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1. Main results. In [2], H. Iwaniec and A. Sarkdzy considered the
following multiplicative hybrid problem. Let N be a natural number large
enough, Gy and G2 be subsets of {N +1,...,2N}, |G1| > N,|Gz| > N.
They proved that there exist integers ny, ng, b with ny € G1, no € G, and

(1) ning = b% + O(b'/?1log'/? b).
In this paper, we consider a more general case. Let k& > 3 be a fixed
integer and N be an integer large enough. G, ..., Gy are k subsets of { N +

1,...,2N}. Suppose A is a real number satisfying 0 < A < 1/2. Let Sk
denote the number of solutions to the inequality

[(n1...np)Y*| <A, nyeGy,...,np € Gy.
We shall estimate Si. Our main result is

THEOREM 1. If T}, = |G4]...|Gkl|, then

(2) S = 2ATy, + O(T/*NH=1D/2 1og=2)/2 N
for k>4 and
3) S = 2AT5 + O(N°/?log'/? N).

The constant implied in (2) depends on k.
As an application of Theorem 1 we have immediately

THEOREM 2. If |G1| > N,...,|Gk| > N, then there exist integers
Ni,...,Nk, b withny € Gy, ...,n, € Gy such that

(4) ny...ng ="+ 003210k =2D/2p) (k> 3).
The constant implied in (4) depends on k.

Remark. Theorem 2 of [1] implies our Theorem 2 with a weak log
factor in the error term for & > 4. So we use a little different method to get
a slightly better result.

(47]
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Notations. Throughout this paper, ||z|| = min{|x —n| | n is an integer},
{x} means the fractional part of z,b(x) = {z} —1/2 and e(z) = exp(2mizx).
|G| stands for the number of elements of G. As usual, d;(n) denotes the
number of ways n can be written as a product of ¢ factors.

2. Some lemmas. To complete our proof we need some lemmas.

LEMMA 1 (Lemma 1 of [2]). Let A and B be two finite sets of real num-
bers, A C [-X,X], B C [-Y,Y]. Then for any complex functions u(z) and
v(y), we have

3 S w@pe)ete)|
reAyeEB
<221+ X)) u@u) Y. Y eyl
€A ' cA yeB y' €B
2Y|z—a'[<1 2X|y—y'[<1

LEMMA 2 (Theorem 12.2 of [3]). Suppose t > 2 is an integer and write

Dy(z) = di(n) = zP(logz) + A(w),

n<zx

where P;(u) is a polynomial of degree t — 1 in u. Then Ay(z) = O(x%) with
O,=(t—-1)/(t+1).

LEMMA 3. Suppose t is an integer, 2 <t < k, Q1,...,Q; are t subsets
of {N +1,...,2N}, ¢ is a real number, 0 < 6 < 1. Let A(Q1,...,Q¢;0) be
the number of solutions to the inequality

B) ..oV — (@ m)YR <8, npmeQy, i=1,... L
Then
A(Qr,...,Qu0) < (NPt 4 NTE=D/k 100k =1 NY Q1. |Qyl.
Proof. The inequality (5) implies
6) |(n1...n¢) — (1 ... 7)) < Sk@2N)E-D/E - p mieQy i=1,...,t
For any fixed (71, ...,n:), the number of solutions of (6) is

(7)y  S(hy,...,m)
< Dy(my ...y + k(2N F=D/RY _ Dy(my ..y — Sk(2N)HFE /R,

For simplicity, we put £g = 7y . . . 7ig, Yo = 0k(2N)**~1/% Then by Lemma 2
we get
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(8) S(mi,...,m)

< (w0 + yo) Pr(log(xo + 90)) — (z0 — yo) Pr(log(zo — y0)) + O((wo + y0)™)

= 2yo(P,(logz’) + P;(log ")) + O((xo + y0)0:)

& SNME=D/k oot =1 N 4 N0
So we get

AQ1,..,Qu0) < > S(my,... M)
n;€Q;
< (N 4 gNUE=D/E 166171 NY Q4] . . . Qs

This completes the proof of Lemma 3.

LEMMA 4. Suppose ki, ko, N1, No are natural numbers, 6 > 0, and Q1
and Q2 are subsets of {N1,...,2N1} and {Na,...,2Ny} respectively. Let A
denote the number of solutions to the inequality

‘n}/kln;/ka - ﬁf/klﬁé/k2| S 67 nl;ﬁl S Q17 n27ﬁ2 S QQ.
Then
(9) A < NiNo lOg Ny + 6N12—1/k:1N22_1/k2.

Proof. The idea of the proof of Lemma 4 comes from [2]. Given r < 2N,
and s < 2Ny let V,, stand for the number of solutions to

(10) My —m My <6

in ny,m1 € Q1, N2, Ny € Q2 such that (nq,n1) =7 and (ng,n2) = s.

By (10) we get
— kl/kg
o R

ni no

2N,
(12) Vs < (140N, M Ny R N2p=2) 2
by the Dirichlet box principle, where

Ts = |{n2 € Q2 | n2 =0 (mod s)}| < Ny/s.

Thus we obtain

< SN RN ke

Since the points nq/n; are ( )Q—Spaced, we get

(13) Vs < N3s72 + 5N12_1/k1N22_1/k27‘_25_2.
Similarly, we have

(14) Vie < N2r—2 4 5N12_1/k1N22_1/k27‘_28_2.

So

(15) Vs < min(Nj3/s?, N7 /r?) + 5N12_1/k1N22_1/k2r_25_2.

Summing over r and s we complete the proof.
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3. Proof of Theorem 1 (k > 4). It is easy to check that

1/k <A
Uk gl [ VR < A
"+ A= ] {O, otherwise.

So we have
(16) Sk = > ([(n1... )" + A] = [(n1...x) /¥ = A))
n; €G;
=2AT, + Y (b((n1...ne) % = A) = b((n1...n5) /¥ + ).

n, €G;
It is well known that

e(ht) : 1
17 b(t) = — (@) 1, ——
" == 3 s ro(mn (1))

0<|h|<H

and

1 oo
18) min <1, > = ape(ht)
( ) = 2=
with

log H H
(19) ap K gT’ ap <<m1n<’h’ h2> if h #0.
Using (17)—(19), we have
(200 > b((na...np)E £ Q)
n,€G;

= — Z Lh Z e(h(ny ...np) Y% £ hA)

2me
0<|h|<H n; €G;

+O< 2 min <1’H|<n1...§k>l/kim>>

n; €Gy

TklogH imm<h h2>‘ T k)1/k)‘_

TLG'L

So the problem is now reduced to the estimation of the exponential sum
S(hy= > e(h(ny...ng)'¥).
n;€G;

Now suppose k > 4 and t = [k/2], then ¢ > 2. Applying Lemma 1 to
the sequences A = {h(ny...n))"* | n; € G;, i = 1,...,t} and B =
{(nggr...np) % | n; € Gyyi=t+1,...,k}, we get

(21) 2(h) < (ANV4VR)Y2,
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where Vi = A(G1,...,Gy; 27 (2N)~k=0/kp=1) and Vo = A(Giy1, ..., Gy;
2-1(2N)~t/kh=1). V; and V; can then be estimated by Lemma 3. We have
(22) Vi < (N9 4+ = INtLlog™t N)|Gy|. .. |Gy
and
(23) Vo< (NF=80k—t 4 p=t NE=t=1160h =L NGy L |Gl
Combining (20)—(23), we get

24 > (( W)YE £ A)
n,€G;
Ty log H
¢ 1k ;Ig i HI/QT;/QN(I-ﬁ-t@t+(k—t)9k7t)/2 +T£/2N(k—1)/2 logF=2/2 N
Choosing H such that the first two terms in (24) are equal, we get
(25) > b((na...np)F £ A)
n; €G;

< T;/3N(1+t9t+(k*t)9k7t)/3 log!/3 N + T}i/2N(k*1)/2 log*=2)/2

< T,i/2N(k*1)/2 log(k_Q)/2 N
Hence Theorem 1 for the case k > 4 follows from (16) and (25).

4. Proof of Theorem 1 (k = 3). Choosing H = N/log N, we have
(26) Y b((nangng)'/® £ A)

n;€G;
= — Z — Z 77,177,27’13 1/3 + hA)

0<|h|§H TMEGZ
1
+ O< min <1, >>
nze; H||(ninang)t/3 £ A
Tslog H
<< i _|_ Sl + SQ,
H
where
Z > el(hlningny)'/® + hA)’
h<H n1€G
and

SQ—‘ Z ap Z h(ninans) / ihA)‘

h<H? n;€G;
We only estimate Sy and we can estimate S7 in the same way.
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We have
(27) Z ap Z e(h(ningns)t/3 + hA)

hSI‘I2 ’I’L,LEGi

= > > ane(h(mnang)'? £ hA)

L=2>1 L<h<2L

n; €Gy
ape(£hA) 1/3
SIS @) lmnans) ),
L=2! L<h<2L

n; €G;
where c(h) = min(1/h, H/h?).

Now we only need to estimate

X(L) = Z Me(h(nmzng)l/s).

(L)
L<h<2L
n,€G;

Applying Lemma 1 to the sequences A = {hni/3 | L<h<2L, ny € Gy}
and B = {(nan3)'/? | ny € Ga, nz € G3}, we get

(28) S(L) < (LNV3Vy)*/2,

where

Vs = > 1 and Vi= > 1.

z,x' €A y,y €EB
2(2N)*/3|z—a'|<1 2L(2N)3ly—y'|<1

By Lemma 4 we have

(29) Vs < LN log N
and

(30) Vi < N?log N + N®/L.
Combining (27)—(30), we obtain

(31) Sy, < N°/2 logl/2 N.
Similarly,

(32) S < N°/?1og!/? N.

Hence Theorem 1 for the case k = 3 follows from (16), (26), (31) and (32).
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