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On the equation
x(x+ 1) . . . (x+ k − 1) = y(y + d) . . . (y + (mk − 1)d), m = 1, 2

by

N. Saradha (Bombay), T. N. Shorey (Bombay)
and R. Tijdeman (Leiden)

1. Introduction. For distinct positive integers d1 and d2 the authors
[7] considered the equation

(1) x(x+ d1) . . . (x+ (k − 1)d1) = y(y + d2) . . . (y + (k − 1)d2)

in integers x > 0, y > 0, k ≥ 2.

There is no loss of generality in assuming that d1 < d2 and gcd(x, y, d1, d2)
= 1. Then the authors proved that there exists an effectively computable
number C such that equation (1) implies that either

max(x, y, k) ≤ C
or

(2) x = k + 1, y = 2, d1 = 1, d2 = 4.

In this paper we shall consider equation (1) with d1 = 1 and d2 ≥ 2, i.e.

(3) x(x+ 1) . . . (x+ k − 1) = y(y + d) . . . (y + (k − 1)d)

in integers x > 0, y > 0, k ≥ 2

where, for convenience, we write d for d2. We prove

Theorem 1. Assume equation (3). Then y ≤ k2d2/12. Moreover , if k
or d is odd , then y ≤ k2d2/24.

If d ≤ k + 1, then there is a prime p ≤ d which divides y. By comparing
the orders to which p divides both sides of (3) we shall show

Theorem 2. Assume equation (3) with d ≤ k + 1. Then y ≡ 2 (mod 4)
and d = 2l for some integer l ≥ 2.

Equation (3) has no solutions for d = 2, and infinitely many solutions
for d = 4 in view of (2). If d is a higher power of 2, then we can use the
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arguments of Section 4 of [7] to derive upper bounds for k, x and y, but
these bounds are unpractical.

We show for small values of d how all solutions of (3) can be found in a
practical way if d has an odd prime divisor. It will be shown that for k = 2
there exists a solution for any d and that for k = 3 there is a solution for
any d which is not divisible by 3. We do not know any solution for k ≥ 4
except for (2) and 20×21×22×23 = 7×20×33×46 due to M. Mirkowska
and A. Mąkowski [4] and Ya. Gabovich [3], respectively. We shall compute
all solutions for d = 2, 3, 5, 6, 7, 9 and 10.

For positive integers d1 and d2, Saradha and Shorey [5], [6] considered
the equation

(4) x(x+ d1) . . . (x+ (k − 1)d1) = y(y + d2) . . . (y + (2k − 1)d2)

in integers x > 0, y > 0, k ≥ 2.

Saradha and Shorey [6] proved that equation (4) implies that either
max(x, y, k) ≤ C1 or k = 2, d1 = 2d2

2, x = y2 + 3d2y where C1 is an ef-
fectively computable number depending only on d1 and d2. In this paper,
we consider equation (4) with d1 = 1. It was shown in [5] that equation
(4) with d1 = d2 = 1 has only one solution, namely, (x, y, k) = (8, 1, 3).
Therefore, we assume that d1 = 1 and d2 ≥ 2, i.e.

(5) x(x+ 1) . . . (x+ k − 1) = y(y + d) . . . (y + (2k − 1)d)

in integers x > 0, y > 0, k ≥ 2

where, as earlier, we write d for d2. By pairing the factors on the right hand
side of equation (5), we rewrite (5) as

(6) x(x+ 1) . . . (x+ k − 1) =
k−1∏

j=0

(u+ j(2k − 1− j)d2),

where
u = y(y + (2k − 1)d).

Further, we define

(7) θ =





3 if k ≡ 1, 2 (mod 3) or d ≡ 0 (mod 3),
1 if k ≡ 0 (mod 6) and d 6≡ 0 (mod 3),
2 if k ≡ 3 (mod 6) and d 6≡ 0 (mod 3).

We shall prove the following results on equation (5) analogous to Theo-
rems 1 and 2.

Theorem 3. The equation (5) implies that

u ≤ (.44)k4d4/θ.

Theorem 4. The equation (5) with d ≤ k + 1 implies that k ≤ 35 and
that d = 2l for some integer l ≥ 2.
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We apply Theorems 3 and 4 to compute all solutions of equation (5)
with d = 5, 6. For this and for computing all the solutions of equation
(3) with d = 2, 3, 5, 6, 7, 9, 10, a pocket calculator is sufficient. We assume
tacitly that equation (3) holds in Sections 2–6 and that equation (5) holds
in Sections 7–9.

2. Equation (3) with d prime. The following simple observation turns
out to be very useful.

Lemma 1. If p is a prime with p | d and p ≤ k + 1, then p | y.

P r o o f. If p divides d and the left hand side of (3), then it divides the
right hand side and hence y.

If p ≤ k+1 and p does not divide the left hand side of (3), then p = k+1
and x ≡ 1 (mod p). It follows that the left hand side is ≡ k! = (p−1)! ≡ −1
(mod p). However, the right hand side of (3) is ≡ 0 or 1 (mod p). Since
p = k + 1 ≥ 3 this is a contradiction.

Lemma 2. If d is prime, then k ≤ d− 2.

P r o o f. Suppose d < k + 2. Then d | y by Lemma 1. Since y < x and
y + (k − 1)d > x + k − 1 in view of (3), all multiples of d occurring on the
left hand side of (3) also occur on the right hand side. Divide the common
factors on both sides. Then the remaining left hand side is not divisible by
d, whereas the remaining right hand side is a multiple of d.

Corollary 1. d ≥ 4.

P r o o f. By Lemma 2 and k ≥ 2.

3. Proof of Theorem 1. We use the same notation as in [7]. In partic-
ular x = x+ (k− 1)/2, x = x+ k− 1, y = y + (k− 1)d/2, y = y + (k− 1)d.

Lemma 3. x ≤ y − 1/2.

P r o o f. This is Lemma 1 of [7].

The following lemma is a refinement of Lemma 2 of [7] in case d1 = 1,
d2 = d.

Lemma 4. Put h = y − x. Let h ≥ ∆ > 0. If k = 2, then

(8) y ≤ d2 − 1
8∆

+
∆

2
.

If k = 3, then

(9) y ≤ d2

3∆
+∆.
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If k ≥ 2 and d ≥ ∆√6, then

(10) y <
k2d2

24∆
+ k∆.

P r o o f. We shall use the fact that

y − x = y − x+
(k − 1)(d− 1)

2
<

(k − 1)(d− 1)
2

.

If k = 2, then (3) implies 4x2 − 1 = 4y2 − d2. Hence

4y2 − d2 ≤ 4(y −∆)2 − 1 = 4y2 − 8y∆+ 4∆2 − 1,

which implies (8). If k = 3, then (3) implies x3 − x = y3 − d2y. Hence

y3 − d2y ≤ (y −∆)3 ≤ y3 − 3∆y2 + 3∆2y,

which implies (9).
For the proof of (10), we may assume that k ≥ 4, otherwise (10) follows

from (8) and (9). Suppose y ≥ k2d2/(24∆) + k∆. Hence y ≥ (1/6)
√

6k3/2d.
As in the proof of Lemma 2 of [7] we have on the one hand, by k2∆ ≤
k2d2/(6∆) < y/4,

G2(y) = G1(x) < xk ≤ (y −∆)k ≤ yk − k∆yk−1 + 1
2k

2∆2yk−2

and, on the other hand,

G2(y) ≥ yk − 1
24
k(k2 − 1)d2yk−2 −

[k/2]∑
ν=3

k3ν

23ν3ν
d2νyk−2ν ,

where

G1(Z) =
(
Z − k − 1

2

)(
Z − k − 3

2

)
. . .

(
Z +

k − 1
2

)

and

G2(Z) =
(
Z − (k − 1)d

2

)(
Z − (k − 3)d

2

)
. . .

(
Z +

(k − 1)d
2

)
.

Combining both estimates we obtain

(11) y ≤ k∆

2
+

(k2 − 1)d2

24∆
+

1
k∆

[k/2]∑
ν=3

k3ν

24ν
d2νy2−2ν .

By our assumptions we have

k3d2

24y2 =
1
4

(
k3/2d√

6y

)2

≤ 1
4
.

Hence the last term of (11) is bounded by

k8d6

243∆y4

∞∑
ν=0

(
k3d2

24y2

)ν
≤
(
k2d2

24∆y

)2(
k3/2d√

6y

)2
k∆

3
≤ k∆

3
.
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So, by (11), we have y < k2d2/(24∆) + k∆.

Corollary 2. We have

x = x+
k − 1

2
≤ y +

k

2
− 1 <

k2d2

12
+ k.

Moreover , if k or d is odd , then

x ≤ y +
k

2
− 1 <

k2d2

24
+

3k
2
.

P r o o f. The first formula follows from Lemmas 3 and 4 by taking ∆ =
1/2. If k or d is odd, then h ∈ Z. By Lemma 3 we can therefore take ∆ = 1
in Lemma 4. This yields the second upper bound for x.

P r o o f o f T h e o r e m 1. Put ∆ = 1/2 and 1, respectively, in (10) and
use the fact that

y = y − k − 1
2

d ≤ y − 2(k − 1)

by Corollary 1.

4. Proof of Theorem 2. In this section we elaborate the idea used in
Section 2.

Lemma 5. Suppose (3) holds and d is divisible by a prime p which also
divides y. Then

(12) k ordp(d) + ordp(k) <
log x
log p

if ordp(y) ≥ ordp(d)

and

k

(
ordp(y)− 1

p− 1

)
< k ordp(y)− ordp((k − 1)!) <

log x
log p

if ordp(y) < ordp(d).

P r o o f. The power of p dividing the left hand side of (3) is positive and
at most

max
0≤i<k

ordp(x+ i) + ordp((k − 1)!) <
log x
log p

+ ordp((k − 1)!).

If ordp(y) ≥ ordp(d), then p divides the right hand side at least to the power
k ordp(d)+ordp(k!). If ordp(y) < ordp(d), then p divides the right hand side
exactly to the power k ordp(y). Compare upper and lower bounds and use
the fact that ordp((k − 1)!) < k/(p− 1).

P r o o f o f T h e o r e m 2. We shall apply, without reference, several
times Lemma 5 to obtain a lower bound for x and Corollary 2 to obtain an
upper bound for x in the proof of Theorem 2. Assume that d ≤ k + 1. Let
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p be a prime factor of d. Then p | y by Lemma 1. If p ≥ 5, then

53k/4 ≤ pk(1−1/(p−1)) < x <
k2d2

12
+ k ≤ k2(k + 1)2

12
+ k,

which yields a contradiction for all k ≥ 2.
If p = 3, then

3k < x <
k2(k + 1)2

12
+ k if ord3(y) ≥ ord3(d),

which gives a contradiction for all k ≥ 2, and

3k(ord3(y)−1/2) < x <
k2(k + 1)2

12
+ k if ord3(y) < ord3(d).

In the latter case ord3(y) = 1 and 9 | d and k ≤ 16. Since d ≤ k+ 1, we have
d = 9. Hence,

3k−ord3((k−1)!) < x <
27k2

8
+

3k
2
,

which is impossible, since k ≥ d− 1 = 8.
If p = 2 and 4 - d, then

2k+ord2(k) < x <
k2d2

12
+ k ≤ k2(k + 1)2

12
+ k.

This implies k ≤ 9. Hence, we derive from Corollary 1 that d ∈ {6, 10}, but
these cases were treated when dealing with p = 3 and p = 5.

If p = 2 and 4 | d, then either ord2(y) = 1 or

2k+1 ≤ 22k−ord2((k−1)!) < x <
k2d2

12
+ k ≤ k2(k + 1)2

12
+ k.

The latter case is impossible for all k ≥ 2. Thus d has no odd prime divisor,
4 | d and y ≡ 2 (mod 4).

5. Equation (3) with k = 2 and k = 3. Let d be fixed. If k = 2, 3 all
solutions of (3) in integers x > 0 and y > 0 can be found by the following
algorithms.

Algorithm for k = 2. For h = [
√
d−3/2]+1, . . . , [(d−2)/2] compute y =

(h2 +h)/(d−2h−1). If y ∈ Z, then a solution is given by (x, y) = (y+h, y).

P r o o f. Suppose x(x + 1) = y(y + d). Put x = y + h. Then h > 0
and 2yh + h2 + y + h = yd. Hence y = (h2 + h)/(d − 2h − 1). Note that
d − 2h − 1 ≤ h2 + h whence h >

√
d − 3/2 and that 2h < d − 1 whence

h ≤ (d− 2)/2.

R e m a r k. If d is even, then h = (d− 2)/2 yields the solution

(x, y) =
(
d2 − 4

4
,
d2 − 2d

4

)
.
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If d is odd, then h = (d− 3)/2 yields the solution

(x, y) =
(
d2 − 9

8
,
d2 − 4d+ 3

8

)
.

Algorithm for k = 3. For h = 1, 2, . . . , d−2 check whether (d2+3h2−1)2−
12h2(h2−1) is a square, D2 say. If so, check whether (d2 +3h2−1±D)/(6h)
is an integer y with y > d. If so, then (x, y) = (y − h− 1, y − d) provides a
solution.

P r o o f. Suppose x(x+1)(x+2) = y(y+d)(y+2d). Then x3−x = y3−d2y.
Put y = x+ h. Then h > 0 and 3hy2 − (d2 + 3h2 − 1)y+ h3 − h = 0. Hence

y =
d2 + 3h2 − 1±D

6h
where D =

√
(d2 + 3h2 − 1)2 − 12h2(h2 − 1).

R e m a r k. If d is not a multiple of 3, then h = 1 leads to the solution

(x, y) =
(
d2 − 4

3
,
d2 − 3d+ 2

3

)
.

6. Complete solutions of equation (3) for small values of d. We
assume that (3) holds. We deal with d satisfying d ≤ 10. We determine all
the solutions for the d’s which are not perfect powers of 2. For the treatment
of powers of 2 we refer to Section 4 of [7]. Extensive computation would be
needed to determine all solutions in that way.

C a s e d = 4. By Lemma 1, y is even. By Lemma 5 and Corollary 2,

22k < x <
4k2

3
+ k if ord2(y) ≥ 2,

which is impossible for k ≥ 2. Thus y ≡ 2 (mod 4). For every k there is a
solution (k, x, y) = (k, k + 1, 2) according to (2). The (finitely many) other
solutions can be determined by the method described in [7], but none is
known.

C a s e d = 5. By Theorem 2 we have k ≤ 3. According to the algorithms
in the previous section all solutions are given by (k, x, y) = (2, 2, 1), (3, 7, 4).

C a s e d = 6. By Theorem 2 we have k ≤ 4. Hence, by Lemma 1, 3 | y.
Then, by Lemma 5 and Corollary 2,

3k+ord3(k) < x < 3k2 + k.

This is impossible for k = 3, 4. For k = 2 the algorithm yields one solution,
namely (x, y) = (8, 6).

C a s e d = 7. By Theorem 2, we have k ≤ 5. Suppose 7 | y. Then, by (12)
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and Corollary 2, we have

7k < x <
49
24
k2 +

3
2
k,

which has no solutions. Hence 7 - y. For k = 2, the algorithm yields (x, y) =
(5, 3) and for k = 3 we find (x, y) = (4, 1) and (15, 10). If k = 4, then (10)
gives y < 37 if h = 1 and y < 25 if h ≥ 2. We further know that x ≡ 1, 2, 3
(mod 7) and h ≤ 8. Now, it is easy to exclude all the possibilities by looking
at the prime factors of the left hand side and the right hand side of equation
(3). If k = 5, then (10) gives y ≤ 56 if h = 1 and y ≤ 35 if h ≥ 2. We further
know that x ≡ 1 or 2 (mod 7). All the possibilities are excluded again as
mentioned in the case k = 4.

C a s e d = 8. By Lemma 1, y is even. Hence, by Lemma 5 and Corollary 2,

23k < x <
16
3
k2 + k if ord2(y) ≥ 3,

which is impossible, and

2k ord2(y)−ord2((k−1)!) < x <
16
3
k2 + k if ord2(y) < 3.

The algorithms for k = 2 and 3 yield the solutions (k, x, y) = (2, 4, 2),
(2, 15, 12) and (3, 20, 14). So suppose k ≥ 4. If ord2(y) = 2, then

22k−ord2((k−1)!) <
16
3
k2 + k,

which implies k = 5. Then, by Corollary 2,

27 <
8
3
k2 +

3
2
k < 75,

which is false. It remains to consider the case ord2(y) = 1, k ≥ 4. At least
in principle, this can be done by following [7].

C a s e d = 9. By Lemma 1, we have 3 | y. Hence, by Lemma 5 and
Corollary 2, either

32k < x <
27
8
k2 +

3
2
k and ord3(y) ≥ 2

or

3k−ord3((k−1)!) < x <
27
8
k2 +

3
2
k and ord3(y) = 1.

The former case is impossible, the latter is possible only if k = 2, 10 ≤ x ≤ 16
or k = 3, 28 ≤ x ≤ 34 or k = 4, 28 ≤ x ≤ 59 or k = 5, 82 ≤ x ≤ 91.

Note that ord3(x(x+ 1)(x+ 2) . . . (x+ k − 1)) = k. Using this it is easy
to show that the only solution is given by (k, x, y) = (2, 9, 6).

C a s e d = 10. By Lemma 1, y is even and k ≤ 3 or 5 | y. The algo-
rithms for k = 2 and 3 yield the solutions (k, x, y) = (2, 7, 4), (2, 24, 20) and
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(3, 32, 24). Now suppose k ≥ 4. Then 10 | y. By Lemma 5 and Corollary 2,

5k+ord5(k) < x <
25
3
k2 + k.

This has no solution. So there is no solution other than the three stated
above.

7. Proof of Theorem 3. We define rational integers A′1, . . . , A
′
k−1 and

B′1, . . . , B
′
k−1 as

x(x+ 1) . . . (x+ k − 1) = xk +A′1x
k−1 + . . .+A′k−1x

and
k−1∏

j=0

(u+ j(2k − 1− j)d2) = uk +B′1d
2uk−1 + . . .+B′k−1d

2k−2u.

It follows from the definitions of A′i and B′j that

A′i ≤ k2i/(2ii!), B′j ≤ (2k)jA′j for 1 ≤ i, j ≤ k − 1,

implying

(13) B′j ≤ k3j/j! for 1 ≤ j ≤ k − 1.

We put F (z) = z(z + 1) . . . (z + k − 1) and

(14) f =
(k − 1)(2k − 1)d2

3
− k − 1

2
,

and write F (z + f) = zk +A′1(f)zk−1 + . . .+A′k−1(f)z +A′k(f), where

(15) A′i(f) =
(
k

i

)
f i +

(
k − 1
i− 1

)
f i−1A′1 + . . .+

(
k − i+ 1

1

)
fA′i−1 +A′i

for 1 ≤ i ≤ k.
We note that A′i and B′i are obtained from Ai and Bi respectively by re-
placing k − 1 for k in [3, Lemma 11]. Thus, we obtain

Lemma 6.

A′1 = k(k − 1)/2, A′2 = k(k − 1)(k − 2)(3k − 1)/24,

A′3 = k2(k − 1)2(k − 2)(k − 3)/48

and
B′1 = k(k − 1)(2k − 1)/3,

B′2 = k(k − 1)(20k4 − 64k3 + 61k2 − 29k + 6)/90,

B′3 = k(k − 1)(280k7 − 1988k6 + 5218k5 − 6815k4

+ 5176k3 − 2321k2 + 738k − 144)/5670.
By Lemma 6, (14) and (15), we calculate the following relations.
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Lemma 7. (a) We have
(
k

2

)(
(k − 1)(2k − 1)d2

3

)2

−B′2d4 <
2
45
k5d4

and (
k

3

)(
(k − 1)(2k − 1)d2

3

)3

−B′3d6 <
4

135
k8d6.

(b) For k ≥ 3,

A′1(f)−B′1d2 = 0, A′2(f)−B′2d4 >
1
30
k5d4, A′3(f)−B′3d6 > 0.

In the following lemma, we give necessary and sufficient conditions for
solving equation (5) with k = 2.

Lemma 8. Let k = 2. For every integer h with 1 ≤ h ≤ d2 − 1, suppose
the following conditions (i) and (ii) hold.

(i) h(h+ 1)/(2d2 − 2h− 1) = u is an integer ,
(ii) 9d2 + 4u is a square, say D2.

Then

(16) (x, y) = (u+ h, (D − 3d)/2)

is a solution of equation (5). Further , any solution (x, y) in positive integers
of equation (5) satisfies (i) and (ii) for some h with 1 ≤ h ≤ d2−1 and (16).

P r o o f. Suppose that (i) and (ii) are satisfied.Then D − 3d is even. Let
x = u+h and y = (D− 3d)/2. Then y(y+ 3d) = u and (u+h)(u+h+ 1) =
u(u+ 2d2), which implies that (x, y) is a solution of equation (5). Let x > 0
and y > 0 be integers satisfying equation (5). Then, by putting y(y+3d) = u,
we get x(x + 1) = u(u + 2d2), which implies that u < x < u + d2. Now set
x = u + h. Then 1 ≤ h ≤ d2 − 1 and u = h(h + 1)/(2d2 − 2h − 1) is an
integer. Now, the assertion follows from y(y + 3d) = u.

P r o o f o f T h e o r e m 3 . We assume (6) with

(17) u ≥ (.44)k4d4/θ

and we shall arrive at a contradiction. We apply arithmetic-geometric mean
to both sides of (6) to obtain

(18) x(x+ 1) . . . (x+ k − 1) <
(
x+

k − 1
2

)k

and

(19)
k−1∏

j=0

(u+ j(2k − 1− j)d2) <
(
u+

(k − 1)(2k − 1)d2

3

)k
.
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Further, we observe from (6) and (19) that

(20) u < x < u+
(k − 1)(2k − 1)d2

3
.

By (20), (17) and (7), we have

(21) x > u > (.146)k4d4.

By Lemma 8, we derive that equation (5) with k = 2, d = 2 is not possible.
Thus, we assume that k ≥ 3 whenever d = 2. Suppose now

x(x+ 1) . . . (x+ k − 1) ≤
(
x+

k − 1
2
− 1

6

)k
.

Then

k

6
xk−1 ≤

((
k

2

)(
k − 1

2

)2

−A′2
)
xk−2 +

(
k

3

)(
k − 1

2

)3

xk−3 + . . . ,

which, by Lemma 6 and (20), implies that x ≤ k2/4+k5/(4x) and we obtain
a contradiction from (21). Hence

(22) x(x+ 1) . . . (x+ k − 1) >
(
x+

k − 1
2
− 1

6

)k
.

We now show that

(23)
k−1∏

j=0

(u+ j(2k − 1− j)d2) >
(
u+

(k − 1)(2k − 1)d2 − θ/2
3

)k
.

Suppose (23) does not hold. Then we see from Lemma 6 that

θk

6
uk−1 ≤

((
k

2

)(
(k − 1)(2k − 1)d2

3

)2

−B′2d4
)
uk−2

+
((

k

3

)(
(k − 1)(2k − 1)d2

3

)3

−B′3d6
)
uk−3

+
(
k

4

)(
(k − 1)(2k − 1)d2

3

)4(
1 +

2k3d2

15u
+ . . .

)
uk−4.

Since 2k3d2/(15u) < 1/13 by (21) and k ≥ 3 if d = 2, we apply Lemma 7(a)
to the above inequality to obtain

θk

6
uk−1 ≤ 2

45
k5d4uk−2 +

4
135

k8d6uk−3 +
13

1458
k12d8uk−4,

which implies that

u ≤ k4d4

θ

(
4
15

+
8
45
· k

3d2

u
+

13
243
· k

7d4

u2

)
.
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By (21) and k ≥ 3 if d = 2, we derive from the above inequality that
u ≤ (.422)k4d4/θ, which contradicts (17). This proves (23).

From (6), (18), (19), (22), (23) and (17), we conclude that −θ/6 < x −
u− f < 1/6, which by (7) and Liouville’s inequality implies that

(24) x = u+ f.

Then f is an integer and we derive from (14) that either k ≡ 1, 5 (mod 6)
or k ≡ 3 (mod 6), d ≡ 0 (mod 3), which implies that k ≥ 5 if d = 2 and
k ≥ 3 if d ≥ 3, which we utilise in the subsequent argument of the proof of
Theorem 3. We put (24) in (6) to obtain

A′1(f)uk−1 +A′2(f)uk−2 +A′3(f)uk−3

≤ B′1d2uk−1 +B′2d
4uk−2 +B′3d

6uk−3 + . . .

Now, we use Lemma 7(b) to obtain

1
30
k5d4uk−2 ≤ 1

24
k12d8uk−4

(
1 +

k3d2

5u
+ . . .

)

and since k3d2/(5u) < 1/14 by (21), we obtain u2 ≤ (1.35)k7d4. This con-
tradicts (21).

8. Proof of Theorem 4. We begin with a lemma that gives a lower
bound for u.

Lemma 9. Suppose d ≤ k + 1. If p is a prime dividing d , then

(25) u > p2k ordp(d)+ordp(k(k+1)...(2k)) − k4 if ordp(y) ≥ ordp(d)

and

(26) u > p2k ordp(y)−ordp((k−1)!) − k4 if ordp(y) < ordp(d).

P r o o f. First we follow the proof of Lemma 1 to derive that p | y. Then,
as in Lemma 5, we count the power of p on both sides of equation (5) to
obtain

x+ k − 1 ≥ p2k ordp(d)+ordp(k(k+1)...(2k)) if ordp(y) ≥ ordp(d)

and

x+ k − 1 ≥ p2k ordp(y)−ordp((k−1)!) if ordp(y) < ordp(d).

We combine the above two inequalities with (20) and use the inequality
k + (k − 1)(2k − 1)d2/3 < k4 to obtain (25) and (26).

P r o o f o f T h e o r e m 4. We assume that

(27) d ≤ k + 1.

First, we consider the case where d 6= 2l with l ≥ 2. Suppose d is divisible by
a prime p ≥ 5. Then, by (27), we see that k ≥ 4. We derive from Lemma 9
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that

(28) u > 5(7k+1)/4 − k4.

By Theorem 3, (7) and (27), it follows that

(29) u < (.44)k4d4 < (.44)k4(k + 1)4,

which, since k ≥ 4, contradicts (28). Thus, we may suppose that 3 is the
largest prime dividing d. Then from Lemma 9 we obtain

u > 3(3k+1)/2 − k4,

which contradicts (29) for k ≥ 12. Let ord3(d) ≥ 2. Then, by (27) and (7),
we may assume that d = 9, k ∈ {8, 9, 10, 11} and θ = 3. In these cases,
we have u > 32k−ord3((k−1)!) − k4, which contradicts Theorem 3. Thus, we
conclude that either ord3(d) = 1 or d = 2. Let ord3(d) = 1. From (25), we
obtain u > 32k+ord3(k·...·2k) − k4. This contradicts (29) for k ≥ 5. Thus, by
(27) and (7), we may suppose that d = 3, k ∈ {2, 3, 4} and θ = 3. Now,
we apply Theorem 3 in these cases to contradict the preceding lower bound
for u. Let d = 2. We use (25) to obtain u > 23k − k4, which contradicts
Theorem 3 with k ≥ 4, θ ≥ 1, k = 3, θ = 2 and k = 2, θ = 3.

Next, we turn to the case d = 2l with l ≥ 2. Then l ≤ [log(k + 1)/ log 2]
by (27) and we apply Lemma 9 and Theorem 3 to derive that

(.44)
θ

k424[log(k+1)/ log 2] > u > 22k−ord2((k−1)!) − k4,

which implies that k ≤ 35.

9. Complete solutions of equation (5) for d = 5, 6

C a s e d = 5. By Theorem 4, k ≤ 3. If k = 2, we apply Lemma 8
to derive that (32, 1) and (207, 8) are the only solutions. Let k = 3. Then
x(x+1)(x+2) = u(u+100)(u+150) with u = y(y+25) and u < x ≤ u+83
by (20). We put x = u+ h. Then 1 ≤ h ≤ 83 and

(30) u2(250− 3h− 3) + u(15000− 3h2 − 6h− 2) = h(h+ 1)(h+ 2).

For h = 83, the right hand side of (30) is positive while the left hand side
is negative. For 1 ≤ h ≤ 69, we observe that the coefficient of u in (30) is
positive to derive that 40u2 < 69 · 70 · 71, which implies that u ≤ 92 and
hence y ≤ 3. We check that equation (5) with y ∈ {1, 2, 3} is not satisfied.
For 70 ≤ h ≤ 82, we check that

(15000− 3h2 − 6h− 2)2 + 4h(h+ 1)(h+ 2)(250− 3h− 3)

is not a perfect square. Hence equation (5) admits only two solutions,
namely, (k, x, y) = (2, 32, 1) and (2, 207, 8).
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C a s e d = 6. By Theorem 4, k ≤ 4. If k = 2, we check from Lemma 8
that there is no solution. Let k = 3. Since d is divisible by 3 and the left
hand side of equation (5) is divisible by 3, we observe that 3 | y. We count
the power of 3 on both sides of equation (5) as in the proof of (25) to derive
that x ≥ 38 − 2 and further, we have u < x ≤ u+ 119. We put x = u+ h in
(6) for 1 ≤ h ≤ 119 to obtain

(31) (360− 3h− 3)u2 + (31104− 3h2 − 6h− 2)u = h(h+ 1)(h+ 2).

For h = 119, the right hand side of (31) is positive while the left hand side
is negative. For 1 ≤ h ≤ 118, the left hand side of (31) exceeds 3u2−11378u
while the right hand side is at most 118 · 119 · 120 and this implies that
u ≤ 6000, which is a contradiction. Hence, equation (5) with k = 3 has no
solution. Let k = 4. Once again, we have 3 | y and x ≥ 39−3. By Theorem 3,
u ≤ 48660 whence, by (20), x ≤ 48911. Since x(x+1)(x+2)(x+3) is divisible
by 310 and 310 > 48911, we see that x or x+ 3 equals 39 or 2 · 39. It is easy
to check that these four cases cannot occur. Thus there is no solution when
d = 6.

10. Solutions of equation (5) for k = 2. Fermat stated that there are
no four squares in arithmetic progression. Euler’s proof of this fact reveals
that the product of four positive integers in arithmetic progression cannot be
a square (cf. Dickson [2], p. 635). An obvious generalisation would be that
the product of the terms of a finite arithmetic progression of length ≥ 4
cannot be a square or another perfect power. Such questions have occupied
various authors. See e.g. Shorey and Tijdeman [8]. An extension in another
direction would be to show that the product of four positive integers in
arithmetic progression cannot be the product of two consecutive integers.
This is the special case k = 2 of equation (4),

(32) x(x+ 1) = y(y + d)(y + 2d)(y + 3d).

For given d all solutions x, y can be found by Lemma 8. In Section 9 it
has been shown that there are two solutions in case d = 5 and none if d = 6.
A computer search yields the following solutions for d < 100:

d h u D x y

5 16 16 17 32 1
5 23 184 31 207 8
23 527 92752 613 93279 272
74 5264 65520 558 70784 168
77 3952 3952 263 7904 16
88 3644 1620 276 5264 6
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Note that h = u occurs for d = 5 and d = 77. The assumption h = u
in Lemma 8 yields that 3h = 2d2 − 2 and that 35

3 d
2 − 8

3 is a square of
an integer. This yields the Pell equation 35d2 − 3D2 = 8. The already
found solutions (d,D) = (5, 17) and (77, 263) lead to the parametrised so-
lutions

(−9 +
√

105)(41 + 4
√

105)n = 3Dn + dn
√

105 (n = 1, 2, . . .),

(9 +
√

105)(41 + 4
√

105)n = 3D′n + d′n
√

105 (n = 1, 2, . . .).

This shows that (32) has infinitely many solutions (d, x, y). For n = 1
we find the known solutions (d1, D1) = (5, 17) and (d′1, D

′
1) = (77, 263). For

n = 2 we obtain (d2, D2) = (409, 1397) and (d′2, D
′
2) = (6313, 21563) lead-

ing to the new solutions (d, x, y) = (409, 223040, 85), (6313, 53138624, 1312)
of (32).

The assumption u = ch for some fixed number c will lead to infinite
classes of solutions in the same way as u = h does. E.g. for c = 8 we
find the Pell equation 665d2 − 17D2 = 288. We know from the list that
(d,D) = (5, 31) is a solution and hence there are infinitely many.

It is obvious that (32) admits only finitely many solutions (y, d) for fixed
x and the algorithm shows that there are only finitely many solutions (x, y)
for fixed d. For fixed y, equation (32) has only finitely many solutions (d, x),
since (32) is equivalent to the elliptic equation

Y 2 = 24yX3 + 44y2X2 + 24y3X + 4y4 + 1,

where X = d and Y = 2x+ 1. See Baker [1].
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