write

S(m,n; c)e
(
m+ n

c

)
=

∑

d mod c

ec((1− d)m+ (1− d)n),

and split the summation by fixing the values (d−1, c) = q, say. Thus c = qr
and d = 1−qs, where s ranges over classes mod r such that (s(q−s), r) = 1.
We obtain

S(m,n; c)e
(
m+ n

c

)
=

∑

s mod r, (s(q−s),r)=1

er(sn+ q − sm).

Hence

E(m,n)

=
∑

qr≤N8

(qr)−2
∑

s mod r, (s(q−s),r)=1

er(sn+ q − sm) exp
(−y
qr

)
+O(Nε−4)

= E0(m,n) + E1(m,n) +O(Nε−4),

say, where E0(m,n) denotes the partial sum restricted by r < X and
E1(m,n) is the remaining sum over r ≥ X. Here X (≤ N) is a positive
parameter which will be chosen optimally later. Accordingly we have

(37) Q0(A) = Q00(A) +Q01(A) +O(‖A‖2),

where

Q00(A) =
∑

m 6=n
aman|m− n|

∑

r<X

r−2
∑

qr≤N8

q−2
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×
∑

s mod r, (s(q−s),r)=1

er(sn+ q − sm) exp
(−y
qr

)

with y = 2π|m − n| sin δ, and Q01(A) is given by the same expression as
above except that the condition r < X is replaced by r ≥ X. We will
extract the main term from Q00(A) and show that Q01(A) is small. Indeed,
by the large sieve inequality (see [10]):

(38)
∑

r≤R

∑∗

s mod r

∣∣∣∣
∑

M+1≤n≤M+N

ane

(
sn

r

)∣∣∣∣
2

� (R2 +N)
∑

M+1≤n≤M+N

|an|2,

using an argument similiar to that applied for Q2(A) to separate variables,
we deduce that

(39) Q01(A)� N1+ε(1 + δ−1X−1)‖A‖2.
Now we evaluate Q00(A). We execute summation over q by splitting into

progressions:

∑

(q−s,r)=1

q−2 exp
(−y
qr

)
er(q − sm) =

∑

v mod r

er(vm)
∑

q≡s+v mod r

q−2 exp
(−y
qr

)

and then apply the Euler–Maclaurin formula for the innermost sum getting

r−1
∞∫

0

t−2 exp
(−y
tr

)
dt+

∞∫
0

ψ

(
t− s− v

r

)
dt−2 exp

(−y
tr

)

= y−1 +
∞∫

0

[
ψ

(
t− s− v

r

)
− ψ

(−s− v
r

)]
dt−2 exp

(−y
tr

)
.

We obtain

Q00(A)

= (2π sin δ)−1
∑

m 6=n
aman

∑

r<X

r−2S(0,m; r)S(0, n; r)

+
∑

m 6=n
aman|m− n|

∑

r<X

r−2
∑

s,v mod r

e

(
sn+ vm

r

)

×
∞∫

0

[
ψ

(
t− s− v

r

)
− ψ

(−s− v
r

)]
dt−2 exp

(−2π|m− n| sin δ
tr

)

= Q000(A) +Q001(A),

say. We drop the restriction r < X in Q000(A) and estimate the tail using
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the trivial bound |S(0,m; r)| ≤ (m, r)d(m) to get

(40) Q000(A) = (2π sin δ)−1
∑

m 6=n
amanσ(m,n) +O(δ−1X−1N1+ε‖A‖2).

Using the large sieve inequality (38), the estimate

(41)
∑

s mod r

∣∣∣∣ψ
(
t+ s

r

)
− ψ

(
s

r

)∣∣∣∣� min(t, r)rε,

and the argument similar to that applied for Q2(A) to separate variables we
infer that

(42) Q001(A)� (XT + T 3/2N1/2)Nε‖A‖2.
Finally, choosing X = δN , from the estimations in this section we obtain

Q(A) = (π tan δ)−1
∑
m,n

amanσ(m,n)(43)

+O((N + T 2 + T 3/2N1/2)Nε‖A‖2).

4. Estimation of R(A). From [2] we know that

fB(x) = − sinh 2β
2π

1∫
0

uxJ0(ux)(cosh2 β − u2)−3/2 du� min(x,
√
x).

We use this bound only for the terms in R(A) with |m−n| ≤ NT−1 getting

R0(A) =
∑

|m−n|≤NT−1

aman
∑
c

c−1S(m,n; c)fB

(
4π
√
mn

c

)
(44)

� N3/2+εT−1‖A‖2.
Denote by R1(A) the contribution of terms in R(A) such that m− n >

NT−1, so R(A) = R0(A)+2R1(A). We shall transform R1(A) by appealing
to (24). First, we evaluate

f̃(k − 1) =
1
π

sinhβ
∞∫

0

eix cosh βJk−1(x) dx.

Making use of
∞∫

0

e−zxJν(x) dx = (z2 + 1)−1/2(
√
z2 + 1 + z)−ν ,

where z = −i coshβ, (z2 + 1)1/2 = −i sinhβ (see [3]), we get

ikf̃(k − 1) =
1
π
e−(k−1)β =

1
π

(
n

m

)(k−1)/2

e−iδ(k−1).
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Thus, by (24) we get

R1(A) =
1
π2

∑

k>0, 2|k
(k − 1)!e−iδ(k−1)

×
∑

j

∑

m−n>NT−1

aman

(
n

m

)(k−1)/2
ajk(m)ajk(n)
(4π
√
mn)k−1 .

To estimate this we shall use the large sieve inequality (see [1]):

(45)
∑

2≤k≤K, 2|k

(k − 1)!
(4π)k−1

∑

1≤j≤θk

∣∣∣
∑

N<n≤2N

ann
−(k−1)/2ajk(n)

∣∣∣
2

� (K2 +N1+ε)
∑

N<n≤2N

|an|2.

First observe that the contribution from terms in R1(A) with k > TNε is
very small since

(
n

m

)(k−1)/2

< e−(k−1)/(4T ).

For the terms with k ≤ TNε we write
(
n

m

)(k−1)/2

=
2
π

(k − 1)−1
∞∫

−∞

(
m

n

)it(
1 +

(
2t

k − 1

)2)−1

dt

by (34) and we remove the condition m−n > NT−1 using a Fourier integral
(separation of variables). Having done this we apply (45) getting

(46) R1(A)� (N + T 2)Nε‖A‖2.
Putting together (44) and (46) we obtain the estimate

(47) R(A)� (N + T 2 +N3/2T−1)Nε‖A‖2.
Finally, inserting (43) and (47) into (30) we get

P (A) = (π tan δ)−1
∑
m,n

amanσ(m,n)(48)

+O((T 2 + T 3/2N1/2 +N3/2T−1)Nε‖A‖2).

By (26) this completes the proof of Proposition 2.

5. Evaluation of T (A). We have
∑
c

c−sS(0, n; c) =
1
ζ(s)

∑

c|n
c1−s.
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By the same argument as in [8], § 3.13, for 1/ζ(s), it follows that
∑
c

S(0, n; c)
c1+it =

∑

c≤exp(Nε)

S(0, n; c)
c1+it +O(N−2),

for t� T 2. Since

(49) ηt(n) =
2π1/2+it

Γ (1/2 + it)
nit
∑
c

c−1−2itS(0, n; c),

we infer that

1
4π

∞∫
−∞

ω(t)ηt(n)ηt(m)
(
m

n

)it
dt

=
1
π

∞∫
−∞

ω(t) coshπt

×
∑

c1,c2≤exp(Nε)

(c1c2)−1
(
c2

c1

)2it

S(0, n; c1)S(0,m; c2) dt+O(N−1)

= X(m,n) +O(N−1),

say. But ([3])
∞∫

−∞

sinh(π − 2δ)t
sinh(πt)

(
c2
c1

)2it

dt =
2 sin(2δ)(

c2
c1
− c1
c2

)2

+ (2 sin δ)2

.

Thus

X(m,n) =
2 sin 2δ
π

∑

c1,c2≤exp(Nε)

(c1c2)−1
((

c2
c1
− c1
c2

)2

+ (2 sin δ)2
)−1

× S(0, n; c1)S(0,m; c2).

The terms c1 = c2 contribute

X0(m,n) =
cos δ
π sin δ

∑

r≤exp(Nε)

r−2S(0,m; r)S(0, n; r).

From the elementary inequalities

|S(0, n; r)| ≤ (n, r)d(n),(50)
∑

c≤D

∣∣∣
∑

n≤N
an(n, c)

∣∣∣
2
� (DN)1+ε

∑

n≤N
|an|2,(51)
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we obtain

(52)
∑
m,n

amanX0(m,n) = (π tan δ)−1
∑
m,n

amanσ(m,n) +O(T 2‖A‖2).

The terms c1 < c2 contribute

X1(m,n)

=
2 sin 2δ
π

∑

c1<exp(Nε)

c1S(0, n; c1)
∑

c1<c2≤exp(Nε)

c−1
2 S(0,m; c2)γ(c1, c2),

where

γ(c1, c2) =
[
(c2 − c1)2

(
1 +

c1
c2

)2

+ (2c1 sin δ)2
]−1

.

Using (50), (51) and considering the following cases separately: c1 ≤ T ;
c2 − c1 > c1/T > 1; c2 − c1 ≤ c1/T > 1, we deduce that

(53)
∑
m,n

amanX1(m,n)� (N + T 2)Nε‖A‖2.

By (52) and (53) we complete the proof of Proposition 1. Both Propositions 1
and 2 give Theorem 1 as shown in the first section.
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