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1. Introduction and notation. In [1] we obtained the meromorphic
continuation of the Dirichlet series

L(s) =
∞∑

n=1

P (n)
(n + a)s(n + b)s

by giving a representation of L(s) in terms of Hurwitz zeta functions. That
representation allowed us to get some information about zeros and poles;
nevertheless no functional equation could be deduced from it. In this paper
following a classical argument we obtain for L(s) as above, under suitable
hypothesis, a functional equation of Riemann’s type. More precisely, let us
consider the Dirichlet series

L(s) =
∞∑

n=1

P (n)
(n + a)s(n + b)s

, Re(s) >
d + 1

2
,

where a < b are non-negative rational numbers and P (X) is a polynomial
of degree d with complex coefficients with P (0) = 0. Then by Stanley [6],
Corollaries 4.5 and 4.6, p. 115,

G(z) =
∞∑

n=1

P (n)zn =
Q(z)

(1− z)d+1
,

Q(z) being a polynomial of degree h = d−r, with r the greatest integer 6= 0
such that P (−1) = . . . = P (−r) = 0, and moreover, Q(1) 6= 0, Q(0) = 0.
We put δ = b− a, ∆ = (a + b)/2 and H(z) = G(ez)e∆z. If ∆ = q′/q (with
(q′, q) = 1) then H(z) is a meromorphic function of period 2qπi with poles
at s = 2nπi, n ∈ Z. We have the Laurent expansion

(1) H(z) =
∞∑

m=−(d+1)

αn
m(z − 2nπi)m

[265]
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with αn
m = αn+kq

m , k ∈ Z, and

(2) |αn
m| < B ∀n, m,

B being a positive constant.
Let us denote by Iν(z) the Bessel function defined by

Iν(z) =
∞∑

n=0

1
n!Γ (ν + n + 1)

(
z

2

)ν+2n

.

Then Iν(z) is holomorphic in C \ {z ∈ C : Re(z) ≤ 0, Im(z) = 0} and an
entire function of ν. We recall the asymptotic behaviour of Iν(z) (see [3],
p. 962.5):

(3) Iν(z) ∼ ez

√
2πz

(1+O(|z|−1))+
e−z±(ν+1/2)πi

√
2πz

(1+O(|z|−1)), |z| → ∞

(the + sign is taken for π/2 < arg z < 3π/2 and the − sign for −3π/2 <
arg z < π/2), and the relations

(4) Iν(eπmiz) = eνπmiIν(z), m ∈ Z
(see [3], 8.476, n. 4, p. 968),

(5)
dp

dzp
zνIν(z) = zνIν−p(z)

(see [3], 8.486, n. 5, p. 970).
In this paper we prove the following

Theorem. With the above notation and hypothesis, if h+b ≤ d+1, then
L(s) has a meromorphic continuation onto C with at most simple poles at
s = (d− l + 1)/2, l = 0, 1, . . . and satisfies the functional equation

ξ(s) = −ξ(1− s),

where
ξ(s) = δs−1/2ΦL(s)Γ (s)L(s)

and for Re(s) > 1

ΦL(s) =
(

δ

2

)s−1/2 q∑
t=1

d∑
p=0

1
p!

(
δ

2

)p

αt
−p−1

×
∑
n∈Z

∗
(2(nq + t)πi)1/2−sI1/2−s−p(δ(nq + t)πi)

(∗ means that if t = q then n 6= −1).

The Theorem above has an interesting application to Minakshisunda-
ram–Pleijel zeta functions of the real spheres and real and complex projec-
tive spaces. The problem of finding the functional equation for such zeta
functions goes back to Minakshisundaram and Pleijel (see [4], [5] and [2]).
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Corollary. Let

Z(Sk, s) =
1

(k − 1)!

∞∑
n=1

(n + 1) . . . (n + k − 2)(2n + k − 1)
ns(n + k − 1)s

be the Minakshisundaram–Pleijel zeta function of sphere Sk. Then Z(Sk, s)
satisfies the functional equation

Z(Sk,−s) = −Z(Sk, s− 1)
ΦL(s)Γ (s)

ΦL(1− s)Γ (1− s)
(k − 1)2s−1

where L(s + 1) = Z(Sk, s).
For the real projective space Pk(R) and the associated Minakshisunda-

ram–Pleijel zeta function

Z(Pk(R), s) =
1

(k − 1)!

∞∑
n=1

(2n + 1) . . . (2n + k − 2)(4n + k − 1)
(2n)s(2n + k − 1)s

we have

Z(Pk(R),−s) = −Z(Pk(R), 1− s)
ΦL(s)Γ (s)

ΦL(1− s)Γ (1− s)

(
k − 1

2

)2s−1

,

where L(s + 1) = Z(Pk(R), s).
For the complex projective space Pk(C) and the associated Minakshisun-

daram–Pleijel zeta function

Z(Pk(C), s) =
1

((k − 1)!)2

∞∑
n=1

((n + 1) . . . (n + k − 2))2(2n + k)k
(4n)s(n + k)s

we have

Z(Pk(C),−s) = −Z(Pk(C), 1− s)
ΦL(s)Γ (s)

ΦL(1− s)Γ (1− s)
(k − 1)2s−1,

where L(s + 1) = Z(Pk(C), s).

2. Two lemmas. Starting from the classical formula

Γ (s) =
∞∫

0

e−tts−1 dt

one easily gets

Γ (s)2L(s) =
∞∫

0

∞∫
0

G(e−(t1+t2))e−at1−bt2(t1t2)s−1 dt1 dt2.

Using the substitution{
t1 = tu,
t2 = t(1− u), 0 ≤ t ≤ ∞, 0 ≤ u ≤ 1,
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we obtain

Γ (s)2L(s) =
∞∫

0

G(e−t)e−btt2s−1
1∫

0

us−1(1− u)s−1eδtu du dt.

Now, by [3], n. 3382.2, p. 319 we have

1√
π

δs−1/2Γ (s)L(s) =
∞∫

0

G(e−t)e−∆tIs−1/2

(
1
2δt

)
ts−1/2 dt.

Lemma 1. Define

I(s) =
1

2πi

∫
C

G(ez)e∆zIs−1/2

(
1
2δz

)
zs−1/2 dz,

where C = C1 ∪ C2 ∪ C3 and C1 = {z ∈ C : z = re−πi, r ∈ (%,∞)},
C3 = {z ∈ C : z = reπi, r ∈ (%,∞)}, C2 = {z ∈ C : z = %eθi, −π ≤ θ ≤ π}
with 0 < % < 2π (C is counter-clockwise oriented). Then I(s) is well defined
(independent of %) and entire. Furthermore, we have

(6) I(s) =
1

π
√

π
δs−1/2Γ (s)L(s) sin 2πs ∀s ∈ C.

P r o o f. We need to prove that our integral in (2) is uniformly and
absolutely convergent on compact subsets of C. The convergence along C2

is trivial. If z ∈ C1 ∪ C3 then Re(z) = −r and ez = e−r so that for r ≥ 1
we have

|zs−1/2| ≤ rM−1/2eπM if |s| < M,

and by (3),

|G(ez)e∆zIs−1/2(δz/2)|∼
∣∣∣∣ Q(ez)
(1− ez)d+1

e∆z eδz/2 + e−δz/2±sπi

√
πδz

(1 + O(|z|−1))
∣∣∣∣

= O(e−r),

so the first statement follows.
We have

I(s) =
1

2πi

( ∫
C1

+
∫

C2

+
∫

C3

)
G(ez)e∆zIs−1/2(δz/2)zs−1/2 dz,

where ∫
C1

=
%∫

∞
G(e−r)e−∆rIs−1/2(δre−πi/2)rs−1/2e−πi(s−1/2)e−πi dr

since dz = e−πi dr and∫
C3

=
∞∫

%

G(e−r)e−∆rIs−1/2(δreπi/2)rs−1/2eπi(s−1/2)eπi dr

since dz = eπidr.
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By (4) we obtain∫
C1

+
∫

C3

= 2i sin 2πs
∞∫

%

G(e−r)e−∆rIs−1/2(δr/2)rs−1/2 dr.

Along C2, z = %eiθ, and∫
C2

=
π∫

−π

F (θ, %)%s−1/2 dθ,

where F (θ, %) is uniformly bounded, with respect to %. Then

lim
%→0

∫
C2

= 0

if Re(s) is sufficiently large and so we have

I(s) =
1
π

sin 2πs
∞∫

0

G(e−r)e−∆rIs−1/2(δr/2)rs−1/2 dr

so that

I(s) =
1√
π3

δs−1/2L(s)Γ (s) sin 2πs.

The above identity holds on the whole plane by analytic continuation.

Lemma 2. With the above notation if h + b ≤ d + 1 and Re(s) > 1 we
have

I(1− s) = (δ/2)s−1/2

q∑
t=1

d∑
p=0

1
p!

(δ/2)pαt
−p−1

×
∑
n∈Z

∗
(2(nq + t)πi)1/2−sI1/2−s−p(δ(nq + t)πi).

P r o o f. Let N be an odd integer and define

IN (s) =
1

2πi

∫
CN

G(ez)e∆zIs−1/2(δz/2)zs−1/2 dz,

where CN = {z : |z| = %} ∪ {z : |z| = Nπ} ∪ {z : z = reπi, 0 < % ≤ r ≤
Nπ} ∪ {z : z = re−πi, 0 < % ≤ r ≤ Nπ} (CN is oriented in such way that
{z : |z| = %} is counter-clockwise oriented). We see that IN (s) → I(s) as
N →∞ if σ = Re(s) < 0. In fact, on |z| = Nπ we have

|zs−1/2| ≤ (Nπ)σ−1/2eπ|t|,

|H(z)Is−1/2(δz/2)| ≤ A1N
−1/2(1 + eπ|t|)(1 + O(N−1))

with A1 a suitable positive constant by (3), so that
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|zs−1/2G(ez)e∆zIs−1/2(δz/2)| ≤ Nσ−1e2π|t|A2

with A2 a suitable positive constant depending on σ. Hence
lim

N→∞

∫
|z|=Nπ

= 0

if σ < 0.
By Cauchy’s theorem we have

IN (s) =
∑

−N≤2n≤N
n 6=0

Res(G(ez)e∆zIs−1/2(δz/2)zs−1/2; 2πni).

Put
A(z) = Is−1/2(δz/2)zs−1/2

and consider its Taylor series at s = 2nπi, n 6= 0:

A(z) =
∞∑

m=0

1
m!

A(m)(2nπi)(z − 2nπi)m.

Then we have

Res(H(z)A(z); 2πni) =
∑

p+l=−1
p≥−(d+1)

l≥0

1
l!

αn
pA(l)(2nπi) =

d∑
p=0

1
p!

αn
−p−1A

(p)(2nπi).

By (5),
A(p)(z) = zs−1/2Is−1/2−p(δz/2)(δ/2)1/2−s+p.

Therefore

IN (s) =
∑

−N≤2n≤N
n 6=0

d∑
p=0

1
p!

αn
−p−1(2nπi)s−1/2Is−1/2−p(δnπi)(δ/2)1/2−s+p.

Because of (3) and (2) the series∑
n 6=0

αn
−p−1(2nπi)1/2−sI1/2−s−p(δnπi)

converges absolutely and uniformly on compact subsets of σ > 1. Thus for
σ > 1, we have

I(1− s) =
∑
n∈Z
n 6=0

d∑
p=0

1
p!

αn
−p−1(2nπi)1/2−sI1/2−s−p(δnπi)(δ/2)s−1/2+p

= (δ/2)s−1/2

q∑
t=1

d∑
p=0

1
p!

(δ/2)pαt
−p−1

×
∑
n∈Z

∗
(2(nq + t)πi)1/2−sI1/2−s−p(δ(nq + t)πi).
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3. Proof of the Theorem and the Corollary

P r o o f o f T h e o r e m. Put ΦL(s) = I(1− s). By (6) we have

L(s) =
√

πδ1/2−sΓ (1− s)
1

2 cos πs
ΦL(1− s);

so if we put
ξ(s) = δs−1/2ΦL(s)Γ (s)L(s)

then ξ(s) = −ξ(1− s) and the Theorem is proved.

P r o o f o f C o r o l l a r y. Consider

Lk(s) =
1

(k − 1)!

∞∑
n=1

n . . . (n + k − 1)(2n + k − 1)
ns(n + k − 1)s

.

Then Zk(Sk, s) = Lk(s + 1). Furthermore, Lk(s) satisfies the hypothesis of
the Theorem and so

Lk(1− s) = −Lk(s)
Φ(s)Γ (s)

Φ(1− s)Γ (1− s)
(k − 1)2s−1.

A similar argument works for projective spaces and the Corollary follows.

R e m a r k. If a = b we obtain, by using the same method, a simpler in-
tegral representation for L(s). In particular, we get ξ(s) = ΦL(s)Γ (2s)L(s)
where, for Re(s) > 1,

ΦL(s) =
q∑

t=1

d∑
p=0

1
p!

(
1− 2s

p

)
αt
−p−1

∑
n∈Z

∗
(2πi(nq + t))1−2s−p

= 2
q∑

t=1

d∑
p=0

1
p!

(
1− 2s

p

)
αt
−p−1(2πq)1−p−2s

× cos
π

2
(1− p− 2s)ζ(2s + p− 1, t/q)

where ζ(s, a) is the Hurwitz zeta function.
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