On the set of numbers {14, 22, 30, 42, 90}

by

Vamsi K. Mootha (Boston, Mass.)

For a fixed integer t, a size n P_t -set is a set $\{q_1, \ldots, q_n\}$ of distinct positive integers such that $q_iq_j + t$ is the square of an integer whenever $i \neq j$. For example, $\{1, 2, 5\}$ is a P_{-1} -set, while $\{1, 3, 8, 120\}$ is a size $\{1, 2, 5\}$ is a $\{1, 2, 5\}$ is a size $\{1, 3, 8, 120\}$ is a size $\{1,$

Problems related to P_t -sets date back to the time of Diophantus (see Dickson [4, Vol. II, p. 513]). The most famous recent result is in the area of extending P_t -sets and is due to Baker and Davenport [1], who used Diophantine approximation to show that the P_1 -set $\{1, 3, 8, 120\}$ is nonextendible. Other methods for arriving at the same result were subsequently described (Kanagasabapathy and Ponnudurai [6], Sansone [9], and Grinstead [5]). Several more recent papers have made efforts to characterize the extendibility of classes of P_t -sets (Brown [3], Mootha and Berzsenyi [7]).

In this paper we introduce a very simple method for assessing the extendibility of P_t -sets of the form $\{a, b, ak, bk\}$, where a, b, and k are integers. The technique is illustrated by demonstrating the nonextendibility of the first identified size 5 P_t -set (see Berzsenyi [2]):

THEOREM. The P_{-299} -set $\{14, 22, 30, 42, 90\}$ is nonextendible.

Proof. First, note that if we set a = 14, b = 30, and k = 3, then this set is of the form $\{a, b, ak, bk, 22\}$. Showing that this P_t -set is nonextendible is equivalent to showing that the system of equations

(*)
$$\begin{cases} 14d - 299 = w^2, \\ 30d - 299 = x^2, \\ 42d - 299 = y^2, \\ 90d - 299 = z^2 \end{cases}$$

has exactly one integer solution, d = 22, which corresponds to the fifth member of the P_{-299} -set. Eliminating d between (*), we obtain the following

¹⁹⁹¹ Mathematics Subject Classification: Primary 11D09; Secondary 11B37.

Pellian equations:

(1)
$$\begin{cases} y^2 - 3w^2 = 598, \\ z^2 - 3x^2 = 598. \end{cases}$$

This is a system of two Pellian equations, each having exactly four classes of solutions (see Nagell [8, p. 205]) given by

$$\mathbf{K}_{1}: y_{n} + \sqrt{3}w_{n} = z_{n} + \sqrt{3}x_{n} = (25 + 3\sqrt{3})(2 + \sqrt{3})^{n},$$

$$\overline{\mathbf{K}}_{1}: y_{n} + \sqrt{3}w_{n} = z_{n} + \sqrt{3}x_{n} = (25 - 3\sqrt{3})(2 + \sqrt{3})^{n},$$

$$\mathbf{K}_{2}: y_{n} + \sqrt{3}w_{n} = z_{n} + \sqrt{3}x_{n} = (29 + 9\sqrt{3})(2 + \sqrt{3})^{n},$$

$$\overline{\mathbf{K}}_{2}: y_{n} + \sqrt{3}w_{n} = z_{n} + \sqrt{3}x_{n} = (29 - 9\sqrt{3})(2 + \sqrt{3})^{n},$$

where n is a whole number. These solutions correspond to the linear recurrent sequence $w_n = 4w_{n-1} - w_{n-2}$, $n \ge 2$, where w_0 and w_1 depend on the solution class (and similarly for x_n). Using recurrence relations, we produce explicit expressions for each of the four solution classes:

$$\begin{cases}
\mathbf{K}_{1}: w_{n} = x_{n} = \left(\frac{9 + 25\sqrt{3}}{6}\right)(2 + \sqrt{3})^{n} + \left(\frac{9 - 25\sqrt{3}}{6}\right)(2 - \sqrt{3})^{n}, \\
\overline{\mathbf{K}}_{1}: w_{n} = x_{n} = \left(\frac{9 - 25\sqrt{3}}{-6}\right)(2 + \sqrt{3})^{n} + \left(\frac{9 + 25\sqrt{3}}{-6}\right)(2 - \sqrt{3})^{n}, \\
\mathbf{K}_{2}: w_{n} = x_{n} = \left(\frac{27 + 29\sqrt{3}}{6}\right)(2 + \sqrt{3})^{n} + \left(\frac{27 - 29\sqrt{3}}{6}\right)(2 - \sqrt{3})^{n}, \\
\overline{\mathbf{K}}_{2}: w_{n} = x_{n} = \left(\frac{27 - 29\sqrt{3}}{-6}\right)(2 + \sqrt{3})^{n} + \left(\frac{27 + 29\sqrt{3}}{-6}\right)(2 - \sqrt{3})^{n}.
\end{cases}$$

Table 1 is a list of the first 9 solutions $w_n = x_n$ in each of the four classes.

Table 1. Some solutions w_n and x_n

$\mid n \mid$	$w_n = x_n \in \mathbf{K}_1$	$w_n = x_n \in \overline{\mathbf{K}}_1$	$w_n = x_n \in \mathbf{K}_2$	$w_n = x_n \in \overline{\mathbf{K}}_2$
0	3	-3	9	-9
1	31	19	47	11
2	121	79	179	53
3	453	297	669	201
4	1691	1109	2499	751
5	6311	4139	9319	2803
6	23553	15447	34779	10461
7	87901	57649	129898	39041
8	328051	215149	484409	145703

Because we have derived closed expressions for w_n and x_n , we can set $w=w_j$ and $x=x_i$, for some whole numbers i and j. From (*), it becomes clear that since $x^2/w^2=x_i^2/w_j^2=(30d-299)/(14d-299)$,

$$\frac{x_i}{w_i} \approx \sqrt{\frac{15}{7}} = 1.4638501...$$
 for large d.

This provides us with an additional constraint which must be satisfied simultaneously with (1) for sufficiently large values of d. Hence, if there is an integer $d \neq 22$ that solves (*), and d is large, then we expect x_i/w_j to be asymptotically equal to 1.4638501... For computational purposes, it is necessary to formalize what we mean by "sufficiently large" values of d. We define

$$\varepsilon(d) \equiv \left| \sqrt{\frac{30d - 299}{14d - 299}} - \sqrt{\frac{15}{7}} \right| = \left| \frac{x_i}{w_i} - \sqrt{\frac{15}{7}} \right|$$

and note that $\varepsilon(d) \to 0$ as $d \to \infty$. In particular, observe that for $d \ge 8.34 \times 10^8$ (i.e., $w_j \ge 1.08 \times 10^5$ and $x_i \ge 1.58 \times 10^5$) we must have $\varepsilon(d) \le 10^{-8}$. Table 1 lists all values of $x_i \le 1.58 \times 10^5$, and simple trial and error of these values indicates that the only solution in this range corresponds to d = 22. Hence, x_i and w_j must be so large that $d \ge 8.34 \times 10^8$ and $\varepsilon(d) \le 10^{-8}$.

We now demonstrate that no selection of large x_i and w_j (i.e., $x_i \ge 1.58 \times 10^5$ and $w_j \ge 1.08 \times 10^5$) meets this requirement. By selection, we mean a choice of two classes from which to assign values to x and w, e.g., $x = x_i \in \mathbf{K}_1$ and $w = w_j \in \overline{\mathbf{K}}_2$, or $x = x_i \in \mathbf{K}_2$ and $w = w_j \in \overline{\mathbf{K}}_2$, etc. Clearly, there are a total of 16 possible selections that we must consider, and we treat each case separately:

Case 1: $x = x_i \in \mathbf{K}_1$ and $w = w_j \in \mathbf{K}_1$. From (*), we see that x > w, which implies that i > j. We must attempt to minimize $\varepsilon(d)$, and the best we can do is to choose i = j + 1, implying that $x/w = w_{j+1}/w_j$. From (2), we find that $\varepsilon(d)$ decreases monotonically for increasing d. But

$$\lim_{d \to \infty} \varepsilon(d) = \lim_{j \to \infty} \left| \frac{w_{j+1}}{w_j} - \sqrt{\frac{15}{7}} \right| = 2.2682006... \gg 10^{-8}.$$

Hence, selecting both x and w from \mathbf{K}_1 cannot satisfy (*) for large values of d.

Case 2: $x = x_i \in \overline{\mathbf{K}}_1$ and $w = w_j \in \mathbf{K}_1$. Again, because x > w, we are forced to choose i = j + 1 to minimize $\varepsilon(d)$. $\varepsilon(d)$ decreases monotonically with increasing d, and we find from (2) that

$$\lim_{d \to \infty} \varepsilon(d) = \lim_{j \to \infty} \left| \frac{x_{j+1}}{w_j} - \sqrt{\frac{15}{7}} \right| = 0.9837784... \gg 10^{-8}.$$

Conclude that this particular selection of x and w does not yield a large solution to (*).

The remaining fourteen cases are treated similarly, and the results are summarized in Table 2. For each selection, the "best" index choice (which minimizes $\varepsilon(d)$) and $M = \lim_{d \to \infty} \varepsilon(d)$ are shown.

Table 2. Summary of 16 cases

	$x = x_i \in \mathbf{K}_1$	$x = x_i \in \overline{\mathbf{K}}_1$	$x = x_i \in \mathbf{K}_2$	$x = x_i \in \overline{\mathbf{K}}_2$
$w = w_j \in \mathbf{K}_1$	i = j + 1	i = j + 1	i = j	i = j + 1
-	M = 2.2682007	M = 0.9837784	M = 0.0127771	M = 0.1937306
$w = w_j \in \overline{\mathbf{K}}_1$	i = j	i = j + 1	i = j	i = j + 1
·	M = 0.0609116	M = 2.2682007	M = 0.7876547	M = 1.0635658
$w = w_j \in \mathbf{K}_2$	i = j + 1	i = j + 1	i = j + 1	i = j + 1
·	M = 1.0635658	M = 0.1937306	M = 2.2682007	M = 0.3413048
$w = w_j \in \overline{\mathbf{K}}_2$	i = j	i = j	i = j	i = j + 1
•	M = 0.7876547	M = 0.0127771	M = 1.8607830	M = 2.2682007

Note that in all cases, $\lim_{d\to\infty} \varepsilon(d)$ is much greater than 10^{-8} , which means that we have safely precluded the possibility of a "large" solution to (*).

As we have already exhausted all possibilities in Table 1, we conclude that the P_{-299} -set $\{14,22,30,42,90\}$ is nonextendible. \blacksquare

This same approach can be taken in quickly assessing the extendibility of any P_t -set of the form $\{a, b, ak, bk\}$.

Acknowledgement. I am most grateful to George Berzsenyi, who introduced me to the problem of P_t -sets and motivated this research.

References

- [1] A. Baker and H. Davenport, The equations $3x^2 2 = y^2$ and $8x^2 7 = z^2$, Quart. J. Math. 20 (1969), 129–137.
- [2] G. Berzsenyi, Adventures among P_t-sets, Quantum 1 (1991), 57.
- [3] E. Brown, Sets in which xy + k is always a square, Math. Comp. 45 (1985), 613–620.
- [4] L. E. Dickson, History of the Theory of Numbers, Vol. II, Carnegie Institution, Washington, 1920; reprinted, Chelsea, New York, 1966.
- [5] C. M. Grinstead, On a method of solving a class of diophantine equations, Math. Comp. 32 (1978), 936–940.
- [6] P. Kanagasabapathy and T. Ponnudurai, The simultaneous diophantine equations $y^2 3x^2 = -2$ and $z^2 8x^2 = -7$, Quart. J. Math. 26 (1975), 275–278.
- [7] V. Mootha and G. Berzsenyi, Characterizations and extendibility of P_t-sets, Fibonacci Quart. 27 (1989), 287–288.

- [8] T. Nagell, Introduction to Number Theory, Wiley, New York, 1951. [9] G. Sansone, Il sistema diofanteo $N+1=x^2$, $3N+1=y^2$, $8N+1=z^2$, Ann. Mat. Pura Appl. 111 (1976), 125–151.

DIVISION OF HEALTH SCIENCES AND TECHNOLOGY HARVARD MEDICAL SCHOOL BOSTON, MASSACHUSETTS 02115 U.S.A.

Received on 2.8.1994

(2650)