Remarks on systems of congruence classes

by
Yong-Gao Chen (Nanjing) and Štefan Porubský (Prague)

Let

(1) $a_{j}\left(\bmod n_{j}\right), \quad 0 \leq a_{j}<n_{j}, \quad j \in I, \quad 1<\operatorname{card}(I)<\aleph_{0}, \quad 0 \notin I$,
be a finite system of congruence classes. We refer to n as the modulus of the congruence class $a(\bmod n)$ and to two congruence classes as congruent if there exists a translation carrying one into the other. The system (1) is called incongruent if no two of its classes are congruent. The modulus n_{j} is said to be a divmax (in (1)) if

$$
n_{j} \mid n_{i} \Rightarrow n_{j}=n_{i}, \quad i \in I .
$$

In particular, the largest modulus is a divmax in (1).
Let μ be a complex valued function defined on I. Then the function

$$
\mathfrak{m}(n)=\sum_{j \in I} \mu_{j} \chi_{a_{j}\left(n_{j}\right)}(n), \quad n \in \mathbb{Z},
$$

where $\mu_{j}=\mu(j)$ are complex numbers, $\chi_{a_{j}\left(n_{j}\right)}$ is the indicator of the class $a_{j}\left(\bmod n_{j}\right)$ and \mathbb{Z} the set of all integers, is called the covering function of system (1). The system (1) is then called a (μ, \mathfrak{m})-covering [6]. The covering function \mathfrak{m} is periodic and in what follows its least nonnegative period will be denoted by $n_{0}=n_{0}(\mu, \mathfrak{m})$. Plainly, n_{0} is always a divisor of $N=$ l.c.m. $\left[n_{j}\right]_{j \in I}$.

If $\mathfrak{m}(n)=1$ for every $n \in \mathbb{Z}$ then the $(\mu, 1)$-coverings are just the ε-covering systems from [13]. The most studied (μ, \mathfrak{m})-coverings are ones with constant weight function μ, namely $\mu_{j}=1$ for all $j \in I$. If the covering function of a system (1) is also constant, say $\mathfrak{m}(n)=m$ for every $n \in \mathbb{Z}$, then the system (1) is called m times covering [8]. The m times covering

[^0]systems with $m=1$ are traditionally called disjoint coverings (or exact coverings). If the function μ is constant and equal to 1 and if $\mathfrak{m}(n) \geq 1$ for every $n \in \mathbb{Z}$ then we obtain the so-called covering systems. Both last notions were introduced by P. Erdős (although he originally understood under covering systems only incongruent systems, i.e. ones with all the moduli n_{i} distinct, a point of view we shall not adopt here, for the sake of simplicity). Finally, if the function μ is constant and equal to 1 but $\mathfrak{m}(n) \leq 1$ for every $n \in \mathbb{Z}$ then the system (1) is called disjoint.

One of the first results on covering systems was the result independently proved by Mirsky, D. Newman, Davenport and Radó saying that every disjoint covering contains at least 2 congruent classes (in other words, there is no incongruent disjoint covering system). Actually, their proof implies that these are the classes with respect to the largest modulus. Znám [11] conjectured that 2 can be replaced by the least prime divisor $p\left(n_{s}\right)$ of the largest modulus n_{s} and M. Newman [4] proved this. In [6] this result was extended to general (μ, \mathfrak{m})-coverings and all the divmax's n_{s} which do not divide the period n_{0} of the covering function \mathfrak{m} (note that $n_{j} \nmid n_{0}$ iff there exists an integer d with $d \mid n_{j}$ and $\left.d \nmid n_{0}\right)$. For disjoint coverings the lower bound was improved in [1] to

$$
\min _{j \in I, n_{j} \neq n_{s}} G\left(\frac{n_{s}}{\left(n_{j}, n_{s}\right)}\right),
$$

where $G(n)$ stands for the greatest divisor of n which is a power of a single prime. Further improvement for general systems was proved by Sun [10] who removed the function G from the statement and his lower bound is

$$
\min _{j \in I \cup\{0\}, n_{j} \neq n_{s}} \frac{n_{s}}{\left(n_{j}, n_{s}\right)} .
$$

In the present paper we prove a result which implies all the mentioned ones.
As the first simplification in the further formulations note that we can restrict our consideration to systems (1) with identically vanishing covering function. This can be achieved after adding congruence classes $t\left(\bmod n_{0}\right)$, $0 \leq t \leq n_{0}-1$ with weights $-\mathfrak{m}(t)=\sum_{j \in I} \mu_{j} \chi_{a_{j}\left(n_{j}\right)}(t)$ to the original (μ, \mathfrak{m})-covering (1). Then the covering function of the new system

$$
\left\{a_{j}\left(\bmod n_{j}\right): j \in I\right\} \cup\left\{t\left(\bmod n_{0}\right): 0 \leq t \leq n_{0}-1\right\}
$$

with weights

$$
\left\{\mu_{j}: j \in I\right\} \cup\left\{-\mathfrak{m}(t): 0 \leq t \leq n_{0}-1\right\}
$$

vanishes for every $n \in \mathbb{Z}$. This assumption technically simplifies slightly some proofs in the sense that it equalizes the position of the period n_{0} with other moduli of (1).

Lemma 1 (Newton identities). Let
$f(x)=\prod_{j \in J}\left(x-x_{j}\right)=x^{n}+\sigma_{f, 1} x^{n-1}+\sigma_{f, 2} x^{n-2}+\ldots+\sigma_{f, n}, \quad n=\operatorname{card}(J)$,
be a polynomial and

$$
h_{f, s}=\sum_{j \in J} x_{j}^{s}, \quad \tau_{f, s}=\sum_{j \in J} b_{j} x_{j}^{s}, \quad s=1,2, \ldots,
$$

with b_{j} arbitrary complex numbers. Then

$$
h_{f, s}+\sigma_{f, 1} h_{f, s-1}+\ldots+\sigma_{f, s-1} h_{f, 1}+\sigma_{f, s} s=0, \quad 1 \leq s \leq n
$$

and

$$
\tau_{f, s}+\sigma_{f, 1} \tau_{f, s-1}+\ldots+\sigma_{f, n} \tau_{f, s-n}=0, \quad s \geq n
$$

Proof. The first part is known from the so-called Newton identities and the second follows immediately from the relation

$$
\tau_{f, s}+\sigma_{f, 1} \tau_{f, s-1}+\ldots+\sigma_{f, n} \tau_{f, s-n}=\sum_{j \in J} b_{j} x_{j}^{s-n} f\left(x_{j}\right)=0
$$

Theorem 1. Let (1) be a ($\mu, 0$)-covering and d a positive integer. If there exists a complex number $N(d)$ with the property that all the numbers

$$
\gamma_{a}=N(d) \sum_{\substack{d \mid n_{j}, j \in I \\ a_{j} \equiv a(\bmod d)}} \frac{\mu_{j}}{n_{j}}, \quad a \in\{0,1, \ldots, d-1\},
$$

are nonnegative integers not all zero, then there exist nonnegative integers $c_{j}, j \in I$, not all zero, such that

$$
\sum_{j \in I, d \mid n_{j}} \frac{N(d) \mu_{j}}{n_{j}}=\sum_{j \in I, d \nmid n_{j}} c_{j} \frac{d}{\left(d, n_{j}\right)} .
$$

Proof. A simple counting and rearrangement argument (see e.g. [6] if necessary) gives

$$
\begin{equation*}
\sum_{j \in I} \frac{\mu_{j} z^{a_{j}}}{1-z^{n_{j}}}=0 \tag{2}
\end{equation*}
$$

Let $\omega_{d}=\exp (2 \pi i / d)$ be a d th root of unity. Then counting the residues at ω_{d}^{s} in (2) we obtain

$$
\begin{equation*}
\sum_{j \in I, d \mid s n_{j}} \frac{\mu_{j}}{n_{j}} \omega_{d}^{s a_{j}}=0, \quad s \in \mathbb{Z} . \tag{3}
\end{equation*}
$$

Suppose that the set I_{d} is determined by

$$
\begin{equation*}
d \mid n_{j} \quad \text { for } j \in I_{d}, \quad d \nmid n_{j} \quad \text { for } j \in I \backslash I_{d} . \tag{4}
\end{equation*}
$$

Now, let an integer k be such that

$$
\frac{d}{\left(d, n_{j}\right)} \nmid k, \quad j \in I \backslash I_{d}
$$

We can suppose that $k \geq 1$. Since

$$
\left.d\left|k n_{j} \Leftrightarrow \frac{d}{\left(d, n_{j}\right)}\right| k \frac{n_{j}}{\left(d, n_{j}\right)} \Leftrightarrow \frac{d}{\left(d, n_{j}\right)} \right\rvert\, k
$$

we have

$$
d \mid k n_{j} \Leftrightarrow j \in I_{d}
$$

Therefore the relation (3) becomes

$$
\sum_{j \in I_{d}} \frac{\mu_{j}}{n_{j}} \omega_{d}^{k a_{j}}=0
$$

and consequently

$$
\begin{equation*}
\sum_{j \in I_{d}} \frac{N(d) \mu_{j}}{n_{j}} \omega_{d}^{k a_{j}}=0 \tag{5}
\end{equation*}
$$

If

$$
f(x)=\prod_{a=0}^{d-1}\left(x-\omega_{d}^{a}\right)^{\gamma_{a}}
$$

then

$$
h_{f, s}=\sum_{a=0}^{d-1} \gamma_{a} \omega_{d}^{s a}=\sum_{j \in I_{d}} \frac{N(d) \mu_{j}}{n_{j}} \omega_{d}^{s a_{j}}
$$

Note that

$$
h_{f, 0}=\sum_{a=0}^{d-1} \gamma_{a}
$$

is the degree of f and that

$$
h_{f, \operatorname{deg}(f)}=\sigma_{f, \operatorname{deg}(f)}=f(0) \neq 0
$$

Therefore, if we define

$$
A(d)=\left\{\sum_{j \in I, d \nmid n_{j}} c_{j} \frac{d}{\left(d, n_{j}\right)}: c_{j} \text { nonnegative integers }\right\},
$$

the proof will be finished if we show that

$$
\begin{equation*}
s \notin A_{d} \Rightarrow \sigma_{f, s}=0 \tag{6}
\end{equation*}
$$

This can be proved by induction. Since $1 \notin A(d)$ and $\sigma_{f, 1}=-h_{f, 1} \stackrel{(5)}{=} 0$, suppose that $s \notin A(d)$ with $1<s \leq h_{f, 0}$ and that $\sigma_{f, r}=0$ for each integer $1 \leq r<s$ with $r \notin A(d)$. We have to prove that $\sigma_{f, s}=0$.

To do this, consider the equality (Lemma 1)

$$
\begin{equation*}
h_{f, s}+\sigma_{f, 1} h_{f, s-1}+\ldots+\sigma_{f, s-1} h_{f, 1}+\sigma_{f, s} s=0 \tag{7}
\end{equation*}
$$

Now, if a positive integer t does not belong to $A(d)$ then $\frac{d}{\left(d, n_{j}\right)} \nmid t$ for each $j \in I \backslash I_{d}$. Then (5) implies that $h_{f, t}=0$ for $t \notin A(d)$, in particular, $h_{f, s}=0$. On the other hand, the previous facts also show that $\sigma_{f, i} h_{f, j} \neq 0$ implies that

1. j belongs to $A(d)$, and
2. either $i \geq s$ or $i \in A(d)$.

Altogether, $\sigma_{f, i} h_{f, j} \neq 0$ implies that either $i \geq s$ or $i+j \in A(d)$. Therefore (7) implies that $\sigma_{f, s}=0$, and the proof is finished.

Note that in our assumptions the requirement that γ_{a} 's are nonnegative integers played an important role. However, we have a certain room for manipulation using the weights but then we usually have to exclude the classes with respect to the modulus n_{0} which compensate our manipulations in the sense that the resulting covering function identically vanishes. One possible way to exclude the classes modulo n_{0} is the following. We say that a modulus n_{k} of (1) is a (μ, \mathfrak{m})-divmax if n_{k} is a divmax and $n_{k} \nmid n_{0}$, where $n_{0}=n_{0}(\mu, \mathfrak{m})$.

Corollary 1. Let (1) be a (μ, \mathfrak{m})-covering. Let $L\left(n_{j}\right)$ denote the number of congruence classes modulo n_{j} in (1). If n_{s} is a (μ, \mathfrak{m})-divmax and if the weights of all classes modulo n_{s} are equal and nonzero, then there exist nonnegative integers $c_{j}, j \in I$, not all zero, such that

$$
L\left(n_{s}\right)=\sum_{\substack{j \in I \cup\{0\} \\ n_{j} \neq n_{s}}} c_{j} \frac{n_{s}}{\left(n_{j}, n_{s}\right)} .
$$

The proof follows from Theorem 1 by taking $d=n_{s}$ and $N(d)=$ n_{s} / μ_{s}.

Since

$$
\sum_{\substack{j \in I \cup\{0\} \\ n_{j} \neq n_{s}}} c_{j} \frac{n_{s}}{\left(n_{j}, n_{s}\right)} \geq \min _{\substack{j \in I \cup\{0\} \\ n_{j} \neq n_{s}}} \frac{n_{s}}{\left(n_{j}, n_{s}\right)} \geq \min _{\substack{j \in I \cup\{0\} \\ n_{j} \neq n_{s}}} G\left(\frac{n_{s}}{\left(n_{j}, n_{s}\right)}\right),
$$

the lower bound of [1] ($n_{0}=1$ in this case) and of [10] follow.
Motivated by results mentioned in the introduction a number of papers ([2], [5], [9], [12]) were devoted to the study of disjoint coverings (1) satisfying the condition (after reindexing if necessary)

$$
\begin{equation*}
n_{1}<n_{2}<\ldots<n_{k-m+1}=n_{k-m+2}=\ldots=n_{k} . \tag{8}
\end{equation*}
$$

(Some of these results are also proved for m times covering systems [8].) It can be easily proved that the only divmax of a disjoint covering satisfying (8) are the largest moduli. As it is proved in [2] there exists a disjoint covering with 6 largest moduli and moduli

$$
n_{1}=3, n_{2}=6, n_{3}=n_{4}=\ldots=n_{8}=12
$$

In this case

$$
L(12)=6=\frac{12}{(12,6)}+\frac{12}{(12,3)}=3 \frac{12}{(12,6)},
$$

which shows that the estimation of Corollary 1 supersedes the previously known ones. Other examples of this type can be constructed. So for instance, take a (μ, \mathfrak{m})-covering (1) and two arbitrary positive integers $b \geq 2$, $c \geq 2$. Without loss of generality we can suppose that n_{k} is a (μ, \mathfrak{m})-divmax. Then the system
$a_{1}\left(\bmod n_{1}\right), \ldots, a_{k-1}\left(\bmod n_{k-1}\right), a_{k}+h n_{k}\left(\bmod b n_{k}\right), \quad 0 \leq h \leq b-1$, has the same covering function \mathfrak{m} as the original one if to each of the congruence classes $a_{k}+h n_{k}\left(\bmod b n_{k}\right), 0 \leq h \leq b-1$, we assign the weight $\mu_{k}^{\prime}=\mu_{k}$. The modulus $b n_{k}$ is again a $\left(\mu^{\prime}, \mathfrak{m}\right)$-divmax. Now apply the above construction to the classes

$$
a_{k}+h n_{k}\left(\bmod b n_{k}\right), \quad 1 \leq h \leq b-1,
$$

using the number c, thereby obtaining a new system $a_{j}^{\prime}\left(\bmod n_{j}^{\prime}\right)$ with $k^{\prime}=$ $k+(b-1) c$ congruence classes. The modulus $n_{k^{\prime}}^{\prime}=b c n_{k}$ is a divmax in this new system, which has the same covering function as the original one and consequently the same period n_{0}. Since the modulus $n_{k^{\prime}}^{\prime}=b c n_{k}$ appears as the modulus of $(b-1) c$ congruence classes in this new system,

$$
L\left(n_{k^{\prime}}^{\prime}\right)=(b-1) c=(b-1) \frac{n_{k^{\prime}}^{\prime}}{\left(n_{k^{\prime}}^{\prime}, n_{k}^{\prime}\right)}=(b-1) \min _{n_{j}^{\prime} \neq n_{k^{\prime}}^{\prime}} \frac{n_{k^{\prime}}^{\prime}}{\left(n_{k^{\prime}}^{\prime}, n_{k}^{\prime}\right)} .
$$

The above construction plays a significant role in the definition of the socalled natural disjoint coverings [7] and in disjoint coverings with precisely one multiple modulus. Therefore the result of the next Theorem 2 can be of some interest. But before stating this theorem we show some other consequences of Corollary 1.

In every disjoint covering we obviously have

$$
\begin{equation*}
\sum_{i \in I} \frac{1}{n_{i}}=1 \tag{9}
\end{equation*}
$$

and the above mentioned result of Mirsky, Newman, Davenport and Radó shows that in every disjoint incongruent system (1),

$$
\sum_{i \in I} \frac{1}{n_{i}}<1 .
$$

Erdős [3] strengthened this estimation by showing that in every disjoint incongruent system (1) we have

$$
\begin{equation*}
\sum_{i \in I} \frac{1}{n_{i}} \leq 1-\frac{1}{2^{|I|}} \tag{10}
\end{equation*}
$$

This result is the best possible as the system $2^{i-1}\left(\bmod 2^{i}\right), 1 \leq i \leq k$, shows.
Corollary 2. Let (1) be a disjoint system. Then there exist positive integers $A_{i}, i \in I$, such that

$$
\begin{equation*}
\sum_{i \in I} \frac{A_{i}}{n_{i}}=1 \tag{11}
\end{equation*}
$$

Proof. If (1) is a disjoint covering then (9) shows that (11) holds. So we can suppose that (1) is not a covering.

Let $N=$ l.c.m. $\left[n_{j}\right]_{j \in I}$. Add to (1), say, $m \geq 1$ classes modulo $2 N$ in such a way that the new system is a disjoint covering. Then (9) implies

$$
\begin{equation*}
\sum_{i \in I} \frac{1}{n_{i}}+\frac{m}{2 N}=1 \tag{12}
\end{equation*}
$$

Since $2 N$ is a divmax in this new disjoint covering, there exist (Corollary 1) nonnegative integers $c_{i}, i \in I$, with

$$
\sum_{i \in I} c_{i} \frac{2 N}{\left(n_{i}, 2 N\right)}=m \stackrel{(12)}{=} 2 N-2 N \sum_{i \in I} \frac{1}{n_{i}}
$$

But $\left(n_{i}, 2 N\right)=n_{i}$ for every $i \in I$, which in turn implies

$$
\sum_{i \in I} \frac{c_{i}+1}{n_{i}}=1
$$

The last corollary implies a slight generalization of (10). Namely, if (1) is a disjoint incongruent system then there exists $j \in I$ with

$$
\begin{equation*}
\sum_{i \in I} \frac{1}{n_{i}} \leq 1-\frac{1}{n_{j}} \tag{13}
\end{equation*}
$$

Note that (10) follows from (13) by induction on $k=|I|$. Namely, if $n_{j}<$ 2^{k} then (10) follows immediately, in the opposite case apply the induction hypothesis to the system consisting of the classes with indices $i \in I \backslash\{j\}$.

To prove (13) note that if (1) is a disjoint incongruent system then the result of Mirsky, Newman, Davenport and Radó implies that (1) is not a covering. In the course of the proof of (11) we saw that in this case $A_{i} \geq 2$ at least for one $i \in I$. And for such i the relation (13) follows immediately.

Also note that Corollary 2 can be applied to any subsystem of a disjoint system. For example, for every disjoint covering satisfying (8) there exist
positive integers $B_{i}, i=1, \ldots, k-m$, with

$$
\sum_{i=1}^{k-m} \frac{B_{i}}{n_{i}}=1
$$

and positive integers $D_{i}, i=1, \ldots, k-m+1$, with

$$
\sum_{i=1}^{k-m+1} \frac{D_{i}}{n_{i}}=1
$$

etc.
Now we turn to the promised Theorem 2.
Theorem 2. Let (1) be a ($\mu, 0$)-covering and d a positive integer. If there exists a complex number $N(d)$ with the property that all the numbers

$$
\gamma_{a}=N(d) \sum_{\substack{d \mid n_{j}, j \in I \\ a_{j} \equiv a(\bmod d)}} \frac{\mu_{j}}{n_{j}}, \quad a \in\{0,1, \ldots, d-1\},
$$

are nonnegative integers not all zero, then

$$
\sum_{j \in I, d \mid n_{j}} \frac{N(d) \mu_{j}}{n_{j}}=\min _{j \in I, d \nmid n_{j}} \frac{d}{\left(d, n_{j}\right)}
$$

if and only if

$$
a \equiv b\left(\bmod \frac{d}{M_{d}}\right) \quad \text { and } \quad \gamma_{a}=\gamma_{b}=1
$$

for all indices a, b with $\gamma_{a} \neq 0$ and $\gamma_{b} \neq 0$, where

$$
M_{d}=\min _{j \in I, d \nmid n_{j}} \frac{d}{\left(d, n_{j}\right)}
$$

Proof. Let

$$
f(x)=\prod_{a=0}^{d-1}\left(x-\omega_{d}^{a}\right)^{\gamma_{a}}
$$

Then

$$
\operatorname{deg}(f)=\sum_{a=1}^{d-1} \gamma_{a}=\sum_{j \in I, d \mid n_{j}} \frac{N(d) \mu_{j}}{n_{j}}
$$

If b is an integer with

$$
1 \leq b<M_{d}=\min _{j \in I, d \nmid n_{j}} \frac{d}{\left(n_{j}, d\right)}
$$

then (6) implies that $\sigma_{f, b}=0$. Thus if $\operatorname{deg}(f)=M_{d}$ then the polynomial f reduces to the form

$$
f(x)=x^{M_{d}}+\sigma_{f, M_{d}}
$$

Since the numbers ω_{d}^{a} for $\gamma_{a} \neq 0$ are roots of f and none of the numbers ω_{d}^{a} is a root of the polynomial $f^{\prime}(x)=M_{d} x^{M_{d}}$ we obtain

$$
\omega_{d}^{M_{d} a}=\omega_{d}^{M_{d} b}, \quad \gamma_{a}=\gamma_{b}=1
$$

for all a, b with $\gamma_{a} \neq 0$ and $\gamma_{b} \neq 0$. Thus

$$
M_{d} a \equiv M_{d} b(\bmod d) \quad \text { or } \quad a \equiv b\left(\bmod \frac{d}{M_{d}}\right) \quad \text { and } \quad \gamma_{a}=\gamma_{b}=1
$$

for all a, b with $\gamma_{a} \neq 0$ and $\gamma_{b} \neq 0$.
Conversely, suppose that

$$
a \equiv b\left(\bmod \frac{d}{M_{d}}\right) \quad \text { and } \quad \gamma_{a}=\gamma_{b}=1
$$

for all a, b with $\gamma_{a} \neq 0$ and $\gamma_{b} \neq 0$. The number of such γ 's is at most M_{d} because for any $a \in\{0,1, \ldots, d-1\}$ there exist exactly M_{d} numbers $b \in\{0,1, \ldots, d-1\}$ with

$$
a \equiv b\left(\bmod \frac{d}{M_{d}}\right)
$$

Therefore

$$
\sum_{j \in I, d \mid n_{j}} \frac{N(d) \mu_{j}}{n_{j}}=\sum_{a=0}^{d-1} \gamma_{a}=\sum_{\substack{a=0 \\ \gamma_{a} \neq 0}}^{d-1} 1 \leq M_{d} .
$$

On the other hand, Theorem 1 implies

$$
\sum_{j \in I, d \mid n_{j}} \frac{N(d) \mu_{j}}{n_{j}}=\sum_{j \in I, d \nmid n_{j}} c_{j} \frac{d}{\left(d, n_{j}\right)} \geq \min _{j \in I, d \nmid n_{j}} \frac{d}{\left(d, n_{j}\right)}=M_{d},
$$

and consequently

$$
\sum_{j \in I, d \mid n_{j}} \frac{N(d) \mu_{j}}{n_{j}}=M_{d}
$$

as asserted, and Theorem 2 is proved.
Corollary 1. Let (1) be a (μ, \mathfrak{m})-covering and n_{s} be a ($\left.\mu, \mathfrak{m}\right)$-divmax. If $\mu_{j}=\mu_{s} \neq 0$ for all j with $n_{j}=n_{s}$ then

$$
\sum_{j \in I, n_{j}=n_{s}} 1=\min _{n_{j} \neq n_{s}, j \in I \cup\{0\}} \frac{n_{s}}{\left(n_{j}, n_{s}\right)}
$$

if and only if $a_{j} \equiv a_{s}\left(\bmod n_{s} / M_{n_{s}}\right)$ for all j with $n_{j}=n_{s}$, where

$$
M_{n_{s}}=\min _{n_{j} \neq n_{s}, i \in I \cup\{0\}} \frac{n_{s}}{\left(n_{j}, n_{s}\right)} .
$$

The proof follows from Theorem 2 for $N\left(n_{s}\right)=n_{s} / \mu_{s}$.

References

[1] M. A. Berger, A. Felzenbaum and A. S. Fraenkel, Improvements to the Newman-Znám result for disjoint covering systems, Acta Arith. 50 (1988), 1-13.
[2] —, 一, 一, Disjoint covering systems with precisely one multiple modulus, ibid., 171-182.
[3] P. Erdős, Számleméleti megjegyzések IV, Mat. Lapok 13 (1962), 228-255.
[4] M. Newman, Roots of unity and covering sets, Math. Ann. 191 (1971), 279-282.
[5] Š. Porubský, Generalization of some results for exactly covering systems, Mat. Časopis Sloven. Akad. Vied. 22 (1972), 208-214.
[6] -, Covering systems and generating functions, Acta Arith. 26 (1975), 223-231.
[7] -, Natural exactly covering systems of congruences, Czechoslovak Math. J. 24 (99) (1974), 598-606.
[8] -, On m times covering systems of congruences, Acta Arith. 29 (1976), 159-169.
[9] S. K. Stein, Unions of arithmetic sequences, Math. Ann. 134 (1958), 289-294.
[10] Z.-W. Sun, An improvement of Znám-Newman's result, Chinese Quart. J. Math. 6 (1991), 90-96.
[11] Š. Znám, On exactly covering systems of arithmetic sequences, in: Number Theory, Colloq. Math. Soc. János Bolyai, Debrecen 1968, North-Holland, Amsterdam, 1970, 221-225.
[12] -, On exactly covering systems of arithmetic sequences, Math. Ann. 180 (1969), 227-232.
[13] -, Vector-covering systems of arithmetical sequences, Czechoslovak Math. J. 24 (99) (1974), 455-461.

DEPARTMENT OF MATHEMATICS NANJING NORMAL UNIVERSITY INSTITUTE OF CHEMICAL TECHNOLOGY NANJING 210024 TECHNICKÁ 1905
JIANGSU PROVINCE, PEOPLE REPUBLIC OF CHINA 16628 PRAGUE 6, CZECH REPUBLIC
E-mail: PORUBSKS@VSCHT.CZ

Received on 26.10.1993
and in revised form on 5.8.1994

[^0]: 1991 Mathematics Subject Classification: Primary 11A07; Secondary 05A06, 11B75.
 Research of the first author supported by the Postdoctoral Foundation of China.
 Research of the second author supported by the Grant Agency of the Czech Republic, Grant \# 201/93/2122.

