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A generalization of the Goldbach–Vinogradov theorem

by

T. Zhan (Jinan)

1. Introduction. The Goldbach–Vinogradov theorem states that every
large odd integer is the sum of three primes. After Vinogradov proved this
result in 1937, several generalizations of it were studied by a number of
authors. One question is how small we may take U = U(N) such that every
large odd integer N can be written in the form

(1.1) N = p1 + p2 + p3, p1 ≤ U = U(N) (2 - N, p1, p2, p3 are primes).

The first non-trivial result concerning this problem was given by Pan [7], who
proved in 1959 that U may be taken as small as N2c/(2c+1)+ε if ζ( 1

2 + it) �
(|t|+1)c+ε for any ε > 0. The classical result c = 1/6 then gives U = N1/4+ε.
In the present paper some improvements on Pan’s result will be given. Let

R(N) =
∑

p1+p2+p3=N
p1≤U, p2≤y
N−y<p3≤N

1.

In Section 2 we prove

Theorem 1. Suppose that 0 < ε < 1/2, U = y1/6+ε and y = N7/12+ε.
Then for 2 - N ,

(1.2) R(N) = σ(N)UyL−1(log U)−1(log y)−1(1 + O(L−1)),

where

σ(N) =
∏
p|N

(
1− 1

(p− 1)2

) ∏
p - N

(
1 +

1
(p− 1)3

)
>

1
2

for 2 - N,

L = log N and the O-constant depends on ε only.

From Theorem 1 it follows that U(N) = N7/72+ε is permissible in (1.1).

Supported by the Alexander von Humboldt Foundation.

[95]



96 T. Zhan

The proof of Theorem 1 depends on the Hardy–Littlewood circle method
and Selberg’s inequality

(1.3)
2x∫

x

∣∣∣ ∑
t<n≤t+∆

Λ(n)−∆
∣∣∣2 dt �ε,A ∆2x(log x)−A,

where 0 < ε < 5/6, A > 0 are any constants and x1/6+ε ≤ ∆ ≤ x (see [9],
for example). In fact, what we actually need in the proof is a generalization
of (1.3) stated in Lemma 1 in Section 2. The main idea of the proof is to
make use of Gallagher’s lemma [1] and (1.3) in estimating integrals on major
arcs.

As a consequence of (1.3) we deduce that if g(n) = n1/6+ε then for all
integers n ≤ x with at most O(x(log x)−A) exceptions the interval (n, n +
g(n)) contains � g(n)(log n)−1 primes. A better result due to Harman [3]
is known, namely, for g(n) = n1/10+ε the above statement is still true.
Although it seems unlikely that one may get an improvement on Theorem 1
directly from Harman’s result, we can prove the following Theorem 2 by
combining the method of proof of Theorem 1 with Harman’s sieve estimates
used in proving his result. The idea of combining the circle method with
the sieve method may be found in [5] or [6].

Theorem 2. Suppose that 0 < ε < 1/2, U = y1/10+ε and y = N7/12+ε.
Then there exists an absolute constant C1 > 0 such that

(1.4) R(N) ≥ C1UyL−3.

Theorem 2 implies that one may take U(N) = N7/120+ε in (1.1). The
proof of Theorem 2 is given in Sections 3 and 4.

In what follows we shall use the notations introduced above. c > 0 will
denote a positive constant that may be different at each occurrence.

2. Proof of Theorem 1

Lemma 1. Suppose that A > 0, B > 0 and 0 < ε < 5/6. Then for
(a, q) = 1, 1 ≤ q ≤ (log x)B and x1/6+ε ≤ ∆ ≤ x we have

(2.1)
2x∫

x

∣∣∣∣ ∑
t<n≤t+∆
n≡a (q)

Λ(n)− ∆

φ(q)

∣∣∣∣2 dt �ε,c,A ∆2x(log x)−A.

This is a generalization of (1.3) and can be shown in essentially the same
way as in [9].
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For the sake of simplicity instead of R(N) we consider R̃(N) defined by

R̃(N) =
∑

N=n1+n2+n3
n1≤U, n2≤y
N−y<n3≤N

Λ(n1)Λ(n2)Λ(n3)

and prove

(2.2) R̃(N) = σ(N)Uy(1 + O(L−1)).

It is an easy matter to derive Theorem 1 from (2.2).
Applying the circle method, we obtain

R̃(N) =
1∫

0

∑
n1≤U

Λ(n1)e(n1α)
∑

n2≤y

Λ(n2)e(n2α)

×
∑

N−y<n3≤N

Λ(n3)e(n3α)e(−Nα) dα

=
( ∫

m

+
∫
E

) ∑
n1≤U

Λ(n1)e(n1α)
∑

n2≤y

Λ(n2)e(n2α)

×
∑

N−y<n3≤N

Λ(n3)e(n3α)e(−Nα) dα

=
∫

m

+
∫
E

, say,

where m and E are defined by

m =
⋃

q≤Q

⋃
1≤a≤q
(a,q)=1

[
a

q
− 1

qτ
,
a

q
+

1
qτ

]
, Q = Lc1 , τ = UL−c2 ,

E = [−1/τ , 1− 1/τ ] \m.

Denote by Iq,a the interval [a/q − 1/(qτ), a/q + 1/(qτ)]. Taking c1 = 10
and c2 = 12, from the result of Vinogradov and the Siegel–Walfisz theorem
(see [8], for example) we get

(2.3)
∑
n≤U

Λ(n)e(nα) � UL−2 if α ∈ E,

(2.4)
∑
n≤U

Λ(n)e(nα) =
µ(q)
φ(q)

∑
n≤U

e(nλ) + O(U exp(−cL1/2))

if α = a/q + λ ∈ m.
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Then it follows from (2.3) and the Cauchy–Schwarz inequality that∫
E

� UL−2
1∫

0

∣∣∣ ∑
n2≤y

Λ(n2)e(n2α)
∑

N−y<n3≤N

Λ(n3)e(n3α)
∣∣∣ dα(2.5)

� yUL−1.

By (2.4) we obtain∫
Iq,a

=
µ(q)
φ(q)

1/(qτ)∫
−1/(qτ)

∑
n1≤U

e(n1λ)
∑

n2≤y

Λ(n2)e(n2(a/q + λ))(2.6)

×
∑

N−y<n3≤N

Λ(n3)e(n3(a/q + λ))e(−N(a/q + λ)) dλ

=
µ2(q)
φ2(q)

1/(qτ)∫
−1/(qτ)

∑
n1≤U

e(n1λ)
∑

n2≤y

e(n2λ)

×
∑

N−y<n3≤N

Λ(n3)e(n3(a/q + λ))e(−N(a/q + λ)) dλ

+ O

(
1

φ(q)

1/τ∫
−1/τ

∣∣∣ ∑
n1≤U

e(n1λ)
∑

N−y<n3≤N

Λ(n3)e(n3(a/q + λ))
∣∣∣

×
∣∣∣∣ ∑

n2≤y

Λ(n2)e(n2(a/q + λ))− µ(q)
φ(q)

∑
m≤y

e(mλ)
∣∣∣∣ dλ

)
= I1 + O(I2), say.

By the Cauchy–Schwarz inequality and Gallagher’s lemma [1] we have

|I2|2 � φ−2(q)U2
1∫

0

∣∣∣ ∑
N−y<n≤N

Λ(n)e(n(a/q + λ))
∣∣∣2 dλ

×
1/τ∫

−1/τ

∣∣∣∣ ∑
n≤y

Λ(n)e(n(a/q + λ))− µ(q)
φ(q)

∑
m≤y

e(mλ)
∣∣∣∣2 dλ

� φ−2(q)U2yτ−2L

y∫
1

∣∣∣∣ ∑
t<n≤t+τ

Λ(n)e
(

n
a

q

)
− µ(q)

φ(q)
τ

∣∣∣∣2 dt

+ φ−2(q)U2yτL

� U2yτ−2Lmax
y∫

1

∣∣∣∣ ∑
t<n≤t+τ
n≡l (q)

Λ(n)− τ

φ(q)

∣∣∣∣2 dt + U2y2−ε

where the “max” is taken over all (l, q) = 1 and q ≤ Q. Since Q = Lc1 ,
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taking A = 4c1 + 2 in Lemma 1, we obtain

(2.7) I2 � Q−2yUL−1.

We now turn to I1. It is easy to check that

(2.8) I1 =
µ2(q)
φ2(q)

1∫
0

∑
n1≤U

e(n1λ)
∑

n2≤y

e(n2λ)

×
∑

N−y<n3≤N

Λ(n3)e(n3(a/q + λ))e(−N(a/q + λ)) dλ

+ O
(
φ−2(q)

1/2∫
1/(qτ)

λ−1
∣∣∣ ∑

n2≤y

e(n2λ)
∑

N−y<n3≤N

Λ(n3)e(n3(a/q + λ))
∣∣∣ dλ

)

=
µ2(q)
φ2(q)

∑
n1+n2+n3=N
n1≤U, n2≤y
N−y<n3≤N

Λ(n3)e
(

a

q
(n3 −N)

)
+ O(φ−1(q)τyL)

=
µ2(q)
φ2(q)

∑
N−y<n3≤N

Λ(n)e
(

a

q
(n3 −N)

) ∑
n1+n2=N−n3
n1≤U, n2≤y

1 + O(φ−1(q)τyL)

=
µ2(q)
φ2(q)

U
∑

N−y<n≤N

Λ(n)e
(

a

q
(n−N)

)
+ O(φ−1(q)τyL) + O(φ−2(q)U2)

=
µ2(q)
φ2(q)

U

q∑
l=1

(l,q)=1

e

(
al

q

)
e

(
− a

q
N

) ∑
N−y<n≤N

n≡l (q)

Λ(n) + O(φ−1(q)τyL)

=
µ(q)
φ3(q)

Uye

(
− a

q
N

)
(1 + O(L−1)) + O(φ−1(q)τyL).

In the last step we used the Siegel–Walfisz theorem in short intervals, namely,

(2.9)
∑

N−y<n≤N
n≡l (q)

Λ(n) =
1

φ(q)
y + O(y exp(−cL−1/2))

holds for (l, q) = 1 and q ≤ LB (B > 0 is any constant).
From (2.6)–(2.8) it follows in a standard way that (see [8])∫
m

= Uy
∑
q≤Q

µ(q)
φ3(q)

e

(
− a

q
N

)
+ O(UyL−1) = σ(N)Uy(1 + O(L−1)).

(2.2) is thus proved.
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3. Preparation for the proof of Theorem 2. In this section we
give an outline for the proof of Theorem 2 and some fundamental lemmas.
Suppose that ε > 0 is a constant sufficiently small, N is an odd integer
sufficiently large, N7/12+ε ≤ y ≤ N , Y ≤ y ≤ 2Y and yε ≤ U ≤ y1−ε.
Consider the set

A = A(N ; y, U) = {f(p1, p3) = N − p1 − p3 : p1 ≤ U, N − y < p3 ≤ N}.
Since −U ≤ N − p1 − p3 ≤ y for N − p1 − p3 ∈ A, then

(3.1) R(N) = S(A, y1/2) + O(U2).

From Buchstab’s identity it follows that

S(A, y1/2) = S(A, z1)−
∑

z2≤p<y1/2

S(Ap, z3(p))

−
∑

z1≤p<z2

S(Ap, z4(p)) +
∑

z3(p)≤q<p<y1/2

p≥z2

S(Apq, q)

+
∑

z4(p)≤q<p<z2
p≥z1

S(Apq, q)

= Σ1 −Σ2 −Σ3 + Σ4 + Σ5, say,

where the parameters zi (1 ≤ i ≤ 4) are as in Harman [3], namely,

z1 = Y 26(1−3ε)/105, z2 = Y 9/35,

z3(p) = (Y 1−3εp−1)1/3, z4(p) = (Y 26/35−2εp−1)1/2.

Obviously, Σ5 ≥ 0. If we replace y1/2 by (2Y )1/2 in Σ2 and y1/2 by Y 1/2

in Σ4, it follows that

(3.2) S(A, y1/2) ≥ Σ1 −Σ2 −Σ3 + Σ4.

We shall give a lower bound for Σ1 and an upper bound for Σ2 and Σ3

by Iwaniec’s linear sieve (Lemma 2). To estimate the error terms arising in
Lemma 1 we shall use Lemma 3 below which can be shown by the Hardy–
Littlewood circle method as in the proof of Theorem 1. However, instead of
Selberg’s inequality here we have to use some sieve estimates already proved
in Harman [3]. (We actually need some generalized forms of Harman’s
results.) Similar to estimating these error terms, an asymptotic formula for
a subsum of Σ4 can be given. In this case Lemma 4 will be used instead of
Lemma 3. Then the theorem will follow if the right side of (3.2) is� UyL−3.

Lemma 2 (Iwaniec [4]). Let z ≥ 2, D ≥ z2 and r(A, d) = |Ad| −W/d.
Then

S(A, z) ≤ WV (z){F (s) + E}+ R+,

S(A, z) ≥ WV (z){f(s)− E} −R−
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where s = (log D)/(log z) and E = cε + O((log D)−1/3). The remainder
terms R± are of the form

R± =
∑
(D)

R±
(D) =

∑
(D)

∑
υ≤Dε

C±
(D)(υ, ε)

∑′

Di≤pi≤D1+ε7
i

r(A, υp1 . . . pr),

where (D) runs over all subsequences D1 ≥ . . . ≥ Dr, including the empty
subsequence, of the sequence Dε2(1+ε7)n

, n ≥ 0, for which

D1D2 . . . D2kD3
2k+1 ≤ D (0 ≤ k ≤ (r − 1)/2)

in the case of R+, and

D1D2 . . . D2k−1D
3
2k ≤ D (0 ≤ k ≤ r/2)

in the case of R−. Moreover ,
∑′ indicates that υ and pi satisfy

υ |P (Dε2
), pi |P (z) (1 ≤ i ≤ r).

Finally , we also have |C±
(D)(υ, ε)| ≤ 1.

F (s), f(s), P (z) and V (z) are standard functions in sieve theory. For
their properties see [2].

In our case we take W = Ũ ỹ,

(3.3)

Ũ =
∑
p≤U

1 = U(log U)−1(1 + O(L−1)),

ỹ =
∑

N−y<p≤N

1 = yL−1(1 + O(L−1))

and have

(3.4) V (z) =
∏
p<z

(1− p−1) = e−γ(log z)−1(1 + O((log z)−1))

where γ is the Euler constant.
In Lemmas 3 and 4 we suppose that c(n) � τ c(n) for n ≤ D, c(n) = 0

otherwise, and T0 =
∑

n≤D n−1c(n) � 1. Obviously, T0 � Lc for D � N .

Lemma 3. Suppose that for any A > 0, B > 0, 0 < ε ≤ 9/10 and
x1/10+ε ≤ ∆ ≤ x,

(3.5)
2x∫

x

∣∣∣∣ ∑
t<nk≤t+∆
nk≡a (q)

c(n)− ∆

φ(q)
T0

∣∣∣∣2 dt �ε,A,B ∆2x(log x)−A

holds for (a, q) = 1 and q ≤ (log x)B. Then

R1(N) =
∑

nk+p1+p3=N
p1≤U, nk≤y
N−y<p3≤N

c(n) = σ(N)UyT0(log U)−1L−1(1 + O(L−1)).
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P r o o f. Similarly to the proof of Theorem 1 it suffices to show that

(3.6) R̃1(N) =
∑

nk+n1+n3=N
n1≤U, nk≤y
N−y<n3≤N

Λ(n1)Λ(n3)c(n) = σ(N)UyT0(1 + O(L−1)).

Suppose that Q, τ , the major arcs m and the minor arcs E are defined as in
Section 2. Take c1 and c2 sufficiently large. In the same way as in Section 2
we get from Vinogradov’s result

R̃1(N) =
1∫

0

∑
n1≤U

Λ(n1)e(n1α)
∑

nk≤y

Λ(nk)e(nkα)

×
∑

N−y<n3≤N

Λ(n3)e(n3α)e(−Nα) dα

=
∫

m

+
∫
E

=
∫

m

+ O(yUT0L
−A),

and from (2.4) and (3.4),∫
Iq,a

=
1/(qτ)∫

−1/(qτ)

∑
n1≤U

Λ(n1)e
(

n1

(
a

q
+ λ

)) ∑
nk≤y

c(n)e
(

nk

(
a

q
+ λ

))

×
∑

N−y<n3≤N

Λ(n3)e
(

n3

(
a

q
+ λ

))
e

(
−N

(
a

q
+ λ

))
dλ

=
µ2(q)
φ2(q)

∑
n1+nk+n3=N
n1≤U, nk≤y
N−y<n3≤N

Λ(n3)c(n)e
(

a

q
(n3 −N)

)
+ O(φ−1(q)τyL).

To evaluate the integral
∫

Iq,a
we first rewrite it as∫

Iq,a

=
µ2(q)
φ2(q)

q∑
l=1

(l,q)=1

e

(
a

q
(l −N)

) ∑
N−y<n3≤N

n3≡l (q)

Λ(n3)(3.7)

×
∑

n1+nk=N−n3
n1≤U, nk≤y

c(n) + O(φ−1(q)τyL)

=
µ2(q)
φ2(q)

q∑
l=1

(l,q)=1

e

(
a

q
(l −N)

) ∑
N−y<n3≤N−U

n3≡l (q)

Λ(n3)

×
∑

N−n3−U≤nk<N−n3

c(n) + O(φ−1(q)τyL).
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Making substitution u = t + ∆ in (3.5) (q = 1), we obtain

(3.8)
2x∫

x

∣∣∣ ∑
u−∆<nk≤u

c(n)−∆T0

∣∣∣2 du �ε,A,B ∆2x(log x)−A + ∆3(log x)c.

Take x = y and ∆ = U in (3.7). It follows that∑
U<m≤y

∣∣∣ ∑
m−U<nk≤m

c(n)− UT0

∣∣∣2 � U2yL−A.

Hence by the Cauchy–Schwarz inequality we have

(3.9)
∑

U<m≤y

∣∣∣ ∑
m−U<nk≤m

c(n)− UT0

∣∣∣ � UyL−A/2.

(3.7), (3.9) and the Siegel–Walfisz theorem in short intervals (2.9) then yield∫
Iq,a

=
µ2(q)
φ2(q)

UT0

q∑
l=1

(l,q)=1

e

(
a

q
(l −N)

) ∑
N−y<n3≤N−U

n3≡l (q)

Λ(n3)

+ O(φ−1(q)τyL) + O(Q−2L−1yU)

=
µ(q)
φ3(q)

UyT0e

(
−N

a

q

)
+ O(Q−2L−1yU)

if c1, c2 are taken sufficiently large and c2 ≥ c1 + 2. Hence∫
m

= UyT0

∑
q≤Q

µ(q)
φ3(q)

e

(
− a

q
N

)
+ O(UyL−1) = σ(N)UyT0(1 + O(L−1)),

and (3.6) follows.

Lemma 4. Suppose that for any A > 0, B > 0, 0 < ε ≤ 9/10 and
x1/10+ε ≤ ∆ ≤ x,

2x∫
x

∣∣∣∣ ∑
t<nk≤t+∆
nk≡a (q)

c(n)Λ(k)− ∆

φ(q)
T0

∣∣∣∣2 dt �ε,A,B ∆2x(log x)−A

holds for (a, q) = 1 and q ≤ (log x)B. Then

R1(N) =
∑

np+p1+p3=N
p1≤U, nk≤y
N−y<p3≤N

c(n) = σ(N)UyT0(log U)−1L−1(1 + O(L−1)).

This lemma can be shown in the same way as Lemma 3.

4. Proof of Theorem 2. In this section we assume all the conditions of
Theorem 2. For the sake of simplicity we only prove the theorem for ε > 0
sufficiently small. In fact, this is the most important case, the other case
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can be treated in the same way. Furthermore, the constants ci (i = 1, 2, . . .)
in this section are independent of the ci’s in Section 3.

Estimation of Σ1. Applying Lemma 2 to Σ1 we obtain

Σ1 ≥ WV (z1)(f(log D/ log z1)− cε + O(L−1/3))−R−.

Take D = y1−3ε as in [3]. From (3.3), (3.4) and the result in [3, §5] it follows
that

Σ1 ≥ c1Ũ ỹ(log y)−1(1− cε + O(L−1/3))−R−,

where c1 = 2 log(79/26). Writing R− in the form

R− =
∑
(D)

R−
(D) =

∑
(D)

∑
n≤D

c(n)r(A, n)

it follows easily that c(n) � τ c(n) and

R−
(D) =

∑
p1+nk+p3=N
N−y<p3≤N

p1≤U, nk≤y, n≤D

c(n)− T0W.

Now, ∑
t<nl≤t+k

n≤D

c(n)− T0U

is actually the error term arising from the sieve estimate in [3] and it was
already proved there that

y∫
y/2

∣∣∣ ∑
t<nk≤t+U

n≤D

c(n)− T0U
∣∣∣2 dt � U2y1−δ.

By essentially the same method we can show that

(4.1)
y∫

y/2

∣∣∣ ∑
t<nk≤t+U

n≤D, nk≡a (q)

c(n)− U

φ(q)
T0

∣∣∣2 dt �ε,A,B U2y(log x)−A.

Hence from Lemma 3 and (4.1) we get R−
(D) � Uy1−δ, and so

Σ1 ≥ c1Ũ ỹ(log y)−1(1− cε + O(L−1/3)).

Estimation of Σ2. Start from

Σ2 =
∑

z2≤p<(2Y )1/2

S(Ap, z3(p))

≤
∑
(P )

(log P )−1
∑

P≤n≤2P

Λ(n)S(An, z3(p)).
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Applying Lemma 2 to S(An, z3(p)) with D = Y 1−3εP−1 we obtain

Σ2 ≤
∑

z2≤p<(2Y )1/2

S(Ap, z3(p))
∑

P≤n≤2P

Λ(n)n−1WV (z3(P ))

× S(An, z3(P ))(F (log D/ log z3(P )) + cε + O(L−1/3))

+
∑
(P )

(log P )−1
∑

P≤n≤2P

Λ(n)R+
n

= Σ
(1)
2 + Σ

(2)
2 , say.

From the discussion in [3, §5] we know that the main term

(4.2) Σ
(1)
2 ≤ c2Ũ ỹ(log y)−1(1 + cε + O(L−1/3)),

where c2 = 2 log(26/9). The error term may be written as

Σ
(2)
2 =

∑
(P )

(log P )−1
∑
(D)

R+
(D)(P )

with

R+
(D)(P ) =

∑
n≤D

c(n)r(A, n) =
∑

p1+nk+p3=N
N−y<p3≤N

p1≤U, nk≤y, n≤Y 1−3ε

c(n)− T0W.

It is easy to see that ∑
t<nk≤t+U

n≤Y 1−3ε

c(n)− T0U

is actually the error term of∑
P≤n≤2P

Λ(n)S(An, z3(p))

in [3]. Hence it follows in the same way as in the estimation of Σ1 that

(4.3) Σ
(2)
2 � Uy1−δ.

(4.2) and (4.3) yield

Σ2 ≤ c2Ũ ỹ(log y)−1(1 + cε + O(L−1/3)).

Estimation of Σ3. Similarly to the treatment of Σ2, it follows from
Lemma 1, Lemma 3 and the corresponding estimates in [3, §5] that

Σ3 ≤ c3Ũ ỹ(log y)−1(1 + cε + O(L−1/3)),

where

c3 = 2 log(2133/2028)(1 + 1/17− 2 log(35/34)).
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Estimation of Σ4. Again, similarly to the estimation of Σ4 in [3] we can
give an asymptotic formula for a subsum Σ′

4 of Σ4 (in the subsum p and q
are taken over the same range as in [3]). We can apply Lemma 4 directly
to Σ′

4 since from [3, §5] we know that the condition of Lemma 4 is fulfilled.
Hence

Σ4 ≥ c4Ũ ỹ(log y)−1(1− cε + O(L−1)),
where c4 = 0.14.

Since c1 − c2 − c3 + c4 > 0, Theorem 2 is proved.
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