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Remarks on systems of congruence classes

by

Yong-Gao Chen (Nanjing) and Štefan Porubský (Prague)

Let

(1) aj (mod nj), 0 ≤ aj < nj , j ∈ I, 1 < card(I) < ℵ0, 0 6∈ I,

be a finite system of congruence classes. We refer to n as the modulus of
the congruence class a (mod n) and to two congruence classes as congruent
if there exists a translation carrying one into the other. The system (1) is
called incongruent if no two of its classes are congruent. The modulus nj is
said to be a divmax (in (1)) if

nj |ni ⇒ nj = ni, i ∈ I.

In particular, the largest modulus is a divmax in (1).
Let µ be a complex valued function defined on I. Then the function

m(n) =
∑
j∈I

µjχaj(nj)(n), n ∈ Z,

where µj = µ(j) are complex numbers, χaj(nj) is the indicator of the class
aj (mod nj) and Z the set of all integers, is called the covering function
of system (1). The system (1) is then called a (µ,m)-covering [6]. The
covering function m is periodic and in what follows its least nonnegative
period will be denoted by n0 = n0(µ,m). Plainly, n0 is always a divisor of
N = l.c.m.[nj ]j∈I .

If m(n) = 1 for every n ∈ Z then the (µ, 1)-coverings are just the
ε-covering systems from [13]. The most studied (µ,m)-coverings are ones
with constant weight function µ, namely µj = 1 for all j ∈ I. If the covering
function of a system (1) is also constant, say m(n) = m for every n ∈ Z,
then the system (1) is called m times covering [8]. The m times covering
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systems with m = 1 are traditionally called disjoint coverings (or exact cov-
erings). If the function µ is constant and equal to 1 and if m(n) ≥ 1 for every
n ∈ Z then we obtain the so-called covering systems. Both last notions were
introduced by P. Erdős (although he originally understood under covering
systems only incongruent systems, i.e. ones with all the moduli ni distinct,
a point of view we shall not adopt here, for the sake of simplicity). Finally,
if the function µ is constant and equal to 1 but m(n) ≤ 1 for every n ∈ Z
then the system (1) is called disjoint.

One of the first results on covering systems was the result independently
proved by Mirsky, D. Newman, Davenport and Radó saying that every dis-
joint covering contains at least 2 congruent classes (in other words, there
is no incongruent disjoint covering system). Actually, their proof implies
that these are the classes with respect to the largest modulus. Znám [11]
conjectured that 2 can be replaced by the least prime divisor p(ns) of the
largest modulus ns and M. Newman [4] proved this. In [6] this result was
extended to general (µ,m)-coverings and all the divmax’s ns which do not
divide the period n0 of the covering function m (note that nj - n0 iff there
exists an integer d with d |nj and d - n0). For disjoint coverings the lower
bound was improved in [1] to

min
j∈I, nj 6=ns

G

(
ns

(nj , ns)

)
,

where G(n) stands for the greatest divisor of n which is a power of a single
prime. Further improvement for general systems was proved by Sun [10]
who removed the function G from the statement and his lower bound is

min
j∈I∪{0}, nj 6=ns

ns

(nj , ns)
.

In the present paper we prove a result which implies all the mentioned ones.
As the first simplification in the further formulations note that we can

restrict our consideration to systems (1) with identically vanishing covering
function. This can be achieved after adding congruence classes t (mod n0),
0 ≤ t ≤ n0 − 1 with weights −m(t) =

∑
j∈I µjχaj(nj)(t) to the original

(µ,m)-covering (1). Then the covering function of the new system

{aj (mod nj) : j ∈ I} ∪ {t (mod n0) : 0 ≤ t ≤ n0 − 1}

with weights

{µj : j ∈ I} ∪ {−m(t) : 0 ≤ t ≤ n0 − 1}

vanishes for every n ∈ Z. This assumption technically simplifies slightly
some proofs in the sense that it equalizes the position of the period n0 with
other moduli of (1).
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Lemma 1 (Newton identities). Let

f(x) =
∏
j∈J

(x− xj) = xn + σf,1x
n−1 + σf,2x

n−2 + . . . + σf,n, n = card(J),

be a polynomial and

hf,s =
∑
j∈J

xs
j , τf,s =

∑
j∈J

bjx
s
j , s = 1, 2, . . . ,

with bj arbitrary complex numbers. Then

hf,s + σf,1hf,s−1 + . . . + σf,s−1hf,1 + σf,ss = 0, 1 ≤ s ≤ n,

and
τf,s + σf,1τf,s−1 + . . . + σf,nτf,s−n = 0, s ≥ n.

P r o o f. The first part is known from the so-called Newton identities and
the second follows immediately from the relation

τf,s + σf,1τf,s−1 + . . . + σf,nτf,s−n =
∑
j∈J

bjx
s−n
j f(xj) = 0.

Theorem 1. Let (1) be a (µ, 0)-covering and d a positive integer. If
there exists a complex number N(d) with the property that all the numbers

γa = N(d)
∑

d|nj , j∈I
aj≡a (mod d)

µj

nj
, a ∈ {0, 1, . . . , d− 1},

are nonnegative integers not all zero, then there exist nonnegative integers
cj , j ∈ I, not all zero, such that∑

j∈I, d|nj

N(d)µj

nj
=

∑
j∈I, d-nj

cj
d

(d, nj)
.

P r o o f. A simple counting and rearrangement argument (see e.g. [6] if
necessary) gives

(2)
∑
j∈I

µjz
aj

1− znj
= 0.

Let ωd = exp(2πi/d) be a dth root of unity. Then counting the residues at
ωs

d in (2) we obtain

(3)
∑

j∈I, d|snj

µj

nj
ω

saj

d = 0, s ∈ Z.

Suppose that the set Id is determined by

(4) d |nj for j ∈ Id, d - nj for j ∈ I \ Id.
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Now, let an integer k be such that
d

(d, nj)
- k, j ∈ I \ Id.

We can suppose that k ≥ 1. Since

d | knj ⇔
d

(d, nj)

∣∣∣∣ k
nj

(d, nj)
⇔ d

(d, nj)

∣∣∣∣ k,

we have
d | knj ⇔ j ∈ Id.

Therefore the relation (3) becomes∑
j∈Id

µj

nj
ω

kaj

d = 0,

and consequently

(5)
∑
j∈Id

N(d)µj

nj
ω

kaj

d = 0.

If

f(x) =
d−1∏
a=0

(x− ωa
d)γa ,

then

hf,s =
d−1∑
a=0

γaωsa
d =

∑
j∈Id

N(d)µj

nj
ω

saj

d .

Note that

hf,0 =
d−1∑
a=0

γa

is the degree of f and that

hf,deg(f) = σf,deg(f) = f(0) 6= 0.

Therefore, if we define

A(d) =
{ ∑

j∈I, d-nj

cj
d

(d, nj)
: cj nonnegative integers

}
,

the proof will be finished if we show that

(6) s 6∈ Ad ⇒ σf,s = 0.

This can be proved by induction. Since 1 6∈ A(d) and σf,1 = −hf,1
(5)
= 0,

suppose that s 6∈ A(d) with 1 < s ≤ hf,0 and that σf,r = 0 for each integer
1 ≤ r < s with r 6∈ A(d). We have to prove that σf,s = 0.
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To do this, consider the equality (Lemma 1)

(7) hf,s + σf,1hf,s−1 + . . . + σf,s−1hf,1 + σf,ss = 0.

Now, if a positive integer t does not belong to A(d) then d
(d,nj)

- t for each
j ∈ I\Id. Then (5) implies that hf,t = 0 for t 6∈ A(d), in particular, hf,s = 0.
On the other hand, the previous facts also show that σf,ihf,j 6= 0 implies
that

1. j belongs to A(d), and
2. either i ≥ s or i ∈ A(d).

Altogether, σf,ihf,j 6= 0 implies that either i ≥ s or i + j ∈ A(d).
Therefore (7) implies that σf,s = 0, and the proof is finished.

Note that in our assumptions the requirement that γa’s are nonnegative
integers played an important role. However, we have a certain room for
manipulation using the weights but then we usually have to exclude the
classes with respect to the modulus n0 which compensate our manipulations
in the sense that the resulting covering function identically vanishes. One
possible way to exclude the classes modulo n0 is the following. We say that
a modulus nk of (1) is a (µ, m)-divmax if nk is a divmax and nk - n0, where
n0 = n0(µ,m).

Corollary 1. Let (1) be a (µ,m)-covering. Let L(nj) denote the num-
ber of congruence classes modulo nj in (1). If ns is a (µ,m)-divmax and if
the weights of all classes modulo ns are equal and nonzero, then there exist
nonnegative integers cj , j ∈ I, not all zero, such that

L(ns) =
∑

j∈I∪{0}
nj 6=ns

cj
ns

(nj , ns)
.

The proof follows from Theorem 1 by taking d = ns and N(d) =
ns/µs.

Since∑
j∈I∪{0}
nj 6=ns

cj
ns

(nj , ns)
≥ min

j∈I∪{0}
nj 6=ns

ns

(nj , ns)
≥ min

j∈I∪{0}
nj 6=ns

G

(
ns

(nj , ns)

)
,

the lower bound of [1] (n0 = 1 in this case) and of [10] follow.
Motivated by results mentioned in the introduction a number of papers

([2], [5], [9], [12]) were devoted to the study of disjoint coverings (1) satisfying
the condition (after reindexing if necessary)

(8) n1 < n2 < . . . < nk−m+1 = nk−m+2 = . . . = nk.
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(Some of these results are also proved for m times covering systems [8].) It
can be easily proved that the only divmax of a disjoint covering satisfying
(8) are the largest moduli. As it is proved in [2] there exists a disjoint
covering with 6 largest moduli and moduli

n1 = 3, n2 = 6, n3 = n4 = . . . = n8 = 12.

In this case

L(12) = 6 =
12

(12, 6)
+

12
(12, 3)

= 3
12

(12, 6)
,

which shows that the estimation of Corollary 1 supersedes the previously
known ones. Other examples of this type can be constructed. So for in-
stance, take a (µ, m)-covering (1) and two arbitrary positive integers b ≥ 2,
c ≥ 2. Without loss of generality we can suppose that nk is a (µ, m)-divmax.
Then the system

a1 (mod n1), . . . , ak−1 (mod nk−1), ak +hnk (mod bnk), 0 ≤ h ≤ b−1,

has the same covering function m as the original one if to each of the con-
gruence classes ak + hnk (mod bnk), 0 ≤ h ≤ b − 1, we assign the weight
µ′k = µk. The modulus bnk is again a (µ′,m)-divmax. Now apply the above
construction to the classes

ak + hnk (mod bnk), 1 ≤ h ≤ b− 1,

using the number c, thereby obtaining a new system a′j (mod n′j) with k′ =
k +(b−1)c congruence classes. The modulus n′k′ = bcnk is a divmax in this
new system, which has the same covering function as the original one and
consequently the same period n0. Since the modulus n′k′ = bcnk appears as
the modulus of (b− 1)c congruence classes in this new system,

L(n′k′) = (b− 1)c = (b− 1)
n′k′

(n′k′ , n′k)
= (b− 1) min

n′
j
6=n′

k′

n′k′

(n′k′ , n′k)
.

The above construction plays a significant role in the definition of the so-
called natural disjoint coverings [7] and in disjoint coverings with precisely
one multiple modulus. Therefore the result of the next Theorem 2 can
be of some interest. But before stating this theorem we show some other
consequences of Corollary 1.

In every disjoint covering we obviously have

(9)
∑
i∈I

1
ni

= 1

and the above mentioned result of Mirsky, Newman, Davenport and Radó
shows that in every disjoint incongruent system (1),∑

i∈I

1
ni

< 1.
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Erdős [3] strengthened this estimation by showing that in every disjoint
incongruent system (1) we have

(10)
∑
i∈I

1
ni
≤ 1− 1

2|I|
.

This result is the best possible as the system 2i−1 (mod 2i), 1≤ i≤k, shows.

Corollary 2. Let (1) be a disjoint system. Then there exist positive
integers Ai, i ∈ I, such that

(11)
∑
i∈I

Ai

ni
= 1.

P r o o f. If (1) is a disjoint covering then (9) shows that (11) holds. So
we can suppose that (1) is not a covering.

Let N = l.c.m.[nj ]j∈I . Add to (1), say, m ≥ 1 classes modulo 2N in
such a way that the new system is a disjoint covering. Then (9) implies

(12)
∑
i∈I

1
ni

+
m

2N
= 1.

Since 2N is a divmax in this new disjoint covering, there exist (Corollary 1)
nonnegative integers ci, i ∈ I, with∑

i∈I

ci
2N

(ni, 2N)
= m

(12)
= 2N − 2N

∑
i∈I

1
ni

.

But (ni, 2N) = ni for every i ∈ I, which in turn implies∑
i∈I

ci + 1
ni

= 1.

The last corollary implies a slight generalization of (10). Namely, if (1)
is a disjoint incongruent system then there exists j ∈ I with

(13)
∑
i∈I

1
ni
≤ 1− 1

nj
.

Note that (10) follows from (13) by induction on k= |I|. Namely, if nj <
2k then (10) follows immediately, in the opposite case apply the induction
hypothesis to the system consisting of the classes with indices i∈I \{j}.

To prove (13) note that if (1) is a disjoint incongruent system then the
result of Mirsky, Newman, Davenport and Radó implies that (1) is not a
covering. In the course of the proof of (11) we saw that in this case Ai ≥ 2
at least for one i ∈ I. And for such i the relation (13) follows immediately.

Also note that Corollary 2 can be applied to any subsystem of a disjoint
system. For example, for every disjoint covering satisfying (8) there exist
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positive integers Bi, i = 1, . . . , k −m, with
k−m∑
i=1

Bi

ni
= 1,

and positive integers Di, i = 1, . . . , k −m + 1, with
k−m+1∑

i=1

Di

ni
= 1,

etc.
Now we turn to the promised Theorem 2.

Theorem 2. Let (1) be a (µ, 0)-covering and d a positive integer. If
there exists a complex number N(d) with the property that all the numbers

γa = N(d)
∑

d|nj , j∈I
aj≡a (mod d)

µj

nj
, a ∈ {0, 1, . . . , d− 1},

are nonnegative integers not all zero, then∑
j∈I, d|nj

N(d)µj

nj
= min

j∈I, d-nj

d

(d, nj)

if and only if

a ≡ b

(
mod

d

Md

)
and γa = γb = 1

for all indices a, b with γa 6= 0 and γb 6= 0, where

Md = min
j∈I, d-nj

d

(d, nj)
.

P r o o f. Let

f(x) =
d−1∏
a=0

(x− ωa
d)γa .

Then

deg(f) =
d−1∑
a=1

γa =
∑

j∈I, d|nj

N(d)µj

nj
.

If b is an integer with

1 ≤ b < Md = min
j∈I, d - nj

d

(nj , d)

then (6) implies that σf,b = 0. Thus if deg(f) = Md then the polynomial f
reduces to the form

f(x) = xMd + σf,Md
.
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Since the numbers ωa
d for γa 6= 0 are roots of f and none of the numbers ωa

d

is a root of the polynomial f ′(x) = Mdx
Md we obtain

ωMda
d = ωMdb

d , γa = γb = 1

for all a, b with γa 6= 0 and γb 6= 0. Thus

Mda ≡ Mdb (mod d) or a ≡ b

(
mod

d

Md

)
and γa = γb = 1

for all a, b with γa 6= 0 and γb 6= 0.
Conversely, suppose that

a ≡ b

(
mod

d

Md

)
and γa = γb = 1

for all a, b with γa 6= 0 and γb 6= 0. The number of such γ’s is at most
Md because for any a ∈ {0, 1, . . . , d − 1} there exist exactly Md numbers
b ∈ {0, 1, . . . , d− 1} with

a ≡ b

(
mod

d

Md

)
.

Therefore ∑
j∈I, d|nj

N(d)µj

nj
=

d−1∑
a=0

γa =
d−1∑
a=0
γa 6=0

1 ≤ Md.

On the other hand, Theorem 1 implies∑
j∈I, d|nj

N(d)µj

nj
=

∑
j∈I, d-nj

cj
d

(d, nj)
≥ min

j∈I, d-nj

d

(d, nj)
= Md,

and consequently ∑
j∈I, d|nj

N(d)µj

nj
= Md

as asserted, and Theorem 2 is proved.

Corollary 1. Let (1) be a (µ,m)-covering and ns be a (µ, m)-divmax.
If µj = µs 6= 0 for all j with nj = ns then∑

j∈I, nj=ns

1 = min
nj 6=ns, j∈I∪{0}

ns

(nj , ns)

if and only if aj ≡ as (mod ns/Mns
) for all j with nj = ns, where

Mns
= min

nj 6=ns, i∈I∪{0}

ns

(nj , ns)
.

The proof follows from Theorem 2 for N(ns) = ns/µs.
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