On a multiplicative hybrid problem

by

WEN-GUANG ZHAI (Jinan)

1. Main results. In [2], H. Iwaniec and A. Sárközy considered the following multiplicative hybrid problem. Let N be a natural number large enough, G_1 and G_2 be subsets of $\{N + 1, \ldots, 2N\}$, $|G_1| \gg N, |G_2| \gg N$. They proved that there exist integers n_1, n_2, b with $n_1 \in G_1, n_2 \in G_2$, and

(1)
$$n_1 n_2 = b^2 + O(b^{1/2} \log^{1/2} b)$$

In this paper, we consider a more general case. Let $k \geq 3$ be a fixed integer and N be an integer large enough. G_1, \ldots, G_k are k subsets of $\{N + 1, \ldots, 2N\}$. Suppose Δ is a real number satisfying $0 < \Delta \leq 1/2$. Let S_k denote the number of solutions to the inequality

$$\|(n_1 \dots n_k)^{1/k}\| \le \Delta, \quad n_1 \in G_1, \dots, n_k \in G_k.$$

We shall estimate S_k . Our main result is

THEOREM 1. If $T_k = |G_1| \dots |G_k|$, then

(2)
$$S_k = 2\Delta T_k + O(T_k^{1/2} N^{(k-1)/2} \log^{(k-2)/2} N)$$

for $k \geq 4$ and

(3)
$$S_3 = 2\Delta T_3 + O(N^{5/2} \log^{1/2} N).$$

The constant implied in (2) depends on k.

As an application of Theorem 1 we have immediately

THEOREM 2. If $|G_1| \gg N, \ldots, |G_k| \gg N$, then there exist integers n_1, \ldots, n_k , b with $n_1 \in G_1, \ldots, n_k \in G_k$ such that

(4)
$$n_1 \dots n_k = b^k + O(b^{k-3/2} \log^{(k-2)/2} b) \quad (k \ge 3).$$

The constant implied in (4) depends on k.

Remark. Theorem 2 of [1] implies our Theorem 2 with a weak log factor in the error term for $k \ge 4$. So we use a little different method to get a slightly better result.

Notations. Throughout this paper, $||x|| = \min\{|x-n| \mid n \text{ is an integer}\}$, $\{x\}$ means the fractional part of $x, b(x) = \{x\} - 1/2$ and $e(x) = \exp(2\pi i x)$. |G| stands for the number of elements of G. As usual, $d_t(n)$ denotes the number of ways n can be written as a product of t factors.

2. Some lemmas. To complete our proof we need some lemmas.

LEMMA 1 (Lemma 1 of [2]). Let A and B be two finite sets of real numbers, $A \subset [-X, X]$, $B \subset [-Y, Y]$. Then for any complex functions u(x) and v(y), we have

$$\left|\sum_{x \in A} \sum_{y \in B} u(x)v(y)e(xy)\right|^{2} \le 2\pi^{2}(1+XY)\sum_{x \in A} \sum_{\substack{x' \in A \\ 2Y|x-x'| \le 1}} |u(x)u(x')| \sum_{y \in B} \sum_{\substack{y' \in B \\ 2X|y-y'| \le 1}} |v(y)v(y')|$$

LEMMA 2 (Theorem 12.2 of [3]). Suppose $t \ge 2$ is an integer and write

$$D_t(x) = \sum_{n \le x} d_t(n) = x P_t(\log x) + \Delta_t(x),$$

where $P_t(u)$ is a polynomial of degree t-1 in u. Then $\Delta_t(x) = O(x^{\theta_t})$ with $\theta_t = (t-1)/(t+1)$.

LEMMA 3. Suppose t is an integer, $2 \leq t \leq k$, Q_1, \ldots, Q_t are t subsets of $\{N + 1, \ldots, 2N\}$, δ is a real number, $0 < \delta < 1$. Let $A(Q_1, \ldots, Q_t; \delta)$ be the number of solutions to the inequality

(5)
$$|(n_1 \dots n_t)^{1/k} - (\overline{n}_1 \dots \overline{n}_t)^{1/k}| \le \delta, \quad n_i, \overline{n}_i \in Q_i, \ i = 1, \dots, t.$$

Then

$$A(Q_1, ..., Q_t; \delta) \ll (N^{t\theta_t} + \delta N^{t(k-1)/k} \log^{k-1} N) |Q_1| ... |Q_t|.$$

Proof. The inequality (5) implies

(6)
$$|(n_1 \dots n_t) - (\overline{n}_1 \dots \overline{n}_t)| \le \delta k (2N)^{t(k-1)/k}, \quad n_i, \overline{n}_i \in Q_i, \ i = 1, \dots, t.$$

For any fixed $(\overline{n}_1, \ldots, \overline{n}_t)$, the number of solutions of (6) is

(7)
$$S(\overline{n}_1, \dots, \overline{n}_t)$$

$$\leq D_t(\overline{n}_1 \dots \overline{n}_t + \delta k(2N)^{t(k-1)/k}) - D_t(\overline{n}_1 \dots \overline{n}_t - \delta k(2N)^{t(k-1)/k})$$

For simplicity, we put $x_0 = \overline{n}_1 \dots \overline{n}_t$, $y_0 = \delta k (2N)^{t(k-1)/k}$. Then by Lemma 2 we get

(8)
$$S(\overline{n}_1, \dots, \overline{n}_t)$$

 $\ll (x_0 + y_0) P_t(\log(x_0 + y_0)) - (x_0 - y_0) P_t(\log(x_0 - y_0)) + O((x_0 + y_0)^{\theta_t})$
 $= 2y_0(P_t(\log x') + P'_t(\log x')) + O((x_0 + y_0)\theta_t)$
 $\ll \delta N^{t(k-1)/k} \log^{t-1} N + N^{t\theta_t}.$

So we get

$$A(Q_1, \dots, Q_t; \delta) \le \sum_{\overline{n}_i \in Q_i} S(\overline{n}_1, \dots, \overline{n}_t) \ll (N^{t\theta_t} + \delta N^{t(k-1)/k} \log^{t-1} N) |Q_1| \dots |Q_t|.$$

This completes the proof of Lemma 3.

LEMMA 4. Suppose k_1, k_2, N_1, N_2 are natural numbers, $\delta > 0$, and Q_1 and Q_2 are subsets of $\{N_1, \ldots, 2N_1\}$ and $\{N_2, \ldots, 2N_2\}$ respectively. Let A denote the number of solutions to the inequality

$$|n_1^{1/k_1}n_2^{1/k_2} - \overline{n}_1^{1/k_1}\overline{n}_2^{1/k_2}| \le \delta, \quad n_1, \overline{n}_1 \in Q_1, \ n_2, \overline{n}_2 \in Q_2.$$

Then

(9)
$$A \ll N_1 N_2 \log N_2 + \delta N_1^{2-1/k_1} N_2^{2-1/k_2}$$

Proof. The idea of the proof of Lemma 4 comes from [2]. Given $r \leq 2N_1$ and $s \leq 2N_2$ let V_{rs} stand for the number of solutions to

(10)
$$|n_1^{1/k_1} n_2^{1/k_2} - \overline{n}_1^{1/k_1} \overline{n}_2^{1/k_2}| \le \delta$$

in $n_1, \overline{n}_1 \in Q_1, n_2, \overline{n}_2 \in Q_2$ such that $(n_1, \overline{n}_1) = r$ and $(n_2, \overline{n}_2) = s.$

By (10) we get

(11)
$$\left| \frac{n_1}{\overline{n}_1} - \left(\frac{\overline{n}_2}{n_2} \right)^{k_1/k_2} \right| \ll \delta N_1^{-1/k_1} N_2^{-1/k_2}.$$

Since the points n_1/\overline{n}_1 are $\left(\frac{r}{2N_1}\right)^2$ -spaced, we get

(12)
$$V_{rs} \ll (1 + \delta N_1^{-1/k_1} N_2^{-1/k_2} N_1^2 r^{-2}) T_s^2$$

by the Dirichlet box principle, where

$$T_s = |\{n_2 \in Q_2 \mid n_2 \equiv 0 \pmod{s}\}| \ll N_2/s$$

Thus we obtain

(13)
$$V_{rs} \ll N_2^2 s^{-2} + \delta N_1^{2-1/k_1} N_2^{2-1/k_2} r^{-2} s^{-2}.$$

Similarly, we have

(14)
$$V_{rs} \ll N_1^2 r^{-2} + \delta N_1^{2-1/k_1} N_2^{2-1/k_2} r^{-2} s^{-2}.$$

 So

(15)
$$V_{rs} \ll \min(N_2^2/s^2, N_1^2/r^2) + \delta N_1^{2-1/k_1} N_2^{2-1/k_2} r^{-2} s^{-2}.$$

Summing over r and s we complete the proof.

3. Proof of Theorem 1 $(k \ge 4)$. It is easy to check that

$$[n^{1/k} + \Delta] - [n^{1/k} - \Delta] = \begin{cases} 1, & \|n^{1/k}\| \le \Delta, \\ 0, & \text{otherwise.} \end{cases}$$

So we have

(16)
$$S_k = \sum_{n_i \in G_i} ([(n_1 \dots n_k)^{1/k} + \Delta] - [(n_1 \dots n_k)^{1/k} - \Delta])$$
$$= 2\Delta T_k + \sum_{n_i \in G_i} (b((n_1 \dots n_k)^{1/k} - \Delta) - b((n_1 \dots n_k)^{1/k} + \Delta)).$$

It is well known that

(17)
$$b(t) = -\sum_{0 < |h| \le H} \frac{e(ht)}{2\pi i h} + O\left(\min\left(1, \frac{1}{H||t||}\right)\right)$$

and

(18)
$$\min\left(1, \frac{1}{H||t||}\right) = \sum_{h=-\infty}^{\infty} a_h e(ht)$$

with

(19)
$$a_0 \ll \frac{\log H}{H}, \quad a_h \ll \min\left(\frac{1}{|h|}, \frac{H}{h^2}\right) \quad \text{if } h \neq 0.$$

Using (17)–(19), we have

(20)
$$\sum_{n_i \in G_i} b((n_1 \dots n_k)^{1/k} \pm \Delta) = -\sum_{0 < |h| \le H} \frac{1}{2\pi i h} \sum_{n_i \in G_i} e(h(n_1 \dots n_k)^{1/k} \pm h\Delta) + O\left(\sum_{n_i \in G_i} \min\left(1, \frac{1}{H \| (n_1 \dots n_k)^{1/k} \pm \Delta \|}\right)\right) \\ \ll \frac{T_k \log H}{H} + \sum_{h=1}^{\infty} \min\left(\frac{1}{h}, \frac{H}{h^2}\right) \Big| \sum_{n_i \in G_i} e(h(n_1 \dots n_k)^{1/k}) \Big|.$$

So the problem is now reduced to the estimation of the exponential sum

$$\Sigma(h) = \sum_{n_i \in G_i} e(h(n_1 \dots n_k)^{1/k}).$$

Now suppose $k \ge 4$ and $t = \lfloor k/2 \rfloor$, then $t \ge 2$. Applying Lemma 1 to the sequences $A = \{h(n_1 \dots n_t)^{1/k} \mid n_i \in G_i, i = 1, \dots, t\}$ and $B = \{(n_{t+1} \dots n_k)^{1/k} \mid n_i \in G_i, i = t+1, \dots, k\}$, we get

(21)
$$\Sigma(h) \ll (hNV_1V_2)^{1/2},$$

where $V_1 = A(G_1, \dots, G_t; 2^{-1}(2N)^{-(k-t)/k}h^{-1})$ and $V_2 = A(G_{t+1}, \dots, G_k; 2^{-1}(2N)^{-t/k}h^{-1})$. V_1 and V_2 can then be estimated by Lemma 3. We have

(22)
$$V_1 \ll (N^{\iota \upsilon_t} + h^{-1} N^{\iota - 1} \log^{\iota - 1} N) |G_1| \dots |G_t|$$

and

(23)
$$V_2 \ll (N^{(k-t)\theta_{k-t}} + h^{-1}N^{k-t-1}\log^{k-t-1}N)|G_{t+1}|\dots|G_k|.$$

Combining (20)–(23), we get

(24)
$$\sum_{\substack{n_i \in G_i \\ H}} b((n_1 \dots n_k)^{1/k} \pm \Delta) \\ \ll \frac{T_k \log H}{H} + H^{1/2} T_k^{1/2} N^{(1+t\theta_t + (k-t)\theta_{k-t})/2} + T_k^{1/2} N^{(k-1)/2} \log^{(k-2)/2} N^{(k-1)/2}$$

Choosing H such that the first two terms in (24) are equal, we get

(25)
$$\sum_{n_i \in G_i} b((n_1 \dots n_k)^{1/k} \pm \Delta) \\ \ll T_k^{2/3} N^{(1+t\theta_t + (k-t)\theta_{k-t})/3} \log^{1/3} N + T_k^{1/2} N^{(k-1)/2} \log^{(k-2)/2} N \\ \ll T_k^{1/2} N^{(k-1)/2} \log^{(k-2)/2} N.$$

Hence Theorem 1 for the case $k \ge 4$ follows from (16) and (25).

4. Proof of Theorem 1 (k = 3). Choosing $H = N/\log N$, we have

(26)
$$\sum_{n_i \in G_i} b((n_1 n_2 n_3)^{1/3} \pm \Delta) = -\sum_{0 < |h| \le H} \frac{1}{2\pi i h} \sum_{n_i \in G_i} e(h(n_1 n_2 n_3)^{1/3} \pm h\Delta) + O\left(\sum_{n_i \in G_i} \min\left(1, \frac{1}{H \| (n_1 n_2 n_3)^{1/3} \pm \Delta \|}\right)\right) \\ \ll \frac{T_3 \log H}{H} + S_1 + S_2,$$

where

$$S_1 = \left| \sum_{h \le H} \frac{1}{h} \sum_{n_i \in G_i} e(h(n_1 n_2 n_3)^{1/3} \pm h\Delta) \right|$$

and

$$S_2 = \Big| \sum_{h \le H^2} a_h \sum_{n_i \in G_i} e(h(n_1 n_2 n_3)^{1/3} \pm h\Delta) \Big|.$$

We only estimate S_2 and we can estimate S_1 in the same way.

We have

(27)
$$\sum_{h \le H^2} a_h \sum_{n_i \in G_i} e(h(n_1 n_2 n_3)^{1/3} \pm h\Delta) \\ = \sum_{L=2^l \ge 1} \sum_{\substack{L \le h < 2L \\ n_i \in G_i}} a_h e(h(n_1 n_2 n_3)^{1/3} \pm h\Delta) \\ \ll \sum_{L=2^l} c(L) \bigg| \sum_{\substack{L \le h < 2L \\ n_i \in G_i}} \frac{a_h e(\pm h\Delta)}{c(L)} e(h(n_1 n_2 n_3)^{1/3}) \bigg|$$

where $c(h) = \min(1/h, H/h^2)$.

Now we only need to estimate

$$\Sigma(L) = \sum_{\substack{L \le h < 2L \\ n_i \in G_i}} \frac{a_h e(\pm h\Delta)}{c(L)} e(h(n_1 n_2 n_3)^{1/3}).$$

Applying Lemma 1 to the sequences $A = \{hn_1^{1/3} \mid L \le h < 2L, n_1 \in G_1\}$ and $B = \{(n_2n_3)^{1/3} \mid n_2 \in G_2, n_3 \in G_3\}$, we get

(28) $\Sigma(L) \ll (LNV_3V_4)^{1/2},$

where

$$V_3 = \sum_{\substack{x, x' \in A \\ 2(2N)^{2/3} | x - x' | \le 1}} 1 \text{ and } V_4 = \sum_{\substack{y, y' \in B \\ 2L(2N)^{1/3} | y - y' | \le 1}} 1.$$

By Lemma 4 we have

(29)
$$V_3 \ll LN \log N$$

and

(30)
$$V_4 \ll N^2 \log N + N^3/L.$$

Combining (27)–(30), we obtain

(31)
$$S_2 \ll N^{5/2} \log^{1/2} N.$$

Similarly,

(32)
$$S_1 \ll N^{5/2} \log^{1/2} N.$$

Hence Theorem 1 for the case k = 3 follows from (16), (26), (31) and (32).

Acknowledgements. The author would like to thank the referee for his valuable comments and Prof. H. Iwaniec for his encouragement and help.

52

References

- [1] E. Fouvry and H. Iwaniec, *Exponential sums with monomials*, J. Number Theory 33 (1989), 311–333.
- [2] H. Iwaniec and A. Sárközy, On a multiplicative hybrid problem, ibid. 26 (1987), 89-95.
- E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed. (revised by D. R. Heath-Brown), Cambridge Univ. Press, Oxford, 1986.

DEPARTMENT OF MATHEMATICS SHANDONG UNIVERSITY JINAN 250100, CHINA

> Received on 22.10.1993 and in revised form on 25.5.1994 and 13.10.1994 (2555)