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1. Introduction. In [Dav] H. Davenport, solving in the affirmative part
of a conjecture stated in [BCHS], proved the following theorem about the
distance between squares and cubes of polynomials with complex coeffi-
cients:

Let f, g be polynomials with complex coefficients. Then either f3 = g2,
or deg(f3 − g2) ≥ 1

2 deg f + 1.

(Actually Davenport remarked that the method would yield a more gen-
eral result, which he stated explicitly.) The remaining half of the conjecture,
namely the existence of pairs of distinct polynomials f3, g2 with arbitrar-
ily large degrees, and satisfying the bound with equality, remained open.
(In [BCHS] examples appear with deg f = 6, 10, and Davenport gave an
example with deg f = 16.)

The result partly motivated M. Hall’s conjectural formulation of an anal-
ogous statement concerning rational integers instead of polynomials. In his
paper [Ha], Hall also wrote down examples, of small degrees, when the above
theorem holds with equality (see p. 185), and a characterization for them,
in terms of the roots of f and g is a particular case of a criterion due to
M. Langevin (see [La], Thm. 1 and the examples at p. 3). Other examples of
attainment of Davenport’s bound were found by S. Uchiyama and M. Yori-
naga in [U-Y]; in that paper the authors also sketch some computational
shortcuts useful to find such cases of equality. They do not, however, prove
the full original conjecture that equality occurs for infinitely many values of
the degrees.

Davenport’s theorem, as remarked for instance in [Lang, p. 48], follows
at once from the so called abc theorem for function fields of R. C. Mason
[Ma], applied in the genus zero case, and the cases of equality become “ex-
tremal examples” for Mason’s inequality. In [Za] such examples were shown
to correspond to coverings of the Riemann sphere, unramified except above
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0, 1,∞ (1). (Such coverings are quite remarkable, especially after Belyi’s
Theorem; see [Gr] or [S-V].) Accordingly, a combinatorial criterion was given
for the existence of examples with prescribed degree and monodromy: this
is Riemann’s Existence Theorem (see Section 2 below). As a consequence,
for given degree, the number of “essentially distinct” extremal examples was
shown to be finite. Also, this approach allowed us to prove the existence (in
zero characteristic) of extremal examples of arbitrary genus g and degree
n ≥ 2g− 2, a question left partially unanswered by Brownawell and Masser
in [B-M].

The purpose of this paper is to exploit the criterion of [Za] to com-
plete the proof of the [BCHS] conjecture, showing the existence of equal-
ity cases for Davenport’s Theorem for any positive integer n, and f, g of
degrees 2n, 3n resp. We shall show in Section 5 that the solutions fall
into finitely many families which correspond to trees on 2n points, with
each degree equal to either 1 or 3 (their number will be estimated in an
appendix), each tree being assigned certain orientations around each ver-
tex. We shall in fact first carry out in Section 4 a similar investigation
on more general extremal cases of the abc theorem, producing an exis-
tence result (Theorem 1) for distinct polynomials F,G with roots of pre-
scribed multiplicities and deg(F − G) as small as possible (as in (6) of
Section 4).

An interesting question in this context is whether these constructions
may be realized over the rationals, say. (This fits into the theory of the
field of definition of what Grothendieck called dessins d’enfant—see [Gr] or
[S-V]). When this is the case one may obtain numerical inequalities close
to the conjecturally optimal ones, just by specializing the variable to posi-
tive integers. Corresponding for instance to Davenport’s Theorem, there is
Hall’s conjecture ([Ha], p. 175) stating that |x3 − y2| > C|x|1/2, C being
some positive absolute constant. Suppose now to have polynomials f, g with
integral coefficients and degrees 3n, 2n resp., such that deg(f3−g2) = n+1.
Then, as Hall himself remarks, setting x = f(t), y = g(t), we would get, for
large integers t, the existence of integers x, y with

0 < |x3 − y2| � |x|1/2+1/(2n).

In this case anyway, no matter how large n may be, this statement is
superseded by Danilov’s result [Dan] (a part of Hall’s conjecture) that
|x3 − y2| ≤ 0.97|x|1/2 for infinitely many integers x (in fact Schinzel has
shown that one may take 54/(25

√
5) in place of 0.97; see [Sie], p. 105). Still,

Danilov’s identity, based on solutions of a Pell equation, produces exponen-

(1) In fact Vojta [Vo] had previously noticed a connection between the abc and ram-
ification above 0, 1,∞. This was used by Elkies (Duke Math. J. Internat. Res. Notes 7
(1991), 95–109) to deduce an effective Falting’s Theorem from the numerical abc.
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tially growing sequences of such x’s, while the above identity gives, when it
exists, polynomial behaviour.

We cannot, however, prove that such identities may be realized over the
rationals for infinitely many n (and in fact some of the considerations of
Section 6 and Section 7—as well as the computations carried out in [U-
Y]—somewhat suggest this might well be false). We only give a criterion,
valid also for analogues of Davenport’s result, which establishes the real-
izability over the rationals of extremal examples provided the underlying
combinatorial structure is essentially unique. The method of proof is a very
simple instance of descent, and provides in any case a bound on the degree
of a number field where the construction can be realized. Analogues of it
have being used to realize over Q(T ) certain Galois groups, provided the
so-called rigidity condition (in some respects analogous to what we require)
is satisfied (see [Se1], Ch. 8, and the related references).

To my knowledge no analogue of Riemann’s Theorem is known in positive
characteristic, so we cannot apply our methods in that case. However, in
Section 7 we shall prove the possibility of lifting coverings considered in
Section 4, unramified outside 0, 1,∞, from an algebraic closure Fp of Fp to
the maximal unramified extension of Qp. Also, the isomorphism class of the
lifting depends only on the class of the reduction. A consequence is that the
number of isomorphism classes mod p cannot be greater than over C. (Our
proofs will be simple and direct.) When good reduction is possible in the
same class of a covering defined over a number field L, for various prime
numbers, we shall show that it is possible to find a covering in the same
class, with good reduction simultaneously at all such primes, and defined
over the Hilbert class field of L. We shall also show how the existence of
examples mod p bounds the ramification in the field generated by zeros and
poles of the cover, over L.

In the course of this investigation we came across the observation that
Riemann Existence Theorem combined with the Riemann–Hurwitz formula
immediately implies an inequality for the total number of disjoint cycles in
the canonical decomposition of certain permutations (see (2) of Section 3).
When only three permutations appear, the equality cases may be thought
of as a combinatorial counterpart of extremal examples of the abc theorem.
P. M. Neumann kindly informed us that such inequality had in fact been
noticed by several authors. Topological proofs were given by D. Singerman
[Sin], for the case r = 3, and by R. Ree ([Ree]) generally. More direct proofs
were given later by W. Feit, R. Lyndon and L. L. Scott [FLS] and by M. Con-
der and J. McKay [CMK]. Since this inequality naturally appears in the con-
text of the present paper, we have thought to be not out of place to present
here a proof of it, which to our knowledge is new, and is completely direct
and elementary, involving no considerations of topology or graph theory.



110 U. Zannier

2. Riemann’s Existence Theorem. Before giving precise statements
and proofs we briefly recall, for the sake of completeness, some classical facts
about Riemann’s Existence Theorem, and their relation to extremal cases
of abc.

Let X be a compact Riemann surface of genus g, and let φ : X →
P1 be an n-sheeted covering, ramified (possibly) only above some of the
(distinct) points p1, . . . , pr. Let z ∈ P1−{p1, . . . , pr} and let {ζ1, . . . , ζn} be
the fiber above z. We then have a transitive representation (the monodromy
representation)

(1) σ : π1(P1 − {p1, . . . , pr})→ Sn (= {permutations on ζ1, . . . , ζn})
constructed as follows: given a closed path P through z in P1−{p1, . . . , pr},
the permutation σ(P) sends ζi to the end point of a lifting of P starting at
ζi (this of course depends only on the homotopy class of P).

Two such representations σ, σ∗ are considered equivalent if σ∗(P) =
τσ(P)τ−1 for some τ ∈ Sn and all paths P as above. A basic fact is that
two coverings φ, φ∗ as above are isomorphic (namely φ∗ = φ ◦ ψ for some
automorphism ψ of X) if and only if the associated representations are equiv-
alent . This assertion is part of Riemann’s theorem; a proof of a particular
case (which extends at once) appears as Lemma 6, p. 44 of [Fr1]; see also
[Fr2], p. 25 or [Za], p. 95.

Choose now, once and for all, loops P1, . . . ,Pr in P1 − {p1, . . . , pr}, all
through z, any two of which intersect precisely in z, such that their homo-
topy classes (denoted with the same letters) generate π1(P1 − {p1, . . . , pr})
and satisfy P1 . . .Pr = id. There are of course many such choices, but we
normalize them similarly to [Fr2], p. 25, namely by requiring that Pi con-
sists of three parts: a path from z to some point p′i “very near” to pi, then a
small (i.e. containing only pi as a ramification point) oriented circle around
pi back to p′i, then back to z along the same path as before (of course we must
never go through any ramification point). Given a covering φ : X → P1 as
above we thus get permutations σi := σ(Pi), i = 1, . . . , r, with the following
properties:

(i) σ1 . . . σr = 1,
(ii) the subgroup Γ of Sn generated by σ1, . . . , σr (the monodromy

group) is transitive,
(iii) if σ∗1 , . . . , σ

∗
r are the analogous permutations associated with another

covering φ∗ : X → P1, then the coverings are isomorphic if and only if
σ∗i = τσiτ

−1 for some τ ∈ Sn and i = 1, . . . , r.

Such permutations σ1, . . . , σr are called a description of the branch cycles
of the covering. They depend, apart from the covering itself, on the choice
of the base point z, on the choice of loops Pi as above, and on the naming
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of the fiber above z. In [Fr2], it is shown (see Lemma 1.1, p. 28) that, if τi
is another description of the branch cycles corresponding to the same cover,
then the conjugacy class of σi in G is the same as the one of γτiγ−1, for
some γ ∈ Sn. In particular, σi has the same cycle decomposition type as τi.
One finds that

(iv) the cycle lengths in the canonical decomposition of σi correspond to
the ramification indices above pi.

In fact, near a ramified point p̃i above pi, local coordinates may be
chosen to make the covering map equivalent to x → xe near 0, where e is
the ramification index. Then the action of lifting a sufficiently small circle
near p̃i is that of an e-cycle (see also [Za], p. 96); since σi is conjugate to
such a permutation, the assertion follows.

A fundamental fact is that, given the above structure on P1 (namely the
point z, the pi’s and the associated loops), and given permutations σ1, . . . , σr
satisfying (i) and (ii),

(v) there exist a compact Riemann surface X and a covering φ : X → P1

unramified except possibly above some pi, of degree n, such that σi is its
description of the branch cycles corresponding to the given loops Pi.

This is the remaining part of Riemann’s Existence Theorem for covers of
P1, a particular case of the statement in [Fr2], p. 25. See also [Ch], Remark
2 in [Za], or [Tr]. For a somewhat different approach see [Se1], Thms. 7.5,
7.6.

For later reference we recall a particular case of Lemma 2.2, p. 32 of
[Fr2], stating that

(vi) the subgroup C = {τ ∈ Sn : τσiτ−1 = σi ∀i} is isomorphic to the
automorphism group of the covering.

3. The Ree–Singerman inequality. For a permutation σ ∈ Sn, prod-
uct of disjoint cycles λ1, . . . , λh (2) of lengths l1, . . . , lh resp., we set ind(σ)
:=
∑

(li − 1) = n− h.
Let φ, X be as above and let σ1, . . . , σr be a description of the branch

cycles. Fact (iv) above combined with the Riemann–Hurwitz formula gives,
for the genus g of X, the equality

2g − 2 = −2n+
∑

ind(σi) = −2n+
∑

(n− hi),
where hi is the number of disjoint cycles in the canonical decomposition of
σi. Since g ≥ 0 we get

(2)
∑

hi ≤ (r − 2)n+ 2.

(2) We also count cycles of length 1.
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By (v) the permutations σi are subject only to (i) and (ii) and otherwise
arbitrary. (2) becomes thus a purely combinatorial statement, the inequal-
ity referred to in the introduction. As announced, we now present a new,
completely direct proof of it.

From now on we agree that permutations act on the right of integers.
We prove the following (equivalent) statement about transpositions.

Proposition 1. Let t1, . . . , tm be transpositions in Sn such that :

(i) t1t2 . . . tm = 1,
(ii) for each nonempty proper subset A of {1, . . . , n} there exists j such

that tj moves both A and its complement in {1, . . . , n}.
Then m ≥ 2(n− 1).

P r o o f. We argue by induction on n, the case n = 2 being trivial. If
t = (n, µ) is some tj moving n, we change (possibly) the situation according
to the following rules:

(R1) If either j = 1 or if tj−1 moves n, then we leave everything for the
moment unchanged.

(R2) If tj−1 = (a, b) with {a, b} ∩ {n, µ} = ∅ we move tj and tj−1 using
tj−1tj = tjtj−1.

(R3) If tj−1 = (a, µ) where a 6= n we use the identity (a, µ)(n, µ) =
(n, a)(a, µ) to replace tj−1, tj resp. with (n, a), (a, µ).

It is verified at once that application of each rule leaves (i) and (ii)
unchanged. Even m remains unaltered, and the same holds for the number k
of transpositions moving n (by (ii), k ≥ 1). Plainly, with a suitable iteration
of this procedure, we shall be able to “move” on the left all the transpositions
moving n, and to assume without loss of generality that t1, . . . , tk move n,
while none of tk+1, . . . , tm does.

Now, if two consecutive ones of t1, . . . , tk are of type (n, a), (n, b) with
a 6= b, we replace them resp. with (n, b), (a, b), which is possible in view of
the identity (n, a)(n, b) = (n, b)(a, b). Such a substitution replaces k with
k − 1 and leaves m, (i) and (ii) unchanged. Iteration of such procedures
leaves us with a situation where t1 = . . . = th = (n, a), while th+1, . . . , tm
do not move n (since (ii) is still valid, we have h > 0). If h > 2, we simply
omit t1 and t2. This makes both h and m smaller, but leaves (i) and (ii)
unchanged. So, since we are proving a lower bound for m, we may assume
that h = 1 or 2. However, h = 1 is impossible in view of t1 . . . tm = 1.
Assume then h = 2. Plainly t3 . . . tm = 1, while t3, . . . , tm ∈ Sn−1.

We show that t3, . . . , tm satisfy (i) and (ii), but with n − 1 in place of
n. (i) has just being shown. To prove (ii) let A∗ be a proper nonempty
subset of {1, . . . , n − 1} and let B denote its complement with respect to
{1, . . . , n−1}. By symmetry we may assume that a ∈ A∗. Assume that none
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of tj , 3 ≤ j ≤ m, moves both A∗ and B. In this case none of the tj , 1 ≤ j ≤ n,
moves both A := A∗ ∪ {n} and B, contrary to the assumption (ii) for the
original transpositions. The inductive assumption applied to t3, . . . , tm gives
m− 2 ≥ 2(n− 2), i.e. m ≥ 2(n− 1), as required.

Also, from Proposition 1(i) it follows immediately that m is even.
Now let σ1, . . . , σr ∈ Sn be permutations generating a transitive sub-

group and such that σ1 . . . σr = 1, and let hi denote, as above, the number
of disjoint cycles of σi. Since a cycle of length l may be written as the product
of l− 1 transpositions, σi may be written as the product of ind(σi) = n−hi
transpositions. To the total set of such transpositions, ordered in an obvi-
ous manner, we may apply the above proposition, assumption (ii) being a
consequence of transitivity. So

∑
(n−hi) ≥ 2n− 2, which gives (2) (in fact,

(2) applied to the transpositions ti implies Proposition 1).

4. Attained lower bounds for deg(F−G). Recall Mason’s abc theorem
for polynomials (we assume throughout that only complex coefficients are
involved):

If a, b, c are coprime polynomials such that a − b = c, and n > 0 is the
maximum of their degrees, then n+1 does not exceed the number of distinct
roots of abc.

Let now F,G be distinct polynomials of exact degree n and assume that
F has precisely h distinct roots of prescribed multiplicities µ1, . . . , µh, while
G has exactly k roots with multiplicities ν1, . . . , νk. Here µi, νj are prescribed
sequences of positive integers with

(3) n =
h∑

i=1

µi =
k∑

j=1

νj .

We seek a lower bound for deg(F − G). Let D = (F,G), and let l be
the number of distinct roots of D. Apply Mason’s inequality to a = F/D,
b = G/D, c = a − b, the assumptions being clearly fulfilled. The product
abc has at most h+ k − l+ deg c distinct roots, while both a, b have degree
n− degD, so

(4) deg(F −G) = deg c+ degD ≥ n− h− k + l + 1 ≥ n− h− k + 1

and equality may occur only if F,G are coprime, i.e. l = 0, if F − G has
distinct roots, and if

(5) n+ 1 ≥ h+ k.

Assume now that all the multiplicities µi, νj are divisible by a positive
integer δ. Then F = fδ, G = gδ, where f, g satisfy the same assumptions of
F,G above, but with n/δ in place of n, and with µi/δ (resp. νj/δ) in place of
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µi (resp. νj). Now F −G =
∏
ζδ=1(f − ζg). All factors but one have degree

n/δ, while the degree of the remaining factor may be estimated by (4) as
being at least max{0, n/δ − h− k + 1}. In conclusion,

(6) deg(F −G) ≥ max
(
n
δ − 1
δ

, n− h− k + 1
)
.

(This covers also Davenport’s generalization, given as (4) in [Dav].) The
argument shows also that the bound may be attained if and only if the
corresponding bound may be attained with f, g in place of F,G and µi/δ,
νj/δ in place of µi, νj . We shall show that this will always be the case.

Theorem 1. Let positive integers µi, νj satisfying (3) be given. Then
there exist polynomials F,G having µi, resp. νj as the sequences of multi-
plicities of their roots, satisfying (6) with equality.

P r o o f. We proceed by induction on n, the case n = 1 being trivial.
Assume first that

(7) n/δ − h− k + 1 ≥ 0,

and that there is equality in (6), so we have an extremal example of Mason’s
inequality, and consider the covering

φ : P1 → P1

where φ = F/G has degree n, since (F,G) = 1. By Theorem 3 of [Za] (or
even by a calculation using the Riemann–Hurwitz formula), the covering is
ramified possibly only above 0, 1,∞. The ramification indices over 0 are the
µi, over ∞ they are the νj , and over 1 they are a sequence of (n − h −
k + 1) 1’s (corresponding to the distinct roots of F − G), plus one index
equal to h+ k − 1 (which corresponds to the root t =∞ of F (t)/G(t)− 1,
counted with multiplicity h+ k − 1). By the same Theorem 3 of [Za], if the
covering (4) is unramified except (possibly) above 0, 1,∞, then we have an
extremal example, the multiplicities of the roots of F,G corresponding to
the ramification indices above 0,∞ resp., and the multiplicities of the roots
(in P1) of F (t)/G(t)− 1 corresponding to the ramification indices above 1:
observe that any root t = β of F (t)/G(t) − 1 may be sent to t = ∞ by
means of a linear fractional transformation (i.e. an automorphism of P1),
which leaves the other properties unchanged. To realize our construction it
will suffice, in view of (iv) and (v) of Section 2 (applied with r = 3 and
p1, p2, p3 equal to 0,∞, 1 resp.), to find permutations σ1, σ2, σ3 ∈ Sn such
that

(A) σ1σ2σ3 = 1, the identity permutation,
(B) the subgroup of Sn generated by σi, i = 1, 2, is transitive,
(C) σ1 is a product of disjoint cycles of lengths µ1, . . . , µh,
(D) σ2 is a product of disjoint cycles of lengths ν1, . . . , νk,
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(E) σ3 (or, equivalently, the product σ1σ2) is a product of a cycle of
length h+ k − 1 with n− h− k + 1 trivial cycles of length 1.

Observe that when (A)–(E) are satisfied, we have a case of equality in
the Ree–Singerman inequality ((2) of Section 3). Observe also that, by this
same inequality, (E) may be replaced by the apparently weaker

(E′) σ1σ2 has at least n− h− k + 1 fixed points.

In fact, if the σi satisfy (A)–(D), (E′), then σ3 has at least n− h− k+ 1
trivial cycles, so, by the Ree–Singerman inequality, only one more cycle may
appear in its canonical decomposition, whence (E) is also satisfied.

We now proceed to show that the construction may be realized under the
additional assumption δ = 1. If this is not the case, the inductive assumption
applies immediately (by the remark following (6)).

Consider the smallest multiplicity, say, µ = µ1. We may assume that
νr > µ for some r. If not, then we choose ν1 in place of µ1. Now, if µi = ν1

for all i, we have (since δ = 1) µi = 1 = νj for all i, j, whence n = 1, a
trivial case. Otherwise µi > ν1 for some i, so our assumption would hold by
reversing the role of µi, νj .

We show first that, for some r such that νr > µ, the construction may
be realized, but with n− µ = n′, say, in place of n, with µ2, . . . , µh in place
of µ1, . . . , µh, and with the multiplicities νj unchanged, except that νr is
replaced by νr−µ (so h is replaced by h−1 while k remains unchanged). For
νr > µ let δr be the g.c.d. of the new sequence of multiplicities just defined.
To prove our assertion it suffices, in view of the inductive hypothesis, to
show that, for some r as above,

(8) n′/δr + 1 ≥ (h− 1) + k.

Assume δr = 1 for some r. If µ = 1, inequality (8) follows then from (7).
If µ > 1, observe that h, k ≤ n/µ, whence (8) is implied by (n−µ)(µ−2) ≥ 0,
which holds.

If some νs = µ then certainly δr = 1, for in this case δr divides δ = 1.
So we may assume that νr > µ and that δr > 1 for all r = 1, . . . , k. It is

immediately verified that the g.d.c. of any two δr’s is a divisor of δ = 1, so
the δr’s are pairwise coprime, whence their product divides µi for all i ≥ 2.
In particular,

(9) h− 1 ≤ n′

δ1 . . . δk
.

If k = 1, (8) follows. Otherwise, observe that δ1δ2 divides νj for j > 2, while
δ1 ≤ ν1 − µ, δ1 ≤ ν2. Hence n′ ≥ (k − 2)δ1δ2 + 2δ1, or

k − 1 ≤ n′

δ1δ2
+ 1− 2

δ2
.
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Combining this inequality with (9) we get

h+ k − 2 ≤ 2
n′

δ1δ2
+ 1− 2

δ2
≤ n′

δ1
,

proving (8) with r = 1.
By induction we may thus assume to have permutations σ∗i ∈ Sn′ , i =

1, 2, such that

(B∗) they generate a transitive subgroup of Sn′ ,
(C∗) σ∗1 is a product of disjoint cycles of lengths µ2, . . . , µh,
(D∗) σ∗2 is a product of disjoint cycles of lengths ν1 − µ, ν2, . . . , νk,
(E′∗) σ∗1σ

∗
2 has at least (hence exactly) n′ − h− k + 2 fixed points.

We define σi ∈ Sn, i = 1, 2, as follows: σ1 is defined just as the prod-
uct of σ∗1 by the cycle (n′ + 1, . . . , n), of length µ. To define σ2 consider
a cycle α of σ∗2 of length ν1 − µ. We may write, without loss of gen-
erality, α = (1, 2, . . . , ν1 − µ), where 1 is not a fixed point of σ∗1σ

∗
2 . In

fact, not every element moved by α may be left fixed by σ∗1σ
∗
2 , for other-

wise α would be a disjoint cycle of σ∗1 , contradicting condition (B∗). De-
fine then σ2 as the product of the same disjoint cycles as σ∗2 , but with α
replaced by β = (n, n − 1, . . . , n′ + 1, 1, 2, . . . , ν1 − µ), a cycle of length
ν1.

The cycle β allows the sets {1, . . . , n′} and {n′+ 1, . . . , n} to “communi-
cate”, so condition (B) above is satisfied by σ1, σ2. Also, conditions (C) and
(D) hold by construction. Finally, let us count the number of fixed points of
σ1σ2. Since 1 is not fixed by σ∗1σ

∗
2 , every fixed point of σ∗1σ

∗
2 is fixed also by

σ1σ2. Moreover, the points n′ + 1, . . . , n− 1 are also fixed by σ1σ2, giving a
total of (n− µ)− (h− 1)− k + 1 + (µ− 1) = n− h− k + 1 fixed points (at
least). So (E′) is satisfied.

We shall now deal with the remaining case n/δ + 1 < h + k. We have
seen that δ may be assumed to be 1, so suppose

(10) % := h+ k − n− 1 > 0.

We must prove the existence of polynomials F , G as above, such that F −G
is a nonzero constant.

We shall use again Riemann’s Existence Theorem, but with four ramified
points. We start from a combinatorial construction, simpler to obtain than
the previous one. We now seek permutations σ1, σ2, σ3 ∈ Sn such that

(I) the cycle decomposition of σ1 is of type µ1, . . . , µh,
(II) the cycle decomposition of σ2 is of type ν1, . . . , νk,

(III) the cycle decomposition of σ3 consists of precisely 2n + 1 − h − k
cycles,

(IV) the σi generate a transitive subgroup of Sn.
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We first establish the following easy

Lemma 1. If (10) is true, there exist permutations σ1, σ2 satisfying (I),
(II) and generating a subgroup of Sn with at most h+ k − n orbits.

P r o o f. We argue by induction on n, the statement being true (in fact
empty) if n = 1. If either σ1 or σ2 is the identity the lemma is clear. So
assume that both h, k are less than n and that the lemma has been proved
up to n− 1. Since % > 0 either some µi or some νj equals 1. Suppose µ1 = 1
and ν1 > 1. By induction there exist σ′1, σ

′
2 satisfying (I) and (II), but with

µ1 omitted and ν1 replaced by ν1 − 1, and generating a subgroup of Sn−1

with at most (h − 1) + k − (n − 1) = h + k − n orbits. Define σ1 just by
adding the trivial cycle (n) to the cycle decomposition of σ′1, and σ2 by
inserting n anywhere in a cycle of σ′2 of length ν1−1, and taking unchanged
the remaining cycles of σ′2. It is immediately verified that such permutations
work.

Coming back to the requirements (I), (II), (III), (IV), take first σ1, σ2 as
in the lemma. Let a be the number of orbits of the subgroup they generate,
and pick integers x1, . . . , xa, one from each orbit. Since a ≤ h+ k−n, there
exist positive integers l1, . . . , l2n−h−k such that

∑
li = n − a. Define σ3 as

the product of the cycle (x1, . . . , xa) with other 2n− h− k arbitrary cycles
of lengths l1, . . . , l2n−h−k. Plainly also (III) and (IV) are satisfied.

Put now σ4 := (σ1σ2σ3)−1, and apply the Ree–Singerman inequality to
such four permutations, the assumptions being satisfied, in view of (IV).
The total number of cycles is h + k + (2n − h − k + 1) + x = 2n + 1 + x,
where x is the number of cycles of σ4. Since that quantity cannot exceed
2n+ 2 we have x = 1, so σ4 is an n-cycle.

By Riemann’s Existence Theorem there exists a compact Riemann sur-
face X and a covering φ : X → P1 of degree n, unramified except above
0, 1,∞, α (here α is any complex number different from 0, 1,∞) such that
the ramification indices above 0,∞, α, 1 correspond respectively to the cycle
lengths of σ1, σ2, σ3, σ4. A calculation with the Riemann–Hurwitz formula
(or the fact that the Ree–Singerman inequality is in fact an equality) shows
that the covering is of genus zero. So φ is a rational function of a variable
t, of the form φ = F/G, where F,G are polynomials in t with maximum
degree equal to n. The ramification indices over 0 are the multiplicities of F
and, by the above, the cycle lengths of σ1, namely the µi. So, this condition
is satisfied, and the same holds for the multiplicities of the roots of G. Also,
the roots (in P1) of φ − 1 correspond to the cycle lengths of σ4, namely
there is only one such root, which (as before) may be assumed to be t =∞
(i.e. by means of a linear fractional transformation, which leaves the sets of
multiplicities unchanged): this means that t =∞ is a root of multiplicity n
of (F −G)/G, namely F −G is a (nonzero) constant (the proof shows that
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we may also require a root of any given multiplicity ≤ h + k − n for the
polynomial F − αG). This proves Theorem 1 completely.

To a certain extent we may find all polynomials in question, in some
cases (see also [Za], Thm. 3). Assume for instance that δ = 1, and that
h+ k ≤ n+ 1. Then, as we have seen, if F,G satisfy (6) with equality, then
the covering of P1 by itself given by F/G is ramified possibly only above
0, 1,∞. By (iii) of Section 2 two such coverings are isomorphic if and only if
they have conjugate descriptions of the branch cycles. Such descriptions are
clearly finite in number, whence there exist finitely many couples (Fi, Gi),
i = 1, . . . , r, of polynomials as above, such that, if also F,G are as above,
then

(11)
F (t)
G(t)

=
Fi(γ(t))
Gi(γ(t))

for some i and some transformation γ(t) = (at+ b)/(ct+ d). The fact that
∞ is the only multiple root of both F/G−1, Fi/Gi−1, implies that γ must
fix ∞, namely we may assume γ(t) = at + b. In particular, the solutions
form a two-parameter family.

The situation is somewhat different when h + k > n + 1: now we have
also α at our disposal. In fact, the condition that the covering must have
genus zero amounts to h + k = n + 1 +

∑s
i=1(n − ci), the sum running

over all ramification points, different from 0, 1,∞, of the covering given by
F/G, the ci being the number of points in the corresponding fibers. So, if
h+k−n is large, we shall have many choices both for the number s and for
the ramification points themselves. In our construction we have made the
simple choice s = 1.

It may also be of some interest (also in connection with the next two
sections) to discover when nontrivial automorphisms of the covering exist,
and to describe them. Assume again δ = 1 and n+1 ≥ h+k. Any automor-
phism is represented by a linear fractional transformation, which must fix∞
(which is the only ramified point above 1), and so is of the form γ(t) = at+b.
The group of automorphisms is thus cyclic (γ → a is an isomorphism). Af-
ter a translation we may assume that it is generated by γ(t) = at. We must
have equations

F (at) = λF (t), F (at)−G(at) = λ(F (t)−G(t))

for some λ. Comparing highest coefficients we get an = λ = ah+k−1. More-
over, the order q of a must divide the degree n. So λ = 1.

Not both F,G can have the root 0. Assume F (0) 6= 0, the other case
being symmetrical. The map ξ → aξ stabilizes the set of roots of F , pre-
serving also the corresponding multiplicities. Since 0 is not a root, each orbit
has order q. In particular q |h. Also, the sequence of multiplicities may be
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partitioned into h/q subsequences, each made of q equal elements. Let µ∗i ,
1 ≤ i ≤ h/q, be the new sequence, so the µi are the µ∗i , each counted q times.
If also G(0) 6= 0, then q | k, which is impossible, in view of q |h + k − 1. So
G(0) = 0.

The above argument may now be repeated on the roots different from 0.
The sum of the respective multiplicities must be divisible by q, so since this
holds also for the total sum n, the multiplicity of 0, say νk, is a multiple
qν∗ of q. The remaining multiplicities νj , 1 ≤ j ≤ k− 1, may be partitioned
as above into (k − 1)/q blocks of q elements, each element equal to ν∗j , say,
1 ≤ j ≤ (k − 1)/q. Both F and G are polynomials in tq = u, say, so,
setting F (t) = F ∗(u), G(t) = G∗(u) we see that F ∗, G∗ are a solution for
the corresponding problem, but with h/q (resp. 1 + (k − 1)/q) in place of h
(resp. k), and the µ∗i (resp. ν∗ and the ν∗j ) in place of the µi (resp. the νj).

It would be nice if some simple necessary and sufficient condition existed
to guarantee, more generally than in Theorem 1, the attainment of bounds
given by the abc, when the multiplicities of the roots of all F,G, F − G
are given. The above result gives the case when F −G has only one multi-
ple root. Again, Riemann’s Existence Theorem reduces the general question
to a purely combinatorial problem, equivalent to the existence of certain
extremal cases of the Ree–Singerman inequality.

5. Davenport’s bound. Retaining the notation of the previous section,
assume that all µi are divisible by 3 and that all the νj are even. Then
h ≤ n/3, k ≤ n/2, so n−h−k+1 ≥ n/6+1. Putting F = f3, G = g2 we get
Davenport’s bound. It may be attained only if n is a multiple of 6, and h, k
equal respectively n/3, n/2, i.e. if µi = 3, νj = 2, ∀i, j; in particular, neither
f nor g can have multiple roots. If these conditions are satisfied, Theorem 1
guarantees the existence of f, g. The considerations of the previous section
show that, given n = 6n′, the solutions fall into finitely many two-parameter
families, as in more general cases.

We now investigate the situation in this case with little more detail. As
shown in the previous section, examples amount to finding permutations
σ1, σ2 such that

(i) σ1 is a product of 2n′ disjoint 3-cycles (named vi),
(ii) σ2 is a product of 3n′ disjoint transpositions (named ej),

(iii) σ1, σ2 generate a transitive subgroup Γ of Sn,
(iv) σ1σ2 has at least (hence exactly) n′ + 1 fixed points.

Moreover, two examples belong to the same family if and only if the
corresponding couples of permutations are conjugate by a same element
of Sn. To investigate conditions (i)–(iv) up to conjugation we construct a
graph G on 2n′ vertices, corresponding to the 3-cycles of σ1, joining two
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vertices vi, vj with an edge precisely when there exists a transposition el
moving some integer in each of the associated 3-cycles vi, vj . Condition (iii)
is plainly equivalent to the connectedness of G. Let E be the number of edges.
These correspond to E transpositions which contribute no fixed points. The
remaining transpositions move two integers which must appear in just one
of the v’s. Each contributes just one fixed point. So (iv) is equivalent to
3n′ − E = n′ + 1, or E = 2n′ − 1. So the number of edges of G equals the
number of its vertices minus 1, i.e. G is a tree (see [Har], Ch. 4). (A similar
construction is possible also in the more general cases covered by Theorem 1.
In this particular case, however, the graph theoretic interpretation is more
informative than in general.) Observe that the number of edges from each
vertex (its degree) must clearly be either 1 or 3.

It may happen that nonconjugate σi’s give rise to isomorphic trees. To
take this into account, to each vertex v of degree 3 we associate a cyclic
permutation o(v) of its neighboring vertices as follows: let v correspond
to the 3-cycle (a, b, c). Then the three edges correspond, in some order, to
transpositions (a, x), (b, y), (c, z). The neighboring vertices correspond then
to 3-cycles containing respectively x, y, z, in some order: denote them by
vx, vy, vz. Then o(v) will be the 3-cycle (vx, vy, vz). We shall refer to the cou-
ple (tree, map o) as a weighted tree. There is clearly a notion of isomorphism
of weighted trees. Conversely, given a weighted tree on 2n′ vertices, each of
degree 1 or 3, we may construct permutations σi as above. The 3-cycles
where some fixed point appears correspond to the vertices of the graph hav-
ing degree 1. Their number x must satisfy x + 3(2n′ − x) = 4n′ − 2, since
the sum of the degrees equals the double of the number of edges, whence
x = n′ + 1, in accordance with (iv).

For instance, consider the case n = 12, i.e. n′ = 2. There is only one
weighted tree (up to isomorphism) on 4 vertices, v1, v2, v3, v4, satisfying
the above conditions; its three edges connect v1, say, with the other ver-
tices, say o(v1) = (v2, v3, v4) (the other choice leading to an isomorphism).
Let the vertices correspond to the 3-cycles of σ1, (1, 2, 3), (4, 5, 6), (7, 8, 9),
(10, 11, 12) resp. The last three permutations must contribute a fixed point.
So, among the transpositions of σ2 we choose, say, (4, 5), (7, 8), (10, 11). The
remaining transpositions connect v1 with the other vi, and may be taken,
say, (1, 6), (2, 9), (3, 12). We have σ1σ2 = (1, 9, 8, 2, 12, 11, 3, 6, 5)(4)(7)(10).

A little inspection will also show that isomorphic weighted trees will lead
to conjugate permutations σi, whence

Proposition 2. The number of “essentially distinct” examples of equa-
tions deg(f3 − g2) = n′ + 1, where deg f = 2n′, equals the number of non-
isomorphic weighted trees on 2n′ vertices, such that each vertex has degree
1 or 3.
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(For an estimation of the number of such weighted trees see the Ap-
pendix.)

Here examples given by (f, g), (f∗, g∗) are considered “essentially equal”
if, as in (11) of Section 4, they belong to the same family, i.e.

f3
∗ (t) = a−6nf3(at+ b), g2

∗(t) = a−6ng2(at+ b)

for some complex numbers a, b.
Let us classify the automorphisms, according to the remarks in the pre-

vious section. Their group may be assumed to be generated by t→ at. The
order q of a must divide 2 or 3.

F i r s t c a s e : a = −1. Now n′ is necessarily odd, f is even while g
is odd, namely, setting u = t2, f(t) = f1(u), g(t) = tg1(u), our equation
becomes

(12) f3
1 (u)− ug2

1(u) := h1(u), deg h1 = (n′ + 1)/2.

We have obtained another extremal example of the abc theorem, to which
our previous methods could also be applied directly. Again, the examples
give rise to trees, the vertices being associated with the 3-cycles which, as
above, correspond in turn to the roots of f : now the tree is on n′ = deg f1

vertices. Inspection shows that, for n′ > 1, there is precisely one vertex of
degree 2, all other vertices having degree 1 or 3. When this type of automor-
phism exists, the original graph, associated with the original Davenport’s
equation, exhibits obviously a spectacular symmetry. “One half” of it (but
first omitting one edge) gives the new graph. As before, nonconjugate per-
mutations may lead to isomorphic trees. To take this into account, adjoin
to the tree a distinguished vertex v and the edge from v to the vertex of
degree 2. We thus obtain again a tree with each vertex of degree 1 or 3,
and, as before, we may define a weight on it. The isomorphism class of the
weighted tree (which now has a distinguished vertex of degree 1) so defined
describes completely the σi’s up to conjugation.

S e c o n d c a s e : a2 + a + 1 = 0. Now n′ ≡ 2 (mod 3), whence f(at) =
af(t), g(at) = g(t). Setting u = t3 we obtain f(t) = tf1(u), g(t) = g1(u).
The original assumption becomes

(13) uf3
1 (u)− g2

1(u) = h1(u), deg h1 = (n′ + 1)/3.

Even here we have still another extremal example. Again we may construct
a graph, now on (2n′ − 1)/3 vertices, which turns out to have the same
properties as the one considered in the first case; namely it is a tree, and,
when n′ > 2, every vertex has degree ≤ 3, and there is precisely one vertex
of degree 2. If an automorphism of order 3 exists, then the original graph,
when placed properly in the plane, will be invariant under a rotation of
2π/3, and the new graph may be easily deduced from it. As in the first case,
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we may add a distinguished vertex and an edge (to the vertex of degree 2),
to define a weight.

It is to be remarked that the coverings corresponding to both equations
(12) and (13) never have nontrivial automorphisms.

Automorphisms could also be studied via (iv) of Section 2, which states
that their group corresponds to the centralizer of Γ in Sn (the proof given
by Fried, referred to above, gives an explicit description of this).

Another question is to calculate the monodromy group Γ . We can make
the following observation:

R e m a r k 1. If 5n′ − 1 is a prime number then Γ = An.

In fact, in this case Γ is primitive: the group being transitive, the orders
of sets of imprimitivity can be assumed all equal, to c, say. The 5n′ − 1-
cycle σ1σ2 would induce a nontrivial (otherwise 5n′ − 1 | 6n′) cycle of order
dividing 5n′ − 1. This implies easily c = 1. Now a theorem of Jordan (see
[Wie], p. 39) implies that Γ equals Sn or An. Since, however, both σ1 and
σ2 are even in this case, we get the statement. We do not know if, in case
no automorphisms exist, always Γ is Sn or An.

We conclude this section by mentioning another possible approach to an
existence proof, directly related to Davenport’s proof of the lower bound.
We briefly recall how this works. We may clearly assume f, g to be monic.
If deg(f3 − g2) ≤ n′, then the first 5n′ − 1 elementary symmetric functions
of the roots of f3 and of g2 coincide. Since the form xs1 + . . .+ xsk is, for s a
natural number, a polynomial in the first s symmetric functions of the xi,
we would get, letting ξ1, . . . , ξ2n′ , η1, . . . , η3n′ be the distinct roots of f and
g resp.,

(14) 3
∑

ξsi − 2
∑

ηsj = 0, 0 ≤ s ≤ 5n′ − 1.

It is easy to see that this implies that the same equation would hold for all
s ≥ 0, implying f3 = g2.

The same argument shows that attainment of Davenport’s lower bound
with deg f = 2n′, amounts to the existence of ξi, ηj , 1 ≤ i ≤ 2n′, 1 ≤ j ≤
3n′, such that, denoting by us the left hand side of (14),

(15) us = 0, 0 ≤ s ≤ 5n′ − 2, u5n′−1 6= 0.

By the Nullstellensatz such quantities exist if and only if the form u5n′−1

is not contained in the radical of the ideal generated by the us, 1 ≤ s ≤
5n′− 2. So we have to decide whether some power of a certain form lies in a
given ideal. We may formulate the question more generally: given complex
numbers c1, . . . , cm, put us = c1x

s
1+. . .+cmxsm. Determine then the minimal

positive integer q such that uq lies in the radical of the ideal generated by
the ui for i < q. The question seems not obvious in general. Theorem 1 is
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equivalent to certain special cases. On the other hand, there seems not to
be an analogous formulation of general extremal examples of abc (especially
in the case of positive genus).

6. A rationality criterion. We come back to the situation of The-
orem 1, retaining that notation: we assume µi, νj are sequences of inte-
gers satisfying (3), and consider polynomials F,G of degree n, with roots
of multiplicities µi, resp. νj . Assume for simplicity that δ = 1 and that
n+ 1 ≥ h+ k. Theorem 1 implies then the existence of such F,G satisfying
deg(F −G) = n+ 1− h− k. Moreover, the proof showed that the covering
F/G : P1 → P1 is ramified only above 0, 1, ∞. Recall also that such cover-
ings correspond to permutations σ1, σ2, σ3 satisfying (A)–(E) of Section 4,
isomorphic covers corresponding to conjugate (by the same element) per-
mutations. We try to prove the existence of a “small” field containing the
coefficients of such F , G.

First we remark that, given such a cover φ = F/G, we may replace it
with an isomorphic one, associated moreover with F , G with algebraic co-
efficients. This is a particular case of Theorem 7.7, p. 70 of [Se1], but may
also be proved directly with the following simple continuity argument. The
field L generated by the roots of F , G, which we may assume monic, is
a finite extension of Q(x1, . . . , xd), where Q denotes the field of algebraic
numbers, and the xi are complex numbers, algebraically independent over
Q. Let η be such that L = Q(x1, . . . , xd)(η), and let H(η, x1, . . . , xd) = 0
be the minimal equation for η over Q(x1, . . . , xd). The roots cl are of the
form cl = Al(η, x1, . . . , xd), where Al ∈ Q(x1, . . . , xd)[η]. By the continu-
ity of the roots (applied to the polynomial H), for any ε > 0 we can find
algebraic numbers α1, . . . , αd and ξ such that |αi − xi| < ε, |ξ − η| < ε,
and H(ξ, α1, . . . , αd) = 0. Put βl = Al(ξ, α1, . . . , αd), the substitution being
defined for small ε. Also, we may assume, by taking ε small, that cl 6= cm
implies βl 6= βm. Let F ∗, G∗ denote the polynomials obtained by replacing
the cl with the βl. F ∗, G∗ will still be monic of degree n, and, since all
the root-multiplicities and the degree of the difference remain unchanged
(deg(F ∗ −G∗) could only be lowered, which is impossible), we get another
extremal example of abc, corresponding to the cover φ∗ = F ∗/G∗, also
unramified except above 0, 1,∞. Let P be some path used to get the de-
scription of branch cycles, as in Section 2. If ε is small enough, liftings
of P by φ and φ∗ starting in “near” points will be as near as wanted. In
particular, the end points will be near. But then the liftings induce equal
permutations (provided “near” points in the fibers above z have been la-
belled with the same integer), so the same description of branch cycles. It
follows that the covers, having also the same ramifications, are isomorphic
((iii) of Section 2).
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Let now T denote the equivalence class (i.e. up to conjugation) of a
triple of permutations σi, satisfying (A)–(E) of Section 4. Let Γ (T ) be the
equivalence class (up to conjugation) of the group generated by the σi in Sn.
Sometimes we shall, by abuse of language, denote with the same letters
both the group and its equivalence class. Let T1 be such a triple, and set
Γ = Γ (T1). Define

S = {T : Γ (T ) = Γ} = {T1, . . . , TD}, D = #S.

Proposition 3. Assume that the centralizer of Γ in Sn is trivial (3).
Then there exist polynomials F , G as above such that the covering defined
by F/G has T1 as a description of the branch cycles, and such that their
coefficients lie in a number field K with [K : Q] ≤ D.

P r o o f. By the above remark there exist polynomials F , G satisfying the
usual conditions, with coefficients in a number field L, say, such that the
covering defined by their quotient φ has the required description of branch
cycles. We may clearly assume L normal over Q. Let Ω be the Galois group.
Consider, for g ∈ Ω, the covering defined by gφ = gF/gG. The polynomials
gF , gG have the same sequences of root-multiplicities, and the degree of
their difference is also n−h−k+ 1. This covering is also unramified outside
0, 1, ∞. Let T be its description of the branch cycles. If F , G ∈ L[t], then
the monodromy group Γ is the Galois group of the normal closure of C(t)
over C(φ) (see [Tr]). The isomorphism g may be extended to the normal
closure of C(t) over C(gφ), proving that Γ (T ) = Γ , so T ∈ S. Let ∆ be
the subgroup of Ω formed with those g such that T = T1 (it is a subgroup,
since the defining condition amounts to an isomorphism of the covers given
by φ and gφ). Clearly ∆ has index ≤ D in Ω. Let K be the fixed field
of ∆.

For g ∈ ∆ the coverings defined by φ and by gφ are isomorphic, whence,
by (11) of Section 4 and the subsequent remarks, there exists a transforma-
tion γg of the form γg(t) = agt+ bg such that

(16) (gφ) ◦ γg = φ.

Observe that ag, bg ∈ L. In fact, if h is any automorphism of Q over L,
we have, by (16), (hgφ) ◦ (hγg) = hφ, whence (gφ) ◦ (hγg) = φ. Comparing
with (16) we see that (hγg) ◦ γ−1 is an automorphism of the cover, whence
the identity, in view of our assumptions. So any such h fixes γg, proving our
assertion.

Let g, h ∈ ∆. Apply h to (16), obtaining (hgφ) ◦ (hγg) = hφ, whence

(17) (hgφ) ◦ (hγg) ◦ γh = hφ ◦ γh = φ.

(3) That is, the cover has no nontrivial automorphism.
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Writing equation (16) with hg in place of g and comparing with (17) we
obtain, in view of the fact that φ has no nontrivial automorphisms,

(18) γhg = (hγg) ◦ γh,
the familiar cocycle equation.

Let Σ = {γ(t) = at + b : a ∈ L∗, b ∈ L}. Then Σ is a group under
composition and we have an exact sequence

{0} → L+ → Σ → L∗ → {1},
commuting with the action of ∆ (the second arrow being b→ t+ b, and the
third at+ b→ a), whence an exact sequence

{0} = H1(∆,L+)→ H1(∆,Σ)→ H1(∆,L∗) = {0}.
(Of course also the familiar “Poincaré series” argument would equally do.)

So there exists γ ∈ Σ such that

γg = (gγ)−1 ◦ γ ∀g ∈ ∆.
Using this equation in (16) we easily get

(gφ) ◦ ((gγ)−1) = φ ◦ (γ−1) ∀g ∈ ∆,
i.e. φ◦ (γ−1) has coefficients in K. The polynomials F ◦ (γ−1) and G◦ (γ−1),
multiplied by a suitable nonzero constant, clearly solve our problem.

R e m a r k 2. When nontrivial automorphisms (of order q) exist (so Pro-
position 3 cannot be applied), we have seen in Section 4 that the extremal
example “comes” from another one, by setting, after a suitable translation,
F ∗(tq) = F (t), G∗(tq). So the result may be applied to construct first F ∗,
G∗.

R e m a r k 3. A question which seems of some interest is the following:
to find effective estimates for the height of the algebraic coefficients that
one can obtain in this way (in terms of the σi’s, say). It would suffice to
do that (together with some estimate for the degree of L) for the original φ
introduced at the beginning of the proof. Similar, more general, questions
could be asked in connection with the realizability of covers of Q-varieties
over Q (see Thm. 7.7, p. 70 of [Se1]).

R e m a r k 4. Observe that the proof shows that, if gφ is isomorphic to φ
for g running in a subgroup Σ of Ω, then φ may be found with coefficients
in the fixed field. Suppose then that, for i = 1, 2, the cover given by φi (as
in the proposition) has coefficients in a number field Li, and that φ1, φ2 are
isomorphic. Let L be the normal closure of L1L2. Then gφ1 is isomorphic to
φ1 both when g fixes L1 and when g fixes L2. The subgroup generated by
such elements has L1 ∩ L2 as fixed field. In other words, there is a minimal
field of definition for the coefficients of coverings of the above type.
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An obvious corollary of Proposition 3 is that, if D = 1 for some Γ
as above, the construction may be realized over the rationals. As recalled
in the Introduction, this requirement is analogous to part of the so-called
rigidity condition for a family of conjugacy classes in a group (see [Se1],
Ch. 8). Unfortunately, D is usually large. Take for instance Davenport’s
case, and assume that 5n′ − 1 is a prime. Then, as observed in Remark 1,
every relevant triple of permutations generates the group An. So in this
case D is the number introduced in Proposition 2, which grows rapidly
with n′ (see the Appendix). This fact also seems to indicate, in absence of
some other, not obvious, reason, that polynomials with rational coefficients
realizing Davenport’s bound will hardly be found for all large n′. It would
be nice to settle this question. (In this connection one may recall that there
are, also in low degree, extremal examples of abc, not realizable over Q. See
[S-V], p. 212, or the examples in [U-Y].)

In any case, when no nontrivial automorphisms exist, D does not exceed
the number D′ of weighted trees appearing in Proposition 2. It is easy to
see that D′ = 1 for n′ = 1, . . . , 4, and D′ = 4 for n′ = 5. When nontriv-
ial automorphisms exist, we cannot apply directly Proposition 3, but we
may follow Remark 2, using the reduction obtained in the previous section,
namely looking at equations (12) or (13), instead of at Davenport’s. So let
D′′ be the number of nonisomorphic weighted trees on m+ 1 vertices, each
of degree 1 or 3 and with one distinguished vertex of degree 1. m must be
odd. We have D′′ = 1 for m = 1, 3, while D′′ = 2 for m = 5. So equa-
tion (12) will be realized over the rationals when n′ = 1, 3, and equation
(13) when (2n′ − 1)/3 = 1, 3, namely n′ = 2, 5. Correspondingly, we may
realize Davenport’s bound over Q when n′ = 1, . . . , 5. When n′ = 5, of the
four nonisomorphic cases, one comes from equation (13) (and has rational
coefficients), two from equation (12) (they shall be either defined over the ra-
tionals or conjugate in a quadratic extension), while the last one will have no
nontrivial automorphism. This implies that the corresponding group Γ has
trivial centralizer, and so is not isomorphic to the groups corresponding to
the other three cases. So, even now the construction will be possible over Q
(but does not appear in the quoted literature), leading to two nonisomorphic
examples with rational coefficients when n′ = 5. This somewhat justifies a
priori the examples of Hall (pp. 181, 183, 185 of [Ha]). Also, his examples
(4.27), (4.28) are isomorphic, namely they belong to the same family, in the
sense of (11) of Section 4. When n′ = 7, equation (12) admits 5 noniso-
morphic possibilities: in fact, the corresponding example in [U-Y], p. 225, is
defined over a number field of degree 5. When n′ = 11, the weighted trees
corresponding to equation (13) correspond to the ones coming from (12) with
n′ = 7. So, again 5 is a bound for the degree of a field of definition. However,
this time the example in [U-Y] has degree only 3. It would be interesting
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to carry out further computations to get numerical data to be compared to
the above theoretical bounds. The most practical approach, from the com-
putational point of view, seems, as in [U-Y], to look at equation (12) (or
(13)). This is in turn equivalent to the fact that f1g1 + 2ug′1f1 − 3ug1f

′
1 is

a nonzero constant (being equal to g−1
1 (h′1f1 − 3h1f

′
1)).

As remarked, some of the cases covered by Theorem 1 correspond to
covers of P1 unramified outside 0, 1,∞. With such covers one may associate
what Grothendieck called “dessins d’enfant” (see [Gr] or [S-V]). It may be
proved for instance that, permuting suitably 0, 1,∞, the dessin of a Dav-
enport covering is just the tree introduced in Proposition 2 (but with loops
adjoined at the vertices of degree 1); we may also recover the weight o(v)
by the orientation of the edges touching v, induced by a prescribed orienta-
tion of the Riemann sphere. It would be nice to treat the above questions
from such a point of view. G. Jones and D. Singerman ([J-S]) have analyzed
the theory using hypermaps, and Professor Jones has observed that such an
approach could probably lead to an even simpler proof of Theorem 1.

7. The mod p case. As far as we know no analogue of Riemann’s
Theorem is known in positive characteristic, and we cannot prove in this
case the existence of attained bounds, as in Section 4, for general given
multiplicities. However, something can be said about the lifting of examples
from positive characteristic. These facts will enable us (especially with the
use of a reasonable, though strong, unproved assumption), to derive some
new conclusion about the question of rationality. We shall limit ourselves to
the lifting of coverings, unramified outside 0, 1,∞, described by (a part of)
Theorem 1. We shall refer to them as (µ, ν)-coverings.

Let Fp be an algebraic closure of Fp, Kp be the maximal unramified
extension of Qp, with valuation ring Op, and algebraic closure Kp. v will
denote the p-adic valuation, extended to Kp. We shall denote reduction from
Op to Fp by [−].

Let F , G be monic polynomials over Fp, of degree n and roots of multi-
plicities µi (i = 1, . . . , h), νj (j = 1, . . . , k) resp. We assume that the g.c.d. of
all these numbers is 1, and that n+1 ≥ h+k. It may be shown (following for
instance Mason’s proof) that the bound of Section 4 for deg(F −G) remains
true, provided F , G are linearly independent over Fp(xp) or, equivalently,
provided they are coprime. For later reference we recall the argument.

Let F −G = H. Put

F (t) =
∏

(t− ξi)µi , G(t) =
∏

(t− %j)νj .
Put also (and a similar notation will be adopted throughout)

P (t) =
∏

(t− ξi), P i(t) =
P (t)

t− ξi
,
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Q(t) =
∏

(t− %j), Qj(t) =
Q(t)
t− %j

,

F (t) = P (t)R(t), G(t) = Q(t)S(t).

Differentiating F −G = H we get R(
∑
µiP i)− S(

∑
νjQj) = H ′. Mul-

tiply the first equation by
∑
νjQj , the second by Q and subtract, getting

R
(
Q
∑

µiP i − P
∑

νjQj

)
= H ′Q−H

(∑
νjQj

)
.

The common value of the two sides divides the Wrońskian of F and G,
so, by our assumption, it cannot be zero. Being divisible by R, its degree is
at least n− h, and we get the desired lower bound for H.

Assume now that the lower bound is attained, so we have an extremal
example mod p. From the above we see, moreover, that

(19) Q
∑

µiP i − P
∑

νjQj = c

is a nonzero constant. In particular, P and Q are coprime and have no mul-
tiple root. Also, observe that this prevents p to divide (h+k− 1)

∏
µi
∏
νj ,

namely the product of the various ramification indices of the associated cov-
ering (4); in other words, the ramification of the function fields extension is
tame.

We shall show that we may lift to Kp, namely find ξi, %j ∈ Kp[t] such
that [ξi] = ξi, [%j ] = %j , and such that, defining F,G in the obvious way,
deg(F − G) = n − h − k + 1, i.e. we shall lift the covering to another one
with the same ramification type.

As remarked by M. Fried in [Fr1], p. 45, the existence of such liftings was
shown to be possible for general coverings by W. Fulton in his thesis [Fu],
with proofs which “rely heavily on the work of Grothendieck...”. In the same
paper Fried asks for simpler proofs, valid at least in certain special cases. In
fact in our case an elementary and direct method suffices (a simple version
of Hensel’s principle in fact). It is quite possible that this may be fairly
generalized: the construction of unramified coverings as those considered in
the present paper amounts (if one forgets the monodromy, but only takes
into account the conditions on the ramification indices) to finding a point
in a certain Zariski open subset of an algebraic set (in our case defined
on equating the first h + k − 1 coefficients of F , G, as polynomials in the
indeterminate roots of F and G, the open subset being given by (F,G) = 1,
namely the resultant of F,G must be nonzero). If the point is nonsingular,
then Hensel’s principle is applicable and a lifting may be found. This is the

(4) If p |µ1, say, then evaluating at ξ1 gives a contradiction. Also, comparing leading
coefficients in the previous equation we get easily c = −l(h+k− 1), where l is the leading
coefficient of H.
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principle of the present method. However, we shall work directly with the
involved polynomials instead of the associated algebraic set. (This seems to
extend with few modifications to the lifting of general covers of genus zero.)

By a similar direct method we shall also show that the isomorphism class
of the lifting depends only on the class of its reduction. We begin with the
following

Lemma 2. Let Vm denote the space of polynomials of degree ≤ m over
Fp, and let F , G be as above. Define φ : Fhp ×Fkp × Vn−h−k → Vn−1 by

φ(δi, ηj , γ) = R
(∑

δiµiP i

)
− S

(∑
ηjνjQj

)
− γ(t).

Then the kernel of φ is one-dimensional , generated by (1, . . . , 1, . . . , H ′).

P r o o f. Let δi, ηj , γ lie in the kernel. Then R(
∑
δiµiP i)−S(

∑
ηjνjQj)

= γ. Multiplying by Q and using the equation S Q = RP −H to substitute
for S Q we get R(Q

∑
δiµiP i−P

∑
ηjνjQj) = Qγ−H∑ ηjνjQj . The right

hand side has degree ≤ n − h and is divisible by R, whence Q
∑
δiµiP i −

P
∑
ηjνjQj is a constant, c′ say. Multiply (19) by c′/c and subtract. We get

Q(
∑

(δi − (c′/c))µiP i) = P (
∑

(ηj − (c′/c))νjQj). So
∑

(δi − (c′/c))µiP i is
a multiple of P , whence must be zero. Evaluating at ξi we get δi = (c′/c)
for all i. Similarly ηj = (c′/c) for all j, and the lemma follows.

We now prove the existence of a lifting. Assume we have found, for a
certain m ≥ 1, elements of Op, ξ(m)

i , %(m)
j with mod p reductions ξi, %j

resp., and a polynomial Hm over Op of degree n − h − k + 1 such that,
defining Fm, Gm in an obvious way, we have Fm − Gm = Hm + pmrm for
some polynomial rm (of degree ≤ n − 1), also with coefficients in Op. We
seek ξ(m+1)

i , %(m+1)
j in the form

(20) ξ
(m+1)
i = ξ

(m)
i − pmδi, %

(m+1)
j = %

(m)
j − pmηj

with undetermined δi, ηj ∈ Op. We get, with an obvious notation,

Fm+1 −Gm+1

≡ Hm + pm
(
Rm

(∑
δiµiPi,m

)
− Sm

(∑
ηjνjQj,m

)
+ rm

)
(mod pm+1).

By counting dimensions, Lemma 2 implies that the map φ is surjec-
tive, so there exist δi, ηj ∈ Op and a polynomial γ ∈ Op[t] such that
Rm(

∑
δiµiPi,m)−Sm(

∑
ηjνjQj,m)−γ ≡ −rm (mod p), where γ has degree

≤ n−h−k. Defining Hm+1 = Hm+pmγ we have realized the same construc-
tion for m + 1 in place of m, where moreover (20) and Hm+1 ≡ Hm (mod
pm) hold. Since the construction is clearly possible for m = 1, it is possible
for all m. Setting ξi = lim ξ

(m)
i , and similarly for ηj , H, where the last limit

is taken coefficientwise in the p-adic convergence, gives the required lifting.
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We now show that the isomorphism class of the lifting depends only
on the isomorphism class of its reduction. It will suffice to prove that two
liftings with the same reduction are isomorphic. Let, for i = 1, 2, ri := Fi/Gi
be such liftings, where Fi, Gi are monic polynomials with roots in Op. Put
Hi = Fi − Gi. Let λi be the leading coefficient of Hi, and set ω = λ1/λ2.
We have ω ≡ 1 (mod p). Since p does not divide h + k − 1 the equation
xh+k−1 = ω has its roots in Kp. Let λ be one such root which is congruent
to 1 (mod p). Put F̃1(t) = λ−nF1(λt), G̃1(t) = λ−nG1(λt). We have H̃1(t) =
λ−nH1(λt), and so the leading coefficient of H̃1 equals the leading coefficient
of H2. Since λ ≡ 1 (mod p) the reduction is preserved, and clearly also the
isomorphism class. So we may assume from the beginning that H1, H2 have
equal leading coefficients.

Drop the subscript 2, and put F (t) =
∏

(t− ξi)µi and similarly for G.
We construct by induction on m linear polynomials αm(t) = t+am such

that F1 ◦ αm =
∏

(t − ξi + pmδi)µi , G1 ◦ αm ≡
∏

(t − ξi + pmδi)µi , where
δi and ηj lie in Op, and such that am+1 ≡ am (mod pm). Defining a = lim
am, α(t) = t+ a, we shall have r1 ◦ α = r2, as required.

For m = 1 we just take a1 = 0. Assume am constructed. Replacing F1

(resp. G1) by F1 ◦ α−1
m (resp. G1 ◦ α−1

m ), we may assume

F1 =
∏

(t− ξi + pmδi)µi , G1 =
∏

(t− ξi + pmδi)µi .

We get

H1 ≡ H2 + pm
(
R
(∑

δiµiPi

)
− S

(∑
ηjνjQj

))
(mod pm+1).

The Hi having equal leading coefficients, the polynomial R(
∑
δiµiPi)−

S(
∑
ηjνjQj) has a reduction (mod p) of degree ≤ n − h − k, whence, by

Lemma 2, δi = b+pδ′i, ηj = b+pη′j , for some b, δ′i, η
′
j ∈ Op. This means that

F1(t) =
∏

(t + pmb − ξi + pm+1δ′i)
µi , and similarly for G1. This completes

the proof.

R e m a r k 5. The same arguments work if we start with any algebraically
closed field k of characteristic p, instead of Fp, and consider liftings to W (k),
the Witt vector ring introduced by Theorem 3, p. 45 of [Se2].

Let s(t) = F/G, where F,G ∈ Kp[t] are monic, be a covering as above.
We say it has good reduction (mod p) if F,G ∈ Op[t], and if moreover
[s] 6∈ Fp(tp) (or, equivalently, if the reduced covering has the same degree).
We have the following

Lemma 3. For i = 1, 2, let si be coverings as above, with good reduction,
and such that s1(t) = s2(at + b), for some a, b in Kp. Then a is a unit in
Op, while v(b) ≥ 0.
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P r o o f. We have, with an obvious notation,

anF1(t) = F2(at+ b), anG1(t) = G2(at+ b).

Replacing if necessary s1 with s2, and the transformation t→ at+b with
its inverse, we may assume v(a) ≥ 0. If v(b) < 0 then, since F2 is monic and
lies in Op[t], we have v(F2(b)) = nv(b) < 0, contradicting the first equation.
So v(b) ≥ 0. Now, if v(a) > 0, reduction of the above equations would give
[F2]([b]) = [G2]([b]) = 0, which is impossible since, in view of the fact that
s2 has good reduction, [F2] and [G2] have no common root.

The lemma shows in particular that coverings in the same isomorphism
class, both with good reduction, have in fact isomorphic reductions. In view
of this and the above results we may state the following

Proposition 4. There is a 1-1 correspondence between the isomorphism
classes of (µ, ν)-coverings of degree n over Fp and the isomorphism classes
of the same coverings over Kp, such that some representative of the class
has good reduction.

Since every finitely generated field of characteristic zero can be embedded
in C, this shows in particular that there cannot be more isomorphism classes
over Fp than the number of classes over the complex numbers (given by
Proposition 2 in combinatorial terms, for Davenport’s coverings).

R e m a r k 6. Given a (µ, ν)-covering s over Kp, with good reduction,
we may find an isomorphic one, also over Kp and with good reduction,
where moreover the coefficients are algebraic numbers. This may be proved
for instance by the same continuity argument given before Proposition 3,
Section 5. The only modification required consists first in imbedding the field
generated by the coefficients of s in C, and then in choosing the algebraic
numbers αi, ξ (appearing in that argument) sufficiently near to the xi and
η, even with respect to the p-adic absolute value, which is certainly possible
by the weak approximation theorem. The covering so defined will have all
the required properties.

We shall assume from now on that the automorphism group of the cov-
erings considered is trivial. The discussion of automorphisms and Remark 3
above allow us to reduce the general case to this one.

Let now r be a (µ, ν)-covering of degree n, with coefficients in a number
field L. We let P be a prime ideal of L above p and unramified above it,
and imbed L in its completion LP at P, which is a subfield of Kp. Assume
there is a covering s, in the same class of r, defined over Kp (5) and having

(5) Throughout the paper by a cover defined over a field L we mean that there exists
a rational function in L(t) defining a cover isomorphic to the given one. This is not always
quite equivalent with the usual definition, as given in [Fr2].
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good reduction. Let s(t) = r(α(t)), where α(t) = at+ b, with a, b algebraic
over Kp. Since our coverings have only the trivial automorphism we see
that α must be invariant under automorphisms of Kp(a, b) over Kp, whence
actually a, b ∈ Kp.

From Lemma 3 we see that, if s1, α1 : t → a1t + b1 have the same
properties, then v(a1) = v(a) and v(b− b1) ≥ v(a), and, conversely, if a1, b1
have these properties, then r ◦ α1 too has good reduction.

Let σ ∈ Gal(Kp|LP). Then σs = r(σα) has good reduction, whence, in
particular, v(b− σb) ≥ v(a) = e, say. Let x = b/pe. Then

(21) σx− x ∈ Op ∀σ.
Lemma 4. Under (21) there exists an algebraic integer y ∈ L and an

integer c such that x− y/pc ∈ Op.

P r o o f. We may assume v(x) < 0 (otherwise y = 0 does). We argue by
induction on −v(x). Let c = −v(x) > 0, and set x′ = pcx ∈ Op, ξ = [x]. The
assumption gives x′ − σx′ ∈ pOp, whence ξ = σξ. So ξ lies in the residue
field of LP , whence, for some algebraic integer y0 in L, x′ ≡ y0 (mod p). So
−v(x − y0/p

c) ≤ c − 1. Since x − y0/p
c satisfies the same assumption, the

proof is finished by induction.

The lemma shows that, replacing a with pe, b with ype−c, in fact we may
take a, b ∈ L, so there is some covering defined over L, with good reduction
at P.

For a (µ, ν)-covering defined over L, let Φ be the set of prime ideals of
L such that

(i) If P ∈ Φ then P is unramified over Q.
(ii) Embedding L in Kp through the completion at P, there exists a

covering over Kp in the same class of r and having good reduction at p.

Observe that Φ contains all but a finite number of prime ideals.
This set depends of course on the class of the covering and on L. We could

make it independent of L by choosing it as the smallest field of definition
(see Remark 4).

Proposition 5. Let r be a (µ, ν)-covering defined over L, and let P ∈ Φ.
Then P is unramified in the extension of L generated by the poles and zeros
of r.

P r o o f. By replacing r with an isomorphic covering defined over L, we
may assume that it has good reduction at P. Writing r = F/G for monic
F,G we have seen that the distinct roots of F,G must have distinct reduc-
tions for the reduced covering to be still of degree n. Then the inertia group
is trivial, proving what we want.
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We now would like to find a covering in the same class as r and having
good reduction simultaneously at as many primes as possible, and still de-
fined over L. Let, for P ∈ Φ, r(aP t+ bP) have good reduction at P, where
aP , bP ∈ L. Let eP = vP(aP), an integer depending only on P and r. We re-
mark that, since r itself has good reduction at all but finitely many primes,
we may take eP = bP = 0 for all but finitely many primes. Let a, b ∈ L. In or-
der for r(at+b) to have good reduction at P it is necessary and sufficient that

(i) vP(a) = eP , and
(ii) v(b− bP) ≥ eP .

If we wanted such conditions to hold for all primes in Φ, the ideal class
of I(Φ) :=

∏
P∈Φ PeP would be equal to an ideal class generated by ideals

outside Φ. Conversely, this is a sufficient condition for the existence of a, b
such that (i) and (ii) hold for all primes in Φ. In fact, once a has been found
satisfying (i), we may find b satisfying (ii) by the Strong Approximation
Theorem (see [Ca-Fr], p. 67); in fact, there are primes outside Φ (for instance
those dividing some ramification index of the covering), so we may forget
what happens at that prime.

Let G = G(L) be the ideal class group of L, and GΦ the subgroup gener-
ated by prime ideals not in Φ. It is natural to define C ∈ G/GΦ as the image of
the class of I(Φ) in the quotient group. We can find simultaneous good reduc-
tion if and only if C is trivial. More generally, we can find simultaneous good
reduction at all primes in a set S ⊂ Φ if and only if C becomes trivial in G/GS .

If L′ is a finite extension of L, unramified above Φ, then it is at once veri-
fied that the invariants so far defined, namely Φ, eP , I(Φ), C, are compatible
with the embedding L ⊂ L′, in the sense that Φ′ consists of the primes of
L′ above some prime in Φ, that, for Q|P, eQ = eP , and C′ is obtained by
taking the injection

G(L)
GΦ(L)

→ G(L′)
GΦ′(L′) .

As a consequence of these remarks we obtain

Proposition 6. There exists a covering in the same class of r, and
having good reduction at all primes above Φ, defined over the Hilbert class
field L∗ of L.

The proof follows at once, by recalling that L∗ is unramified over L, and
moreover each ideal of L becomes principal in L∗.

We may improve sometimes on Proposition 5. Let r have coefficients in L
and good reduction at primes above S ⊂ Φ. Since the covering is unramified
outside 0, 1,∞, the discriminant of the polynomial P (t, λ) := F (t)− λG(t)
with respect to t is of the form cλa(1 − λ)b. Take, say, λ 6∈ {0, 1}. The
reduction of P (mod P) cannot have double roots (since the reduction too
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is unramified outside 0, 1,∞), so c can have nonzero order only at primes not
lying above S. This of course bounds the primes dividing the discriminant
for all given λ. We can see this as a refinement (in our quite particular
situation) of the affine Chevalley–Weil Theorem, which, in our case, simply
states that primes which ramify in the field generated by the roots of P (t, λ0)
divide c′λ0(1− λ0) for some fixed c′.

So, if we can prove that the (µ, ν)-covering may be realized over Fp
in as many isomorphic ways as over Q, for many primes p, we shall ob-
tain arithmetical information about the ramification introduced by poles
and zeros of r. Take for instance the coverings described in Section 5, first
case, which lead to attained Davenport’s bounds. It seems reasonable that
primes p ≥ 5 should not impose any particular restriction on the exis-
tence of as many isomorphism classes as those possible over Q. A conse-
quence would be for instance that r could not have 6 distinct rational roots
(or poles) (otherwise two of them would be congruent mod 5). Also, the
prime factors of the discriminants of the involved polynomials would divide
6(5n′ − 1).

These considerations put further restrictions on the realizability of ex-
amples over the rationals, and perhaps in some cases could be used to bound
from below the degree of the minimal field of definition.

Some caution is, however, necessary in assuming the existence of (many)
examples mod p. Take for instance n = 4 and (3, 1) as sequence of ramifi-
cation indices above all of 0, 1,∞ (with monodromy given for instance by
the permutations (1, 2, 3), (2, 1, 4), (4, 3, 2)). Now, although 2 does not divide
the indices, no such covering is possible over F2; or take (1, 1, 6) to be the
sequence of both µ, ν, so n = 8, h = k = 3. Now the construction is easily
seen to be impossible in characteristic 7. We give the simple argument, also
because it may be fairly generalized in an obvious way. If the construction
is possible, we may write

q1l
6
1 − q2l

6
2 = h,

where the qi are quadratic monic polynomials, the li are linear, and monic,
and h has exact degree 3. Multiplying the equation by l1l2 we see that the
polynomial q1(t)l2(t)l1(0)7−q2(t)l1(t)l2(0)7−h(t)l1(t)l2(t) is divisible by t7,
whence it must vanish, since each term has degree at most 5. This, however,
contradicts the fact that the qi, lj are pairwise coprime.

The obvious generalization of this argument leads, however, to inelegant
necessary conditions on the ramifications indices. In fact, I do not have, nor
know about, any simple general conjecture about a necessary and sufficient
condition to guarantee that examples exist mod p. (Perhaps a sufficient
condition is that p divides neither the ramification indices nor the order of
the monodromy group.)
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Appendix. As announced I give an estimate, found together with Pro-
fessor R. Dvornicich, for the number D′ of weighted trees in the statement
of Proposition 2. No doubt it is not new. However, we were not able to
find a reference. So, for the sake of completeness we give a (very sketchy)
argument.

It will be convenient to count first the number Fn of rooted weighted
trees (up to isomorphism) on 2n vertices of degrees 1 or 3, and the root of
degree 1. (We recall that a rooted tree is a tree with a distinguished vertex,
its root .) Let v be the vertex joined to the root. In an obvious way the root
originates (after one edge) two new weighted trees (both having v as root),
again with each vertex of degree 1 or 3. We may consider such a new couple
of trees to be an ordered couple, corresponding to the cycle attached to v.
The following recurrence formula is then easy to prove: for n ≥ 2, we have

Fn =
∑

i+j=n

FiFj .

Also, we have clearly F0 = 0, F1 = 1. These facts at once imply the
following identity for the generating function F (x) =

∑
Fnx

n:

F (x) = x+ F 2(x),

which gives

F (x) =
1
2

(1−√1− 4x),

whence we find the “Catalan” numbers

Fn = (−1)n−1 1
2

4n
(

1/2
n

)
=

(2n
n

)

2(2n− 1)
∼ cn−3/24n,

for a certain nonzero constant c.
Now, some nonisomorphic rooted weighted trees may become isomorphic

as (non-rooted) weighted trees, but this accounts for a factor at most 2n. In
conclusion, we have

n−5/24n � D′ � n−3/24n.

Added in proof (February 1995). Recently the volume The Grothendieck Theory of
Dessins d’Enfants, edited by L. Schneps, London Math. Soc. Lecture Note Ser. 200, Cam-
bridge Univ. Press, 1994, has appeared. This contains many results connected with the
topic of the present paper, and very detailed constructions connected with Riemann’s Exis-
tence Theorem (see e.g. the first paper by Leila Schneps). In particular, I have learned from
the paper of Birch that the conjecture appearing before the present Appendix (concern-
ing the primes dividing neither the ramification indices nor the order of the monodromy
group) had in fact been proved by W. Fulton and later by S. Beckmann (Ramified primes
in the field of moduli of ramified coverings of curves, J. Algebra 125 (1989), 236–255),
using different techniques. Still, to my knowledge no criterion is known for dealing with
all primes not dividing the ramification indices.
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