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1. Introduction. As in [3] the main inspiration of this paper is again
the following question by J. Browkin:

Does there exist an irreducible non-cyclotomic polynomial such that one
root is the product of two other roots?

A. Schinzel found the following polynomial of degree 6:
(1) fz) = 2% —22% — 623 — 222 + 1

and therefore answered the preceding question affirmatively (see [3]). On the
other hand, there is no such polynomial of prime degree ([3, Theorem 1]).

The aim of this paper is to provide general results for relations between
distinct roots of polynomials with rational coefficients. In Section 2 we will
prove that multiplicative relations between distinct polynomial roots are
very rare. In Section 3 we restrict ourselves to the case of abelian Galois
group and give a kind of classification. In particular, we can settle an ana-
logue of Browkin’s question in the abelian case.

THEOREM 1. Let f(z) € Q[x] be an irreducible polynomial of degree n
with abelian Galois group.

e If 61n and if f(x) is non-cyclotomic then xixo # x3 for any three
roots x1, T2, xs of f(x).

e If6|n then using a proper Tschirnhausen transformation one can ob-
tain from f(x) an irreducible non-cyclotomic polynomial f*(x) having three
roots x7, x5, x5 satisfying xixs = x3.

A Tschirnhausen transformation f*(z) of a polynomial f(z) =
ITi-, (z — ;) is of the form

n

f (@) = [ = o)),

=1
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where ¢(z) € Q[z] is a polynomial of degree < n. In the case of Theorem 1
this is equivalent to the property that f(z) and f*(x) have the same splitting
field.

In order to give a flavour of our method to be developed below, let

flx)y=a®+ a5+t 4+ 23 + 22 + 241,
whose splitting field is the cyclotomic field F' = Q(er), e7 = exp(27i /7). We
will show how to construct explicitly a (non-cyclotomic) polynomial f*(x)
of degree 6 having three roots z7, x5, 3 satisfying zjz5 = 3.

Let o denote the generator of the Galois group of f(x) which is defined by
o(e7) = €2. The starting point of our construction is a free number v € F*
(see (2)). By Lemma 1, v = 2+ ¢7 is a proper choice since Np(2+¢e7) = 43.
Then

ot 0() @4+

T PMot(h) | (2+€9)(2 +ed)
6 5, 10, 36, 6 39 30
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a ="y

satisfies
ac?(a) = o(a).
We only have to check that (in the proper group ring Z[G])
(id +o0 — 0® — 6*)(id =0 + 02) = 0.
Hence the characteristic polynomial of «,

. ¢ 83 5 5587 , 6551 5 5587 , 83
Jr@) =2 = 5+ 1529 " 1ma9” T isao® Tt h
has the desired property.

In the case n = 6 our method provides only reciprocal polynomials such
that all roots x; have modulus |z;|] = 1, 1 < i < 6. However, it is an
easy exercise to show that the sequence (a”, (¢2(a))"), n > 1, is uniformly
distributed on the torus T = {(21,22) € C? : |21| = |22 = 1}. Furthermore,
degga™ = 6 for all n > 1 (see Remark 3). Therefore, the set of pairs
(z1,22) € T such that x1, z9, z129 are roots of an irreducible polynomial of
degree n = 6 with splitting field ' = Q(e7) is dense in T. These remarks
should indicate that our method provides lots of examples but it seems that
there are others.

It should be further mentioned that there is almost no literature con-
cerning this subject. Smyth [8] considered a little bit different problem. He
characterized those relations

aftas? . Lapk =1
which have solutions in (not necessarily different) conjugates aq, ..., a of
an algebraic number «. Relations of length 2 are also discussed in [2].
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2. General case. Let F//Q be a finite normal extension of Q with Galois
group G = {o01,...,0,}. A number v € F* will be called free if

(2) HW(V)C” €Q (ai€Z)

implies a1 = ag = ... = a,.

LEMMA 1. Let v € Op (i.e. it is an algebraic integer) and suppose that
there exists a rational prime p satisfying

(3) p|Nr(y) and pf

where D is the discriminant of F and Nr denotes the norm. Then -y is free.

Nr(v)

D,

Proof. The principal ideal () generated by = can be represented by

(v) = pI,
such that the absolute norms Np, NI of the ideals p, I satisfy Np = p and
(NI,p) = 1. Hence (3) implies e, = f, = 1 and consequently

(p) = [[ os(p);
i=1
where all factors on the right-hand side are distinct. Now, if
[[o:n* €
i=1

then we (locally) get

H oi(p)* = H oi(p)*

for some integer a. Thus a1 =as = ... =a, = a and 7y is free. m

LEMMA 2. Set
A(z) ={y € Op : I < 2},
where [yl = maxi<i<n |0:(7)|, and
B(z) = {v € A(z) : v satisfies (3)}.
Then
_ #B(x)

4 lim =1
@ 2 HAG)

Proof. Let D = p’fl e psd be the prime factorization of the discriminant
D. For any v € A(x) \ B(z) we have a representation of the form

INr(y)| =P ... P,
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where (¢, D) = 1 and all exponents in the prime factorization of ¢ are greater
than 1. Therefore there exist natural numbers y, z such that ¢t = y?23. Since

INF(v)| < 2™ we surely have y < 2/2 and y < 2™/3. Furthermore, for any
j=1,....,d,
l; < i log z.
log p;
Thus

#{Np()| : v € A(x) \ B(z)} = O((log z)"2""/%),
Using a rather rough estimate

#{J < Op : NJ=m} =0(m%) (¢>0)
for e = 1/12 we obtain
#{(7) < Or : v € Az) \ B(x)} = O((log z)'z""/12).

Since v € O we have
n
> logoi(v)| = log |Np(v)| > 0
i=1

and consequently for any v € A(x),
(5) —(n—1)logx <log|o;(y)| < logz.

If v1,72 € A(z) \ B(z) generate the same ideal then there exists a unit
e € Oy with v2 = y1e. By (5) this unit surely satisfies |log|o;(e)|| < nlogx.
Hence by considering the representation of the group of units as a lattice in
the logarithmic space we have

#{e € Op : log|os(e)]| < nloga, 1< i< n} = O((logz)™+71),

where 71 is the number of real embeddings and ry the number of pairs of
conjugate complex embeddings of F'. This finally gives

#(A(z) \ B(z)) = O((log )71 +72 =15 110/12) = o(a™).
This proves (4) since #A(x) ~ cz™ for some constant ¢ > 0. m
As an immediate corollary of Lemmata 1 and 2 we obtain

THEOREM 2. In any finite normal extension F/Q almost all algebraic
integers are free.

3. Abelian case. The following lemma provides a natural generalization
of the well-known computation of the cyclic determinant and was originally
due to Dedekind (see [4]). The computation of the rank is an analogue of a
theorem by A. Schinzel concerning the rank of a cyclic matrix ([3]).
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LEMMA 3. Let G be a finite abelian group and K a field satisfying (|G|,
char(K)) = 1. For any sequence (ay)scc of elements of K we have

(6) det(ao)orea =% [] (3 x(0)as ),

Xeé ceG

where G denotes the dual group of G. Moreover,
(7) rank(Gor)oreq = #{x eG: Z x(0)a, # 0}.
oeG
Proof. Consider the matrix

(bX7T)X€é,T€G = (X(U))Xgé,ggg : (aaT)U,TEG'
Since
bX,T = Z X(G)aUT = X(T_l) Z X(U)aa
ceG oeG

and the matrix (x(o)) & 1s non-singular, (6) and (7) follow directly. m

x€G, o€
LEMMA 4. For any extension M /N of algebraic number fields the group

(8) T ={a € M*: there exists t € N such that o' € N*}/N*
1s finite.

Proof. We can assume that M/N is normal. If o € N* then denoting
(@) =11, p®P) we have a(op) = a(p) for any o € Gal(M/N). Hence we
can write

() =10y - [] p*™
e(p)>1
with a fractional ideal I in N. Let us now fix representatives I1,..., I, of
all ideal classes in N. With an appropriate choice of j we obtain

(@) = (B)Onr - ;O - H p?(P)
e(p)>1

with 8 € N* and hence o« = (7, where v € M™* is an S-unit for S large
enough and chosen independently of a. Therefore the group T is finitely
generated and hence finite. m

The main result of this paper is the following theorem.

THEOREM 3. Let F/Q be a finite abelian extension with Galois group G
and for any subfield E of F' let R(E) denote the group of o € E* satisfying
the multiplicative relation

(9) I] otay =1,
oceqG

where (aq)oec 1S a fized sequence of integers.
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o If det(apr)o,req # 0 then R(F) is a finite group (containing only roots

of unity).
o If det(apr)orec = 0 then R(F) is infinitely generated. More pre-

cisely, set
'H:{XG@: Zx(a)agzo},

H={oceG:x(o)=1 forall x € H}.
Then the factor group R(F™)/R(E) has infinite rank for any proper subfield
E of FH (the fized field of H) whereas R(F)/R(FH) is finite with exponent
dividing w, the number of roots of unity in F'.

Remark 1. The link between multiplicative relations connecting conju-
gate algebraic numbers and group determinants was earlier pointed out in
[8] but, as mentioned above, a little bit different problem was tackled there.

Remark 2. We want to point out that the following proof provides
more than the fact that R(FH)/R(E) has infinite rank. Actually, R(FH)
contains a free subgroup U of infinite rank with 4 N R(E) = {1} for any
proper subfield E of FH.

Remark 3. Theorem 3 suggests introducing the following distinction.
If « € R(F) and if degg ak = degg v for all k& € N then « is called a
strong solution, otherwise a weak solution. Using this terminology the main
assertion of Theorem 3 (combined with Remark 2) is that all strong solutions
are contained in F and that the free subgroup U of R(F*) mentioned in
Remark 2 contains only strong solutions a with degg o = [F H . Q] with the
only exception a = 1.

Proof of Theorem 3. The proof of the first part is essentially con-
tained in [8]; cf. also the end of the proof of Proposition 3 in [3].
In order to prove the second part consider the group ring Z[G] and set

R=Ya,0 € Z[G).
oeG
Furthermore, for any subgroup K of G set

V(K)={L € C[G/K]:R-L =0 (in C[G/K])},

where the group ring C[G/K] is considered as a Z[G]-module via ¢ - TK =
(oT)K. If

then R - L = 0 is equivalent to the linear system

(ZET*l)TEG/K : (af(rlg())'r,geG/K = (O),
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in which a(TIQ{) = ZUET o o By Lemma 3 we obtain

(10) V() =ting{ 3 xS (r)r: x0 e n,
TeG/K

where

HE) = {X(K) € G//\K: Z x B (1)alf) = 0}.
TEG/K

Every character x(5) of G/K can be uniquely lifted to a character y of G
that is trivial on K. It is easy to verify that

S B (Hal = 3 v(o)a
TEG/K ceG

and therefore the lifted character y is in H if Y5 e H). Next we will
prove that

(11) o-L=L foralloce Hand L € V(K).
By (10) this follows from
o Y xXmr=xe) Y xFlener=x(e""L
TeG/K T€G/K

and from the definition of H.
Now fix o € F satisfying (9) and consider the fractional ideal (). We

can write
(a) =[p"™,
p

where in the above finite product different p divide different rational primes
and L(p) € Z|G/K(p)], where K(p) is the decomposition group of p. Since
« satisfies (9) it follows from the unique factorization of fractional ideals
that for any p in the above product,

R-L(p) =0 (in Z[G/K(p)])-
Therefore L(p) € V(K (p)) and by (11),
- L(p) = L(p)
and hence
(12) () =(a) forallo e H,
i.e. o(a) = e a for some €, € OF.. Consequently, we obtain
Oéh = NF/FH(Oé) - &,

where h is the order of H and € € Op. All three numbers in the above
equation are elements of R(F) and Ny, () belongs even to R(FH). Since
the real units multiplied by roots of unity are of index 1 or 2 in the full group
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of units ([6, Ch. 3, Prop. 3.6]) there exists a natural number k& depending
only on F such that e* € OFs

Now choose a unit n € O}, such that Np+ ,g(n) = 1 and 7 generates a
Z[Gal(F*/Q)]-module of finite index m in O} (6, [Ch. 3, Theorem 3.9]).
We identify the group Gal(F*/Q) with G/K where K corresponds to F*
(actually #K < 2). Let us write

km

ghm = pk
with L € Z[G/K]. Since ¢*™ € R(F*) and

H 7(n)’~ =1 iff b, = const
TeEG/K

it follows that R-L = a-Ng, i for some integer a, where Ng, g = ZTGG/K T.
If Y cqto =0then L € V(K), and if ) - a, = A# 0 then

a
A
In both cases we can conclude that (11) is still satisfied. Hence ¥ € O%n
and denoting t = hkm we obtain o' € FH. Since R(F)/R(F¥) can be

embedded in (8) Lemma 4 implies its finiteness. By (12) we obtain, for any
oceH,

oceG

L=—Ng/k+L', whereL €V(K).

ot =co(a) =t al

and hence ¢, is a root of unity. Since ¢ = 1 we already get o(a®) =
o(a)” = av and therefore o € F*. This means that the exponent of
R(F)/R(FH) divides w.

For the rest of the proof we preserve our earlier notation, but specify it

for K = {id} and therefore suppress any indices connected with K. For any
o € G\ H define

Vo={LeV:(1-0)-L=0}

Assume for a moment that there exists o € G\ H satisfying V, = V. By
(10) we would have in particular

Y x(nr =Y x(r)or
T€G T€G

and hence x(o) =1 for any x € H, which contradicts the choice of 0. So we
have proved

dimc V, <dimcV =#H foralloc e G\ H.
But by a standard linear algebra argument and by Lemma 3,

dimz(V N Z[G]) = #H,
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and therefore the set
wnzien\ U %nzic)
c€G\H
contains non-zero elements. Choose one of them and denote it by L. Now
take a free algebraic integer v and define a = a(y) = . Obviously «
satisfies (9) by the definition of V(K) and o € FH by property (11). Fur-
thermore,

(13) (1-0)-L#0 foralloe G\ H
by the choice of L. Since 7 is free and

(1-0)-L#c- Y 7
TeEG
we have o'~ = y(1=9)'L ¢ Q. In particular, o # o for any ¢ € G\ H.
This proves that Q(a) = FH.
In a standard way we construct an infinite sequence v; € Op satisfying
(3) such that their norms are pairwise relatively prime and set o;; = jL Let
E be a proper subfield of F. As in Lemma 1 define (75) = pjl;. Suppose

that []; afj € E with some k; # 0. Then there exists ¢ € G\ H such that

pfjaL = pij and hence (1 — o) - L = 0, contrary to (13). This finishes the

proof of Theorem 3. m

4. Applications. The aim of this section is to provide a complete de-
scription of relations of length 3,

(14) zi2525 =1 (a,b,c € Z\ {0}),
between distinct roots of irreducible polynomials with abelian splitting field.

Essentially we prove that (under the assumption |a| < |b| < |¢|) (14) has a
solution if and only if

lal = [o] =[] or a4 [b] = |¢].

The statement of Theorem 4, which contains Theorem 1 as a special case, is
much more precise and takes into account the degree of the solutions. Case 2
of Theorem 4 seems not to be as satisfactory as Case 1. But the example
given in Remark 4 indicates that we cannot expect much more in general.
Furthermore, this example provides solutions in the case |a| + |b| = |¢|.

THEOREM 4. Let f(z) € Q[z] be an irreducible polynomial of degree n
with abelian Galois group G.

Case l: at+ b+ c#0 for any choice of signs.

ea=>b=—c: If61n and if f(x) is non-cyclotomic then no three distinct
roots x1, T2, x3 of f(x) satisfy (14).
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If 6 |n then using a proper Tschirnhausen transformation one can ob-
tain from f(x) an irreducible non-cyclotomic polynomial f*(x) having three
distinct roots x7, x5, % satisfying (14). Moreover,

degg () =n  for any k € N.

e o = b= c: The same assertion as in the case a = b = —c holds but 6
must be replaced by 3.

o |a| # |b] or |a| # |c| or |b] # |c|: If f(x) is non-cyclotomic then no
three distinct roots x1,x2,x3 of f(x) satisfy (14).

Case 2:atb+c=0 for a certain choice of signs.

ea+b+c#0 and2¢n: If f(x) is non-cyclotomic then no three distinct
roots x1, T2, x3 of f(x) satisfy (14).

ea+b+c=0 and w < h, where
(15) h U#Tlélé}{{id} #<07 T>
and w is the number of roots of unity contained in the splitting field of f(x).
Then no three distinct roots of f(x) satisfy (14).

e Remaining cases: If three distinct roots x1,x2,x3 of f(x) satisfy (14),
then the numbers xl,xécl,xgtl differ multiplicatively by roots of unity and
the signs at the exponents of xo,x3 are identical with the signs in front of
b, c in the vanishing sum a + b+ c = 0. In particular,

degg 7y’ < n.

Remark 4. It should be mentioned that our approach is solely based on
algebraic considerations. However, the last assertion of Theorem 4 does not
hold only in the case of abelian splitting fields. It can be generally proved
by a slight modification of the geometric argument of [9, Lemma 1]. The
following example will show that it cannot be improved, even in the abelian
case. (We will consider the case a+b+c = 0. The other cases can be treated
similarly.)

Let F' = Q(ep), where ¢, is primitive pth root of unity and p a prime
sufficiently large. Now choose k,l with p{kl(k — 1) and

pla+kb+le.

Then ¢, satisfies (17) where o, 7 are defined by o(e,) = ) and 7(c,) = €b.
Now take any 3 € R(F*) (where H = (0, 7)) satisfying

FH =Q(p*) forany ke N

and set

fx) =[] (@~ o(Bey))-

0€G
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From % € Q(fBep) and Q(5™) = Q() it follows that 5 € Q(fe,) and finally
ep € Q(fep). Hence f(z) is irreducible and obviously e, € R(F). m

Proof of Theorem4. Case 1. First we consider the case a = b = —c.
If (14) holds and if f(z) is non-cyclotomic then by Theorem 3 and Lemma 3
there exist x € G and o1, 09, 03 € G such that
x(01) + x(02) = x(03).

One of the numbers y(o207 '), x(0307 ") must be a 6-th primitive root of
unity, whence 6 |n = |G|.
Let

T
G=][m
j=1
be the second decomposition of G, i.e. the above product is direct and
ord7j|ordrjyq forj=1,...,r—1.

Since 6 | ord 7, we can define

1 1
. s ord T, =ord T
o1=id, o9=77 ", o3=15 "

and the remaining elements of G can be ordered arbitrarily.
We apply Theorem 3 to the relation

(16) Jl(a)“ . UQ(Oé)a . Ug(a)ia =1.

All characters y € G satisfying

x() :exp( 2mi )

ord 7,

are contained in H and therefore H = {id}. Hence we can choose a €
F satisfying (16) and Q(a) = Q(a*) = F for any k € N. Therefore the
irreducible polynomial

=
O
!
—

(z —oi(a))

has three distinct roots x7, x5, 3 satisfying (14).
The proof in the case a = b = ¢ is essentially the same.
In the remaining cases it follows from [5] (see also [7, Theorem 4]) that

ax(o1) + bx(o2) + ex(o3) # 0.
Hence the first part of Theorem 3 applies.

Case 2. Assume that there exist non-trivial distinct 0,7 € G and o € I
such that F' = Q(«) and

(17) awid +bo+ct —1.
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If x € H then x(o0), x(7) € {—1,1}. Furthermore, since a £ b + ¢ = 0 holds
for a unique choice of signs we see that both x(o) and x(7) are independent
of xy € H.

If a4+ b+ c# 0 then x(0) = —1 or x(7) = —1 and hence 2 | n. Therefore
there are no relations for odd n.

Next observe that in the case a + b+ ¢ = 0 we have 0,7 € H and
therefore [F : F] = #H > h. If a € R(F) then a¥ € F* and hence
[F: F1] = [FH(a): FH] < w, which contradicts the assumption w < h.

In order to prove the last part note that always

{id,o, 7,07, 073} N H # {id}.
Thus H # {id} and it follows from Theorem 3 that
av,a’v,a™ e FH c F

and FH £ F.If o%,a",a™ are pairwise distinct we can repeat the same
reasoning and obtain

awwl’aoww17a7ww1 6 _EV7

where w; is the number of roots of unity in an appropriate field E which
is strictly contained in F¥. Consequently, there exists a natural number W
such that a®" = o’V with g,v € {id, o, 7}. Since the ratio a?/a" is a root
of unity we already get a2 = o¥".

Now suppose that a + b+ ¢ = 0. Then it follows from (17) that the
third conjugate differs from the first two by a root of unity. Next, consider
the case a + b — ¢ = 0. Then {p,v} = {id,o}. Otherwise f(z) would be a
cyclotomic polynomial since there are no non-trivial relations of length 2
(see [2]). Hence o~ 7 differs from « by a root of unity. The other cases can
be treated similarly. This proves the last assertion of Theorem 4. m

Remark 5. Basically it is possible to extend the preceding classification
to describe all relations up to length 9 using the results of [1]. m
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