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1. Introduction

Main questions. Let L be a number field with ring of integers B. Recall
that a primitive element of L is an element x ∈ L with L = Q(x). In this
paper we are concerned with the truth of the following statements.

(1.1) Every set of additive generators of B contains a primitive element
of L.

(1.2) Every Z-basis of B contains a primitive element of L.

Clearly, (1.1) implies (1.2). The question whether (1.1) is true was first
raised by A. Fajardo Mirón and H. W. Lenstra, Jr. [5, Sec. 8] when they
were looking for ways to find equation orders of small index in a given
ring of integers. Independently, H. Cohen observed in 1989 from numerical
examples that (1.2) always seems to hold for fields of small degree. Cohen
was looking for integral bases that are small in some sense, and one may
wonder if these small basis elements can all lie in small number fields.

In Section 2 we will show that (1.1) is true for Galois extensions of
prime power degree, and for certain other classes of extensions as well. We
will deduce (1.1) for all fields of degree less than 12.

It is not hard to see that (1.1) is false for any normal field whose Galois
group is dihedral of order 12. In Section 3 we prove the stronger result that
(1.2) is false for such a field too.

Notation. Throughout this paper, K ⊂ L denotes an extension of number
fields with rings of integers A ⊂ B. We let SK(B) be the A-module generated
by integers that are not primitive, i.e., generated by all x ∈ B with K(x)
6= L. The subfield integer index s(L/K) ∈ Z>0 ∪ {∞} is defined to be the
index [B : SK(B)]. Note that (1.1) is equivalent to s(L/Q) 6= 1.

For a finite group G and Z[G]-module M we let SG(M) be the additive
subgroup ofM generated by elements ofM that are fixed by some non-trivial
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element of G. We put s(G) = [Z[G] : SG(Z[G])]. If L/K is a Galois extension
with Galois group G, then SK(B) = SG(B). The exponent rather than the
order of the quotient group Z[G]/SG(Z[G]) is the invariant ε(G) that was
introduced by W. Scharlau [11] and investigated further by J. S. Hsia and
R. D. Peterson [8; 9], and S. Böge [1].

Index computations. Suppose L/K is a Galois extension with Galois
group G. For tamely ramified extensions L/K we will show in Section 4
that

(1.3) s(L/K) = s(G)[K:Q].

If G is abelian of type (p, p) then Fröhlich’s theory of “factor equivalence” [7;
2] implies that (1.3) holds without conditions on ramification. For base field
K = Q and abelian G of type (p, p, . . . , p), we also show that (1.3) holds and
we compute s(G). In general however, ramification does play a role. To show
this we will construct an extension L/K of type (2, 2, 2) for which (1.3) is
false. The argument uses some easily computed Galois cohomology groups
of rings of integers in quadratic extensions.

Acknowledgements. The author is grateful to S. Böge, H. W. Lenstra,
Jr., and the referee for helpful comments.

2. Affirmative results. In this section we prove that s(L/K) 6= 1
for certain extensions L/K, including all extensions of degree less than 12.
This implies that for these extensions any set of A-module generators of B
contains a primitive element, which confirms (1.1) and (1.2).

(2.1) Proposition. (i) If there is a prime q of L that is ramified over
all intermediate fields L′ 6= L of L/K then s(L/K) 6= 1.

(ii) If [L : K] is a power of a prime number p and there is a prime q of L
lying over p that is tamely ramified in the extension L/K, then s(L/K) 6= 1.

P r o o f. We first show (i). Denote by Bq and qq the valuation ring and
the prime ideal of the completion Lq of L at q. Let Bunr

q be the valuation ring
of the maximal subfield of Lq which is unramified over Kp, where p = q|K .
Then SK(B) lies in Bunr

q + q2
q, which does not contain B if L 6= K.

Now assume the conditions of (ii). According to Noether’s theorem [3,
p. 21; 6, p. 26] the local trace map Bq → Ap is surjective. We deduce
that TrL/K(B) 6⊂ p. For x ∈ B we have TrL/K(x) = dTrK(x)/K(x), where
d = [L : K(x)]. If K(x) 6= L then p | d and TrL/K(x) ∈ p. This shows that
TrL/K(SK(B)) ⊂ p, so that SK(B) 6= B.

The proofs above suggests two distinct techniques to deal with the tamely
ramified case and with the totally ramified case. In the next theorem a
combination of the two arguments is used for extensions of prime power
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degree. We seem to need an additional condition which is satisfied in the
case of a Galois extension.

(2.2) Theorem. Suppose that [L : K] is a power of a prime number
p, and that there is a prime p of K lying over p for which the maximal
ramification index

e = sup{e(q/p) : q prime of L with q | p}
is a power of p as well. Then s(L/K) 6= 1.

P r o o f. Let F be an unramified extension of the local field Kp such that
[F : Kp] is divisible by the residue degree f(q/p) of every extension q of p
to L. We denote the valuation ring of F by R, and its maximal ideal by r.
Since R is unramified over Ap, the ring C = B⊗AR is a product of discrete
valuation rings Cm, where m ranges over the maximal ideals of C, and the
quotient field of each Cm is a totally ramified extension of F . The maximal
occurring ramification index e(m/r) is e, and we let P be the set of those
maximal ideals m of C for which e(m/r) = e.

By case (ii) of (2.1) we may assume that e > 1. For m ∈ P we define ϕm

to be the composite map C → C/(R + m2) = m/m2 → r/r2, where the last
map sends x ∈ m/m2 to xe ∈ me/me+1 = r/r2. Since e is a power of p, the
map ϕm is a homomorphism. Define ϕ : C → r/r2 by x 7→ ∑

m∈P ϕm(x).
For x ∈ B and r ∈ R we have ϕ(x⊗ r) = reϕ(x), so if ϕ(B) were zero, then
ϕ(C) = 0, which is clearly absurd. It follows that ϕ(B) 6= 0. To prove the
theorem it suffices to show that ϕ(SK(B)) = 0.

Suppose that L′ is an intermediate field of L/K with L′ 6= L. Let B′ be
the ring of integers of L′, and put C ′ = B′ ⊗A R. Then C ′ is a product of
discrete valuation rings C ′n, with n ranging over the set of maximal ideals of
C ′. Let x ∈ B′ and fix one such factor C ′n of C ′. We claim that

∑
m ϕm(x) = 0

if we sum over all m ∈ P with m | n, i.e., m ∩ C ′ = n. By summing over n
one then deduces that ϕ(x) = 0. It remains to prove the claim.

First suppose that there is a prime m0 ∈ P with m0 | n and e(m0/n) = 1.
Since e(n/r) = e and e ≥ e(m/r) for all maximal ideals m of C, it follows that
every m | n satisfies e(m/n) = 1 and m ∈ P. If we write x = r+x0 with r ∈ R
and x0 ∈ n, then all ϕm(x) with m | n are equal to xe0 ∈ ne/ne+1 = r/r2. There
are exactly [L : L′] extensions m of n to C, because C is a free C ′-module of
rank [L : L′] and all local degrees are 1. Since [L : L′] is a non-trivial power
of p and p annihilates r/r2, it follows that

∑
m|n ϕm(x) = [L : L′]ϕm0(x) = 0.

Now suppose that there is no such m0. For every m ∈ P with m | n of C
we then have e(m/n) > 1, so that C ′n ⊂ R+ m2 and ϕm(x) = 0. This proves
the claim.

(2.3) Corollary. If the Galois closure of L over K has prime power
degree, then s(L/K) 6= 1.
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P r o o f. If [L : K] is a power of a prime p, and p is a prime of K lying
over p, then the hypothesis implies that e(q/p) is a power of p for all primes
q of L with q | p.

In the case that the Galois group is abelian of type (p, p) this corollary
can also be deduced from Fröhlich’s theory of factor equivalence; see (4.3).

(2.4) Corollary. If [L : K] = p2 for some prime number p, or if
[L : K] = 8, then s(L/K) 6= 1.

P r o o f. First suppose [L : K] = p2. Let p be any prime of K lying over p
and let e be as in (2.2). If e > p then we are in case (i) of (2.1), and if e < p
then case (ii) of (2.1) applies. If e = p then (2.2) finishes the argument.

Now suppose that [L : K] = 8. If e is odd or e > 4 then (2.1) gives the
result. This only leaves the cases e = 2 and e = 4, which are instances of
(2.2).

(2.5) Proposition. If the degree of L/K is 2p with p prime, then
s(L/K) 6= 1.

P r o o f. We can assume that p is odd and that K⊗ASK(B) = L. We first
show that L/K is Galois with dihedral Galois group. There is at most one
intermediate field of degree 2 over K, because otherwise L would contain a
biquadratic extension of K, so that 4 | [L : K]. Since K ⊗A SK(B) = L this
implies that there are at least two intermediate fields L1 and L2 of degree p
over K. Now L is Galois over L1 and L2, so it is Galois over L1 ∩ L2 = K,
and we denote the Galois group by G. Note that L 6= SGL if G is cyclic, so
G must be dihedral. We first compute s(G).

(2.6) Lemma. If G is dihedral of order 2p, with p prime, then s(G) = p.

P r o o f. The group G can be presented as G = 〈σ, % | σ2 = %p = 1;σ% =
%−1σ〉. We claim that S = SG(Z[G]) is the kernel of the ring homomorphism
f : Z[G]→ Fp that maps % to 1 and σ to −1. Clearly, S ⊂ Ker f . Note that
σ%i ≡ −1 mod S and %i ≡ −σ%i ≡ 1 mod S. Since 1 + % + . . . + %p−1 ∈ S
this shows that p ∈ S, and the other inclusion follows.

We continue the proof of (2.5). Let p be a prime of K lying over p and
let e be the ramification index of p in L/K. Suppose e is coprime to p so
that L/K is tamely ramified at p. By Noether’s theorem [6, pp. 26–28] there
is a G-module isomorphism B ⊗A Ap

∼= Ap[G], where Ap is the completion
of A at p. Since p | p and p | s(G) we have Ap[G] 6= SG(Ap[G]), which implies
that B 6= SG(B).

If e = 2p we are done by (2.1), so the only case that remains is e = p.
Then pB = ap, where a is a G-stable B-ideal, which is either a prime of
degree 2 over p or the product of two primes of degree 1. If we let B′ = B〈%〉

then B = B′ + a. Consider the canonical G-equivariant map ϕ : B →
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B/(B′+ a2) = a/a2. The image of G in Aut(a/a2) is of order 2, so elements
of B that are fixed by some element of G of order 2 are mapped to the G-
invariant part of a/a2. Together with the fact that ϕ(B′) = 0, this implies
that ϕ(SG(B)) ⊂ (a/a2)G, which is strictly contained in a/a2. It follows that
B 6= SG(B) because ϕ is surjective.

(2.7) Corollary. If the degree of L over K is less than 12, then
s(L/K) 6= 1.

P r o o f. The statement is trivial if [L : K] is prime, and (2.4) and (2.5)
cover all other possibilities.

3. Counterexamples. In this section we show that (1.1) and (1.2) are
false for Galois extensions of Q with dihedral Galois group of order 12.

Assume that L/K is a Galois extension with Galois group G. First note
that s(L/K) < ∞ if and only if SG(L) = L. The normal basis theorem
implies that L is isomorphic to K[G] as a K[G]-module, so that s(L/K) <∞
is equivalent to SG(K[G]) = K[G], which in turn is equivalent to s(G) <∞.
We mention two observations of Scharlau [11] in this context, which will not
be needed in the sequel:

(i) s(G) is finite if and only if G has no fixpoint-free complex represen-
tations;

(ii) if s(G) <∞ then all primes dividing s(G) divide the order of G.

Here we say that an action of G on a vector space V is fixpoint-free if gv = v
implies that g = 1 or v = 0.

We will use the fact that s(G) is a finite power of p if G contains an
abelian subgroup H of type (p, p). To see this, one notes the following iden-
tity between the elements NH′ =

∑
σ∈H′ σ ∈ Z[G] for subgroups H ′ of

H:

(3.1) p = −NH +
∑

H′⊂H
NH′ ,

where H ′ runs over the p+ 1 subgroups of H of order p.

(3.2) Proposition. If s(G) < ∞ then s(L/K) < ∞ and all prime
divisors of s(L/K) divide s(G). We have s(L/K) = 1 if s(G) = 1.

P r o o f. Clearly the second statement is implied by the first. It is obvious
that SG(Z[G]) · B ⊂ SG(B). Since s(G) · 1 ∈ SG(Z[G]) this shows that
s(G)B ⊂ SG(B). The index [B : s(G)B] is a power of s(G), and this implies
our statement.

We can now make counterexamples to (1.1) by finding groups G with
s(G) = 1. If G is abelian of type (6, 6), then G contains both a subgroup of
type (2, 2) and a subgroup of type (3, 3). This implies that s(G) is both a
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power of 2 and of 3, so that s(G) = 1. It follows that (1.1) is false for abelian
extensions of Q of type (6, 6). The reader is invited to show that for abelian
G we have s(G) = 1 if and only if G contains subgroups of type (p, p) and
(q, q) for two distinct primes p and q.

An example of smaller degree is the dihedral group G of order 12. In
this case G contains an abelian subgroup V4 of type (2, 2), and a subgroup
isomorphic to S3, the symmetric group of order 6. We already showed in
(2.6) that s(S3) = 3, and since s(V4) = 2 we deduce again that s(G) = 1.
We have thus shown that any dihedral extension of Q of degree 12 is a
counterexample to (1.1).

It is not clear immediately whether (1.2) fails to hold for Galois exten-
sions of Q for which the Galois group G satisfies s(G) = 1, because for that
we would need to produce an integral basis, rather than a set of generators,
consisting of elements of subfields. In the rest of this section we will show
how to make such a basis in the dihedral case of degree 12.

(3.3) Lemma. Let F ⊂ E be an extension of number fields with rings
of integers AE and AF . Then the quotient AE/AF is torsion free. If E is
the composite of two extensions E1 and E2 of F of coprime degrees, then
AE/(AE1 +AE2) is torsion free.

P r o o f. If x ∈ AE satisfies kx ∈ AF for some k ∈ Z>0 then x ∈ F ∩AE =
AF , which shows the first statement.

Let p be a prime number. To show that AE/(AE1 + AE2) has no p-
torsion we suppose that x ∈ AE with px ∈ AE1 + AE2 and we will show
that x ∈ AE1 +AE2 . Assume that p does not divide n = [E1 : F ] = [E : E2]
by switching E1 and E2 if necessary. Write px = a1 + a2 with ai ∈ AEi , so
that TrE/E2(px) = TrE1/F (a1) + na2. We have

na2 = pTrE/E2(x)− TrE1/F (a1) ∈ pAE2 +AF

and p -n, so a2 ∈ pAE2 +AF . Let a2 = a′2 + r with a′2 ∈ pAE2 and r ∈ AF .
Putting a′1 = a1 − r ∈ AE1 we have px = a′1 + a′2 and a′1 ∈ AE1 ∩ pAE .
We already know that AE/AE1 is torsion free, so AE1 ∩ pAE = pAE1 . This
shows that both a′1 and a′2 are divisible by p, so that x ∈ AE1 +AE2 .

(3.4) Proposition. If L/K is a Galois extension whose Galois group is
isomorphic to the dihedral group of order 12, then s(L/K) = 1. Furthermore,
if the class number of K is one, then there is an integral basis not containing
a field generator for L/K.

P r o o f. We already showed the first statement. Suppose that the class
number of K is 1, so that every finitely generated torsion free A-module is
free. The Galois group can be presented as 〈σ, % | σ2 = %6 = 1;σ% = %−1σ〉.
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We now make an A-basis for B as follows. First take a basis of B〈%
2〉,

which consists of 4 elements. Since B〈%
3〉/B〈%〉 is torsion free, we can find

4 elements of B〈%
3〉 that give a basis for the quotient group, and we get

a set of A-generators for B〈%
2〉 + B〈%

3〉 of 8 elements. By (3.3), there are 2
elements of B〈σ〉 that generate B〈σ〉/(B〈σ,%

2〉+B〈σ,%
3〉) as an A-module, and

2 elements of B〈σ%〉 generating B〈σ%〉/(B〈σ%,%
2〉 + B〈σ%,%

3〉). Adding these 4
elements to our set of generators we get 12 elements generating the A-module
B〈%

2〉 +B〈%
3〉 +B〈σ〉 +B〈σ%〉. This sum is equal to B, as one can infer from

the identity

1 = (1 + %2 + %4)− (1 + %3)− (1 + σ)(%2 + %4 + σ%)

+ (1 + σ%)(1 + %3 + σ%2).

4. The subfield integer index. So far we were only interested in
whether or not the subfield integer index s(L/K) is equal to 1. In this sec-
tion we examine it more precisely for Galois extensions L/K. The following
proposition reduces the tamely ramified case to the computation of the group
theoretic invariant s(G), where G = Gal(L/K).

(4.1) Proposition. Suppose that L/K is tamely ramified at all primes
of K that divide s(G). Then we have

(4.2) s(L/K) = s(G)[K:Q].

P r o o f. Let p be a prime number that divides s(G). By Noether’s the-
orem [6, pp. 26–28] there exists a Zp[G]-module isomorphism B ⊗Z Zp ∼=
Ap[G], where Ap = A ⊗Z Zp. Since Ap is free over Zp of rank n = [K : Q],
the G-module Ap[G] is a direct sum of n copies of Zp[G]. This shows that
the p-parts of s(L/K) and of s(G)n are equal. By (3.2) all primes dividing
s(L/K) also divide s(G), so the proof is complete.

Our main theme for the rest of this note will be the question whether
(4.2) also holds for wildly ramified extensions. In certain situations, for in-
stance when G is abelian of type (p, p) or dihedral of order 2p for some
prime p, one can prove that (4.2) holds without hypothesis on ramification
by using “factor equivalence”. We will not address the dihedral case here,
but we will sketch the argument for the bicyclic case.

Suppose that the Galois group G is abelian. For any G-module M let
CG(M) ⊂ M be the submodule generated by those m ∈ M that are fixed
by a cocyclic subgroup, i.e., a subgroup H of G with G/H cyclic. In [4] a
formula is given for the index c(G) = [Z[G] : CG(Z[G])]. The next theorem
asserts that the index [B : CG(B)], which could be called the “cyclic subfield
integer index”, does not depend on ramification.
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(4.3) Theorem. If L/K is abelian then [B : CG(B)] = c(G)[K:Q]. If G
is abelian of type (p, p) for a prime number p, then s(L/K) = s(G)[K:Q].

The second statement is a special case of the first. By an argument of
Burns [2, §1] the index [M : CG(M)] only depends on the G-module struc-
ture of M up to a relation called “factor equivalence”. Using the conductor
discriminant product formula, Nelson and Fröhlich [7] have shown that B is
factor equivalent a direct sum of [K : Q] copies of Z[G]. Thus (4.3) follows.
A full account of the proof is given in [4].

Let G be an abelian group of type (p, p, . . . , p), with p a prime number,
and assume that G has order pn with n ≥ 2. The group ring Fp[G] is a local
ring because the ideal m generated by the elements σ − 1 with σ ∈ G is
maximal and it is nilpotent.

(4.4) Proposition. The ideal SG(Z[G]) of Z[G] is the kernel of the
canonical homomorphism Z[G]→ Fp[G]/mp−1, and s(G) = p(

n+p−2
n ).

P r o o f. Choose generators σ1, . . . , σn of G and let xi = σi − 1 ∈ Fp[G].
We have m = (x1, . . . , xn). The ring homomorphism Fp[X1, . . . , Xn] ³
Fp[G] sending Xi to xi has kernel (Xp

1 , . . . , X
p
n). It follows that the mono-

mials in x1, . . . , xn of degree at most p−2 form an Fp-basis of Fp[G]/mp−1.
There are exactly

(
n+p−2
n

)
such monomials, so it remains to prove the first

statement.
Let f : Z[G] → Fp[G] be the canonical map. Since n ≥ 2 the relation

(3.1) implies that Ker f ⊂ SG(Z[G]). We need to show that f(SG(Z[G])) =
mp−1. Note that SG(Z[G]) is generated as a Z[G]-ideal by the elements
Nσ = 1 +σ+ . . .+σp−1 with σ ∈ G. In the field Fp(X) we have the identity

1 +X + . . .+Xp−1 =
Xp − 1
X − 1

=
(X − 1)p

X − 1
= (X − 1)p−1.

This shows that f(Nσ) = (f(σ)− 1)p−1 ∈ mp−1. For a1, . . . , an ∈ Z we have

f(σa1
1 . . . σann )− 1 ≡ a1x1 + . . .+ anxn mod m2

and it follows that m/m2 = {(f(σ)− 1) mod m2 : σ ∈ G}. We now claim:

(4.5) the Fp[x1, . . . , xn]-ideal mk is generated by {xk : x ∈ m}
if 0 ≤ k < p.

This claim implies that the elements f(Nσ) = (f(σ)− 1)p−1 generate mp−1

modulo mp, and by Nakayama’s lemma they then generate mp−1 as an Fp[G]-
ideal. Thus (4.4) follows. It remains to prove (4.5).
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First assume that n = 2. The elements βj = xj1x
k−j
2 with j = 0, 1, . . . , k

form an Fp-basis of mk/mk+1. For i = 0, 1, . . . , k we have

(ix1 + x2)k =
∑

j

aijβj with aij =
(
k

j

)
ij ∈ Fp.

Here we take 00 = 1. The determinant of (aij) is a product of binomial
coefficients and a Vandermonde determinant

det(aij) =
k∏

j=0

(
k

j

)
×

∏

0≤j<i≤k
(i− j).

All factors are units modulo p because k < p, so the elements (ix1 + x2)k

generate mk/mk+1 as an Fp-vector space. By Nakayama’s lemma, we deduce
that this set generates mk as an R-ideal, and this finishes the case n = 2.

To prove (4.5) for n > 2, we proceed by induction. Suppose we know
(4.5) for the subring R′ = Fp[x1, . . . , xn−1], with maximal ideal m′. For non-
negative integers a1, . . . , an with sum k we want to express xa1

1 . . . xann as an
R-linear combination of elements xk with x ∈ m. First, use the induction
hypothesis to express xa1

1 . . . x
an−1
n−1 as an R′-linear combination of powers

yk−an of elements y in m′. By the case n = 2, we can express each element
yk−anxann as an Fp[y, xn]-linear combination of elements of the form (ay +
bxn)k, with a, b ∈ Fp. Since ay + bxn lies in m this completes the induction
step.

(4.6) Proposition. Let L be an abelian extension of K = Q whose
Galois group G is of prime exponent p and rank n > 1. Then s(L/Q) =

s(G) = p(
p+n−2
n ).

P r o o f. We know that s(G) = p(
p+n−2
n ) and by (3.2) the index s(L/K)

is a power of p. For an abelian group M put Mp = M ⊗Z Zp. We need to
show that [Bp : SG(Bp)] = s(G).

All primes of L lying over p have the same inertia group I. Let H be a
subgroup of G such that G = I × H. Put Bram

p = BHp and Bunr
p = BIp , so

that Bram
p is totally ramified and Bunr

p is unramified. Denote Zp[G] by Λ.
Note that SG(Λ) is the Λ-ideal generated by the elements NH′ =

∑
σ∈H′ σ,

with H ′ ranging over the minimal subgroups of G. It follows that

SG(Λ)Bp =
∑

H′
TrL/LH′ (Bp).

If H ′ is a minimal subgroup of G which is not contained in I, then L is
unramified over LH

′
above p and TrL/LH′ (Bp) = BH

′
p . The multiplication

map from the tensor product Bram
p ⊗Bunr

p over Zp to Bp is an isomorphism
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of Λ-modules. We deduce that SG(Bp) is the image of

SI(Bram
p )⊗Bunr

p + SG(Λ)(Bram
p ⊗Bunr

p ).

Putting M0 = Bram
p /SI(Bram

p ) and M = M0 ⊗Bunr
p , we see that

Bp/SG(Bp) ∼= M/SG(Λ)M.

Now apply the same argument to the Λ-module Λ ∼= Zp[I]⊗ Zp[H] instead
of the module Bp ∼= Bram

p ⊗Bunr
p . It follows that

Λ/SG(Λ) ∼= M ′/SG(Λ)M ′,

where M ′ = M ′0 ⊗ Zp[H] with M ′0 = Zp[I]/SI(Zp[I]). The proposition fol-
lows if we show that M and M ′ are isomorphic Λ-modules. Since Bunr

p is
isomorphic to Zp[H] as a Zp[G]-module and H acts trivially on M0 and M ′0,
it suffices to show that M0 and M ′0 are isomorphic as Zp[I]-modules.

We can bound I with local class field theory: the local Artin map gives
a surjective group homomorphism Z∗p → I (see [10, p. 221]). The index
[Z∗p : (Z∗p)p] is equal to p if p is odd, and it is equal to 4 if p = 2. Since I
is annihilated by p, it follows that #I ≤ p if p is odd and that #I ≤ 4 if
p = 2.

If I is trivial then M0 = Zp = M ′0. If I is of rank 1 then M0 and M ′0 are
isomorphic over Zp[I] because they are torsion free modules over the discrete
valuation ring Zp[I]/ZpNI ∼= Zp[ζp] of the same Zp-rank. Finally, suppose
that the rank of I is 2, so that p = 2. Both M0 and M ′0 have cardinality 2
by (4.3) and they can only have trivial I-action. In all cases this shows that
M0 and M ′0 are Zp[I]-isomorphic.

In the rest of this section it is shown that (4.6) does not hold without
the assumption that K = Q. We will construct a counterexample to (4.2) of
type (2, 2, 2) with a base field K that can be chosen to have degree 6 over
Q. We use a computation of some easy instances of the 1-cohomology of the
ring of integers.

(4.7) Proposition. There is a Galois extension L/K of number fields
with abelian Galois group G of type (2, 2, 2) for which s(L/K) 6= s(G)[K:Q].

P r o o f. It suffices to construct L/K over the field Q2 of 2-adic num-
bers. One can then construct dense number fields as in [10, p. 44] to show
the proposition. Let K be a finite extension of Q2 satisfying the following
conditions:

(i) the absolute ramification index a is even;
(ii) the residue degree of K is at least 3.

Put n = [K : Q2], and let p be the maximal ideal of the ring of integers A of
K. For i ≥ 1 put Ui = 1 + pi. Note that U2

1 ⊂ U2 and that U1/U2
∼= p/p2 is

a finite abelian group of exponent 2 and rank at least 3. Pick a subgroup X
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of order 8 of U1/U
2
1 such that the composite map X ⊂ U1/U

2
1 → U1/U2 is

injective. Now let L = K(
√
X). It follows that all cyclic intermediate fields

are of the form K(
√

1 + π), where π is a prime element of K. Note that
K(
√

1 + π) is an extension of K with ramification index 2, prime element 1−√
1 + π and discriminant 4A. Put G = Gal(L/K) and recall that s(G) = 2.

Let G0 be a subgroup of order 4 in G. Put B0 = BG0 , and let B1, B2, B3

be the intermediate rings of integers of B0 ⊂ B. Consider the following exact
sequence of A[G]-modules:

0→ (B0)2 f→B1 ⊕B2 ⊕B3
g→B1 +B2 +B3 → 0,

where f is given by f(x, y) = (x, y − x,−y) and g by g(x, y, z) = x+ y + z.
By (4.3) we know that B1 + B2 + B3 is of index 22n in B. Now let H be
any subgroup of G of order 2 that does not lie in G0. We will show that
BH ⊂ B1 + B2 + B3. It then follows that SG(B) = B1 + B2 + B3, so that
[B : SG(B)] equals 22n rather than 2n = s(G)[K:Q2].

Take H-invariants of the short exact sequence above. This gives a long
exact sequence of A-modules

0→ (BH0 )2 → BH1 ⊕BH2 ⊕BH3 → (B1 +B2 +B3)H

→ H1(H,B0)2 ϕ→ H1(H,B1)⊕H1(H,B2)⊕H1(H,B3)→ . . .

We know by (4.3) that [BH : BH1 + BH2 + BH3 ] = 2n. Since (B1 + B2 +
B3)H ⊂ BH we are done if we can show that the index of BH1 +BH2 +BH3 in
(B1+B2+B3)H is at least 2n. We therefore need to show that # Kerϕ ≥ 2n.
The following lemma, which is a special case of a result of Sen [12], enables
us to determine the cohomology groups with their A-module structure.

(4.8) Lemma. Let F ⊂ E be a quadratic extension of 2-adic fields with
Galois group G and rings of integers AF ⊂ AE. Assume that the different
D of AE over AF divides the ideal 2AE. Then D = d · AE for a unique
AF -ideal d, and H1(G,AE) is isomorphic to AF /d as an AF -module.

P r o o f. We may assume that E is ramified over F . Let π be a prime
element of E and let G = {1, σ}. One checks that D = tAE where t =
TrE/F (π) ∈ AF . Recall that H1(G,M) = M−/(σ − 1)M , where M− =
{m ∈ M : σm = −m}. In this case we have (σ − 1)AE = (t − 2π)AF and
(AE)− = (1− (2/t)π)AF , so H1(G,AE) ∼= AF /tAF .

We return to the proof of (4.7). All intermediate fields of L/K that are
quadratic over K have discriminant 4A, and those that are quartic over K
have discriminant 64A by the conductor discriminant product formula. This
implies that DB0/A = 2B0, and that DBi/BHi = aBHi if i = 1, 2, 3, where a

is the unique ideal of A with a2 = 2A.
The lemma implies that H1(H,B0) is A-isomorphic to A/2A, and that

H1(H,Bi) is BHi -isomorphic to BHi /aB
H
i . In particular the image of ϕ is
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annihilated by a. This means that aH1(H,B0)2 lies in the kernel of ϕ. Since
#(a/2A) = 2n/2 this implies that the kernel has at least 2n elements, as
required. This proves (4.7).

References

[1] S. B öge, Die ε-invariante von SL(2, p), Arch. Math. (Basel) 46 (1986), 299–303.
[2] D. Burns, Factorisability, group lattices, and Galois module structure, J. Algebra

134 (1990), 257–270.
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