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1. Introduction and notation. In [1] we obtained the meromorphic
continuation of the Dirichlet series
o0
P(n)
L =
(=2 (n+a)*(n+b)°
n=1

by giving a representation of L(s) in terms of Hurwitz zeta functions. That
representation allowed us to get some information about zeros and poles;
nevertheless no functional equation could be deduced from it. In this paper
following a classical argument we obtain for L(s) as above, under suitable
hypothesis, a functional equation of Riemann’s type. More precisely, let us
consider the Dirichlet series

P(n) d+1

Lls) = ; (n+a)y(n+b)s Re(s) > ——,

where a < b are non-negative rational numbers and P(X) is a polynomial
of degree d with complex coefficients with P(0) = 0. Then by Stanley [6],
Corollaries 4.5 and 4.6, p. 115,

6(2) = Y Pl = 2

Q(z) being a polynomial of degree h = d —r, with r the greatest integer # 0
such that P(—1) = ... = P(—r) = 0, and moreover, Q(1) # 0, Q(0) = 0.
We put § =b—a, A= (a+b)/2 and H(z) = G(e*)e??. If A= ¢'/q (with
(¢’,q) = 1) then H(z) is a meromorphic function of period 2¢gmi with poles
at s = 2nmi, n € Z. We have the Laurent expansion

(1) H(z)= Y an(z—2nmi)"
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with o, = a™t* k€ Z, and
(2) o | < B Vn,m,
B being a positive constant.

Let us denote by I,,(z) the Bessel function defined by

o0

v =S (3)

Then I,,(z) is holomorphic in C\ {z € C : Re(z) < 0,Im(z) = 0} and an

entire function of v. We recall the asymptotic behaviour of I,,(z) (see [3],

p. 962.5):

(3) L()~ (140 4
(2) ~ +O(lz] ™)+ ——

V2mz V2mz

(the + sign is taken for 7/2 < argz < 37/2 and the — sign for —37/2 <

arg z < m/2), and the relations

(4) L(e™2) = e"™™[,(2), mEeTZ

see [3], 8.476, n. 4, p. 968),

(
(5) il
(see

(1+0(l2171),  Jal = o0

2"1,(2) = 2" 1, p(2)

dzp
see [3], 8.486, n. 5, p. 970).
In this paper we prove the following

THEOREM. With the above notation and hypothesis, if h+b < d+1, then
L(s) has a meromorphic continuation onto C with at most simple poles at
s=(d—=14+1)/2,1=0,1,... and satisfies the functional equation

£(s) = —€(1 - s),
where
£(s) = 8" 1P@p(s)I(s) L(s)
and for Re(s) > 1

o= (A0 e

t=1 p= 0
XZ 2(ng + t)mi)/2~ 11 ja—s—p(6(ng + t)mi)
neZ
(x means that if t = q then n # —1).

The Theorem above has an interesting application to Minakshisunda-
ram—Pleijel zeta functions of the real spheres and real and complex projec-
tive spaces. The problem of finding the functional equation for such zeta
functions goes back to Minakshisundaram and Pleijel (see [4], [5] and [2]).
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COROLLARY. Let

Z(S*, s)

i (n+1)...(n+k—-2)2n+k—1)
o Lt ns(n+k—1)%
be the Minakshisundaram—Pleijel zeta function of sphere S¥. Then Z(SF, s)
satisfies the functional equation
Pr(s)I(s)
Gp(1—s5)I'(1—5)

Z(Sk, —s) = —2Z(SF,s — 1) (k—1)%7!
where L(s+ 1) = Z(S*, s).

For the real projective space P*(R) and the associated Minakshisunda-
ram—Pleijel zeta function

1 (2n+1 2n+k—2)(4dn+k—1
Z )( ( )( )

Z(P*(R),s) = (k—1)! 2n)*(2n+k —1)°

we have

2s—1
Z(Pk(R)’ _8) - _Z(Pk(R)a 1- S) @L<fi(ziﬁgi)— S) (k ; 1) )

where L(s + 1) = Z(P*(R), s).
For the complex projective space P¥(C) and the associated Minakshisun-
daram—Pleijel zeta functz'on

= ((n+1). n—I—k 2))2(2n + k)k
T Z

Z(PH(C).5) = )

we have

Z(B*(C), —s) = —~Z(BH(C), 1 — )LL)

Br(1—s)(1—s)

(-1,
where L(s + 1) = Z(P*(C), s).

2. Two lemmas. Starting from the classical formula

I'(s)= f et at
0

one easily gets

s)= [ [ GlemFt))emah=bla (1y45)"= 1 dty dt.
0 0

Using the substitution

tlztu,
{tzzt(l—u), 0<t<oo, 0<u<l,
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we obtain

fG —t —btt2s 1 fu . s 1 Jtududt'

Now, by [3], n. 3382.2, p. 319 we have

55 V2p(s fG e A,y p(Rat) T2 dt.

LEMMA 1. Define
27” fG I, 1/2( 6z)z8_1/2dz,

where C = C;UC,UC3 and C; = {z € C: z = re”™  r € (p,00)},
Cs={2€C:z=re™ re(g0)}, Co={2€C:z=pe" —7<0<7}
with 0 < o < 2w (C' is counter-clockwise oriented). Then I(s) is well defined
(independent of ) and entire. Furthermore, we have
1

6 I(s) = —=0""'2I(s)L(s)sin2rs Vs € C.
(6) (s) e (s)L(s)sin2ms Vs

Proof. We need to prove that our integral in (2) is uniformly and
absolutely convergent on compact subsets of C. The convergence along Cs
is trivial. If z € C; U C5 then Re(z) = —r and e* = ™" so that for r > 1
we have

]2371/2\ < pM=1/2gmM g |s| < M,

and by (3),
Q(ez) Al eéz/Q 4 6—52/2:|:57m'

G(e*)e?*I,_1/5(52/2 N‘ e 1+0(|z|7t

|G(€*) 1/2(62/2)| (1= )t TS ( (I2[77)
=0(e™"),

so the first statement follows.

We have

([ 4 ] ) i
C1 Co C3

where

o
f = f Ge™")e A Iy o(dre ™ j2)rs— 1/ 2e=mils=1/2) g=mi gy

since dz = e~ ™" dr and
o0

f — fG(e—r)e—ArIS_1/2(57,67ri/2)7,5—1/267m'(s—1/2)e7ri dr

since dz = e™dr.
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By (4) we obtain
f + f = 2isin2ms f G(e_r)e_ATIs—1/2(57“/2)7“8_1/2 dr.
1 C

Along Csy, z = pe'?, and

[ = fTrF(H,Q)QS‘”Zd@,
Co —

where F'(0, o) is uniformly bounded, with respect to p. Then

lir% =0
00

if Re(s) is sufficiently large and so we have
1 o0
I(s) = _sin2ms f Ge e A L1 y5(6r/2)r" /2 dr
T

so that

I(s) = 65~ Y2L(s)I(s)sin 2s.

Vil

The above identity holds on the whole plane by analytic continuation. =

LEMMA 2. With the above notation if h+b < d+ 1 and Re(s) > 1 we
have

I(1—s)= 5/251/222 [(6/2)a at

tlpO

XZ 2(ng +t) ywi)t/2- I ja—s—p(6(ng + t)mi).
nez

Proof. Let N be an odd integer and define

1 _
In(s) = 9 f G(ez)eAZ s—1/2(02/2)2° 1/2 dz,
Cn
where Oy = {z: 2] = o} U{z: 2| = Nr}U{z:2=re™ 0 < p<r <
Nr}U{z:z=re ™ 0< o<r < Nn} (Cy is oriented in such way that
{z : |z| = o} is counter-clockwise oriented). We see that In(s) — I(s) as
N — o if 0 = Re(s) < 0. In fact, on |z| = N7 we have
|Zs—1/2| < (NW)G_I/QeTrltI,
H(),1/2(52/2) < AN-Y2(1 4+ et (1 4+ O(N 1))

with A; a suitable positive constant by (3), so that
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‘25_1/2G(€Z)6AZIS_1/2((52’/2)‘ < ]\[0’—16271”\t|142

with A, a suitable positive constant depending on o. Hence

L

|z|=Nm
if 0 <0.
By Cauchy’s theorem we have
In(s)= ) Res(G(e*)e? I, 12(62/2)2" /% 2mni).
—N<2n<N
n#0
Put

A(2) = Ii_1/2(82/2)2" 71/

and consider its Taylor series at s = 2nmi, n # 0:

— 1
A(z) = Z m‘A(m)(an)(z — 2nmi)™.
m=0
Then we have
d
Res(H(z)A(z); 2mni) = Z il ZA(Z) 2nmi) Z AP (2n7i).
p+i=—1 p=0
p=—(d+1)
1>0
By (5),
AP () = 27V (52/2)(5/2)2 .
Therefore

d
In(s) = Z Z—O/_Lp L(2nari)s 2T 1/2— o (Onmi)(5/2)1/ 2= +P,

—N<2n<N p=0
n#0

Because of (3) and (2) the series

>, @nmi) P (i)

n#0
converges absolutely and uniformly on compact subsets of ¢ > 1. Thus for
o > 1, we have

(1 =) Z Z 70‘*1) 1(2ni) /27811/27571,((5717&)(5/2)3*1/2+P
ni% p= 0

=(6/2)* V?ZZ [(0/2)"a at,_,

tlpO

X Z 2(ng + t)mwi)/?~ I j2—s—p(6(ng +t)mi). m
neEL
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3. Proof of the Theorem and the Corollary
Proof of Theorem. Put &1(s) =I(1 —s). By (6) we have

L(s) = Vw6275 (1 — s) (1 —s);

2cosTs
so if we put

E(s) = 0" /2D(s)I (s)L(s)
then £(s) = —&(1 — s) and the Theorem is proved.

Proof of Corollary. Consider

n+k—1 2n+k—1
_1‘2 )( )

L
k(s) ns(n+k—1)%

Then Z(S*¥,s) = Lj(s+ 1). Furthermore, Ly(s) satisfies the hypothesis of
the Theorem and so

D(s)(s)
(1 —s)I(1—s)

A similar argument works for projective spaces and the Corollary follows.

Li(1 — 5) = —Ly(s) (k—1)*~1

Remark. If a = b we obtain, by using the same method, a simpler in-
tegral representation for L(s). In particular, we get £(s) = @1(s)I(2s)L(s)
where, for Re(s) > 1,

D

M:‘

1/1-2s * , _og
pl< > t—p—lz (27”(71Q+t))1 Zomp

t=1 p=0 nez
q d
1/1-2
SE)9) DET () ISV B
t=1 p:O

X COS 5(1 —p—2s)C(2s+p—1,t/q)

where ((s,a) is the Hurwitz zeta function.
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