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1. Main results. In [2], H. Iwaniec and A. Sárközy considered the
following multiplicative hybrid problem. Let N be a natural number large
enough, G1 and G2 be subsets of {N + 1, . . . , 2N}, |G1| � N, |G2| � N .
They proved that there exist integers n1, n2, b with n1 ∈ G1, n2 ∈ G2, and

(1) n1n2 = b2 +O(b1/2 log1/2 b).

In this paper, we consider a more general case. Let k ≥ 3 be a fixed
integer and N be an integer large enough. G1, . . . , Gk are k subsets of {N +
1, . . . , 2N}. Suppose ∆ is a real number satisfying 0 < ∆ ≤ 1/2. Let Sk
denote the number of solutions to the inequality

‖(n1 . . . nk)1/k‖ ≤ ∆, n1 ∈ G1, . . . , nk ∈ Gk.
We shall estimate Sk. Our main result is

Theorem 1. If Tk = |G1| . . . |Gk|, then

(2) Sk = 2∆Tk +O(T 1/2
k N (k−1)/2 log(k−2)/2N)

for k ≥ 4 and

(3) S3 = 2∆T3 +O(N5/2 log1/2N).

The constant implied in (2) depends on k.

As an application of Theorem 1 we have immediately

Theorem 2. If |G1| � N, . . . , |Gk| � N , then there exist integers
n1, . . . , nk, b with n1 ∈ G1, . . . , nk ∈ Gk such that

(4) n1 . . . nk = bk +O(bk−3/2 log(k−2)/2 b) (k ≥ 3).

The constant implied in (4) depends on k.

R e m a r k. Theorem 2 of [1] implies our Theorem 2 with a weak log
factor in the error term for k ≥ 4. So we use a little different method to get
a slightly better result.

[47]
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Notations. Throughout this paper, ‖x‖ = min{|x− n| | n is an integer},
{x} means the fractional part of x, b(x) = {x} − 1/2 and e(x) = exp(2πix).
|G| stands for the number of elements of G. As usual, dt(n) denotes the
number of ways n can be written as a product of t factors.

2. Some lemmas. To complete our proof we need some lemmas.

Lemma 1 (Lemma 1 of [2]). Let A and B be two finite sets of real num-
bers, A ⊂ [−X,X], B ⊂ [−Y, Y ]. Then for any complex functions u(x) and
v(y), we have
∣∣∣
∑

x∈A

∑

y∈B
u(x)v(y)e(xy)

∣∣∣
2

≤ 2π2(1 +XY )
∑

x∈A

∑

x′∈A
2Y |x−x′|≤1

|u(x)u(x′)|
∑

y∈B

∑

y′∈B
2X|y−y′|≤1

|v(y)v(y′)|.

Lemma 2 (Theorem 12.2 of [3]). Suppose t ≥ 2 is an integer and write

Dt(x) =
∑

n≤x
dt(n) = xPt(log x) +∆t(x),

where Pt(u) is a polynomial of degree t− 1 in u. Then ∆t(x) = O(xθt) with
θt = (t− 1)/(t+ 1).

Lemma 3. Suppose t is an integer , 2 ≤ t ≤ k, Q1, . . . , Qt are t subsets
of {N + 1, . . . , 2N}, δ is a real number , 0 < δ < 1. Let A(Q1, . . . , Qt; δ) be
the number of solutions to the inequality

(5) |(n1 . . . nt)1/k − (n1 . . . nt)1/k| ≤ δ, ni, ni ∈ Qi, i = 1, . . . , t.

Then

A(Q1, . . . , Qt; δ)� (N tθt + δN t(k−1)/k logk−1N)|Q1| . . . |Qt|.
P r o o f. The inequality (5) implies

(6) |(n1 . . . nt)− (n1 . . . nt)| ≤ δk(2N)t(k−1)/k, ni, ni ∈ Qi, i = 1, . . . , t.

For any fixed (n1, . . . , nt), the number of solutions of (6) is

(7) S(n1, . . . , nt)

≤ Dt(n1 . . . nt + δk(2N)t(k−1)/k)−Dt(n1 . . . nt − δk(2N)t(k−1)/k).

For simplicity, we put x0 = n1 . . . nt, y0 = δk(2N)t(k−1)/k. Then by Lemma 2
we get
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(8) S(n1, . . . , nt)

� (x0 + y0)Pt(log(x0 + y0))− (x0 − y0)Pt(log(x0 − y0)) +O((x0 + y0)θt)

= 2y0(Pt(log x′) + P ′t(log x′)) +O((x0 + y0)θt)

� δN t(k−1)/k logt−1N +N tθt .

So we get

A(Q1, . . . , Qt; δ) ≤
∑

n̄i∈Qi
S(n1, . . . , nt)

� (N tθt + δN t(k−1)/k logt−1N)|Q1| . . . |Qt|.
This completes the proof of Lemma 3.

Lemma 4. Suppose k1, k2, N1, N2 are natural numbers, δ > 0, and Q1

and Q2 are subsets of {N1, . . . , 2N1} and {N2, . . . , 2N2} respectively. Let A
denote the number of solutions to the inequality

|n1/k1
1 n

1/k2
2 − n1/k1

1 n
1/k2
2 | ≤ δ, n1, n1 ∈ Q1, n2, n2 ∈ Q2.

Then

(9) A� N1N2 logN2 + δN
2−1/k1
1 N

2−1/k2
2 .

P r o o f. The idea of the proof of Lemma 4 comes from [2]. Given r ≤ 2N1

and s ≤ 2N2 let Vrs stand for the number of solutions to

(10) |n1/k1
1 n

1/k2
2 − n1/k1

1 n
1/k2
2 | ≤ δ

in n1, n1 ∈ Q1, n2, n2 ∈ Q2 such that (n1, n1) = r and (n2, n2) = s.
By (10) we get

(11)
∣∣∣∣
n1

n1
−
(
n2

n2

)k1/k2
∣∣∣∣� δN

−1/k1
1 N

−1/k2
2 .

Since the points n1/n1 are
(

r
2N1

)2
-spaced, we get

(12) Vrs � (1 + δN
−1/k1
1 N

−1/k2
2 N2

1 r
−2)T 2

s

by the Dirichlet box principle, where

Ts = |{n2 ∈ Q2 | n2 ≡ 0 (mod s)}| � N2/s.

Thus we obtain

(13) Vrs � N2
2 s
−2 + δN

2−1/k1
1 N

2−1/k2
2 r−2s−2.

Similarly, we have

(14) Vrs � N2
1 r
−2 + δN

2−1/k1
1 N

2−1/k2
2 r−2s−2.

So

(15) Vrs � min(N2
2 /s

2, N2
1 /r

2) + δN
2−1/k1
1 N

2−1/k2
2 r−2s−2.

Summing over r and s we complete the proof.
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3. Proof of Theorem 1 (k ≥ 4). It is easy to check that

[n1/k +∆]− [n1/k −∆] =
{

1, ‖n1/k‖ ≤ ∆,
0, otherwise.

So we have

Sk =
∑

ni∈Gi
([(n1 . . . nk)1/k +∆]− [(n1 . . . nk)1/k −∆])(16)

= 2∆Tk +
∑

ni∈Gi
(b((n1 . . . nk)1/k −∆)− b((n1 . . . nk)1/k +∆)).

It is well known that

(17) b(t) = −
∑

0<|h|≤H

e(ht)
2πih

+O

(
min

(
1,

1
H‖t‖

))

and

(18) min
(

1,
1

H‖t‖
)

=
∞∑

h=−∞
ahe(ht)

with

(19) a0 � logH
H

, ah � min
(

1
|h| ,

H

h2

)
if h 6= 0.

Using (17)–(19), we have

(20)
∑

ni∈Gi
b((n1 . . . nk)1/k ±∆)

= −
∑

0<|h|≤H

1
2πih

∑

ni∈Gi
e(h(n1 . . . nk)1/k ± h∆)

+O

( ∑

ni∈Gi
min

(
1,

1
H‖(n1 . . . nk)1/k ±∆‖

))

� Tk logH
H

+
∞∑

h=1

min
(

1
h
,
H

h2

)∣∣∣
∑

ni∈Gi
e(h(n1 . . . nk)1/k)

∣∣∣.

So the problem is now reduced to the estimation of the exponential sum

Σ(h) =
∑

ni∈Gi
e(h(n1 . . . nk)1/k).

Now suppose k ≥ 4 and t = [k/2], then t ≥ 2. Applying Lemma 1 to
the sequences A = {h(n1 . . . nt)1/k | ni ∈ Gi, i = 1, . . . , t} and B =
{(nt+1 . . . nk)1/k | ni ∈ Gi, i = t+ 1, . . . , k}, we get

(21) Σ(h)� (hNV1V2)1/2,
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where V1 = A(G1, . . . , Gt; 2−1(2N)−(k−t)/kh−1) and V2 = A(Gt+1, . . . , Gk;
2−1(2N)−t/kh−1). V1 and V2 can then be estimated by Lemma 3. We have

(22) V1 � (N tθt + h−1N t−1 logt−1N)|G1| . . . |Gt|
and

(23) V2 � (N (k−t)θk−t + h−1Nk−t−1 logk−t−1N)|Gt+1| . . . |Gk|.
Combining (20)–(23), we get

(24)
∑

ni∈Gi
b((n1 . . . nk)1/k ±∆)

� Tk logH
H

+H1/2T
1/2
k N (1+tθt+(k−t)θk−t)/2 + T

1/2
k N (k−1)/2 log(k−2)/2N.

Choosing H such that the first two terms in (24) are equal, we get

(25)
∑

ni∈Gi
b((n1 . . . nk)1/k ±∆)

� T
2/3
k N (1+tθt+(k−t)θk−t)/3 log1/3N + T

1/2
k N (k−1)/2 log(k−2)/2N

� T
1/2
k N (k−1)/2 log(k−2)/2N.

Hence Theorem 1 for the case k ≥ 4 follows from (16) and (25).

4. Proof of Theorem 1 (k = 3). Choosing H = N/ logN , we have

(26)
∑

ni∈Gi
b((n1n2n3)1/3 ±∆)

= −
∑

0<|h|≤H

1
2πih

∑

ni∈Gi
e(h(n1n2n3)1/3 ± h∆)

+O

( ∑

ni∈Gi
min

(
1,

1
H‖(n1n2n3)1/3 ±∆‖

))

� T3 logH
H

+ S1 + S2,

where

S1 =
∣∣∣∣
∑

h≤H

1
h

∑

ni∈Gi
e(h(n1n2n3)1/3 ± h∆)

∣∣∣∣

and

S2 =
∣∣∣
∑

h≤H2

ah
∑

ni∈Gi
e(h(n1n2n3)1/3 ± h∆)

∣∣∣.

We only estimate S2 and we can estimate S1 in the same way.
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We have

(27)
∑

h≤H2

ah
∑

ni∈Gi
e(h(n1n2n3)1/3 ± h∆)

=
∑

L=2l≥1

∑

L≤h<2L
ni∈Gi

ahe(h(n1n2n3)1/3 ± h∆)

�
∑

L=2l

c(L)
∣∣∣∣
∑

L≤h<2L
ni∈Gi

ahe(±h∆)
c(L)

e(h(n1n2n3)1/3)
∣∣∣∣,

where c(h) = min(1/h,H/h2).
Now we only need to estimate

Σ(L) =
∑

L≤h<2L
ni∈Gi

ahe(±h∆)
c(L)

e(h(n1n2n3)1/3).

Applying Lemma 1 to the sequences A = {hn1/3
1 | L ≤ h < 2L, n1 ∈ G1}

and B = {(n2n3)1/3 | n2 ∈ G2, n3 ∈ G3}, we get

(28) Σ(L)� (LNV3V4)1/2,

where

V3 =
∑

x,x′∈A
2(2N)2/3|x−x′|≤1

1 and V4 =
∑

y,y′∈B
2L(2N)1/3|y−y′|≤1

1.

By Lemma 4 we have

(29) V3 � LN logN

and

(30) V4 � N2 logN +N3/L.

Combining (27)–(30), we obtain

(31) S2 � N5/2 log1/2N.

Similarly,

(32) S1 � N5/2 log1/2N.

Hence Theorem 1 for the case k = 3 follows from (16), (26), (31) and (32).
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