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1. Introduction and main results. Let d(n) denote the divisor
function and let

∆(x) =
∑
n≤x

d(n)− x(log x+ 2γ − 1) for x ≥ 2

be the error term in the Dirichlet divisor problem. The study of ∆(x) dates
back at least to Dirichlet who first obtained by elementary argument the
upper bound ∆(x) � x1/2 in 1838. There has since been extensive work on
the various properties of ∆(x) by many authors. See [4, Chapters 13, 14],
[9, Chapter 12] and [6] for a comprehensive account of the subject.

In this paper we shall be concerned with an asymptotic formula for the
mean square of ∆(x). In 1956, Tong [10] proved the classical result:

X∫
2

∆(x)2 dx =
(
(6π2)−1

∞∑
m=1

d(m)2m−3/2
)
X3/2 + F (X)

with F (X) � X log5X. This shows that ∆(x)2 behaves nicely in the mean
over intervals [X,X+ l] of length l�

√
X log5X. Tong’s result has resisted

improvements for more than three decades until 1988, when Preissmann [8]
obtained the slightly better bound

(1.1) F (X) � X log4X,

by employing a variant of Hilbert’s inequality. (The same bound can also
be obtained by using the estimate in Lemma 1 below. See [4, p. 98].) The
improvement, though small, is not insignificant. It remains the best known
upper bound for F (X) in print and we shall see later why it is difficult to
further reduce it.

The interest in the function F (X) arises partly from its connection with
the order of ∆(x). Ivić [4,Theorem3.8] observed that, if U is an upper bound

[279]
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for F (x) then ∆(x) � (U log x)1/3 holds. Thus, from Hafner’s Ω-result [1]

∆(x) = Ω+((x log x)1/4(log log x)(3+log 4)/4e−A(log log log x)1/2
),

where A is a certain positive constant, Ivić deduced that

(1.2) F (x) = Ω(x3/4(log x)−1/4(log log x)3(3+log 4)/4e−3A(log log log x)1/2
).

(See also [5].) It was even optimistically conjectured that F (x) � x3/4+ε

holds for any ε > 0. This is a very strong conjecture since its truth would
imply the long standing conjecture that ∆(x) � x1/4+ε for any ε > 0. In a
previous paper [6] we disprove the above conjecture of Ivić by showing that

F (x) = Ω−(x log2 x),

which in turn is an immediate consequence of the formula [6, Theorem 2]:

(1.3)
X∫

2

F (x) dx = −(8π2)−1X2 log2X + cX2 logX +O(X2).

Here c denotes a certain constant. This result closes up most of the gap
between (1.1) and (1.2). It is the upper bound (1.1) rather than the lower
bound (1.2) that is closer to the true order of magnitude of F (x). This
explains why further improvements on (1.1) are so difficult to obtain. The
exact determination of the order of F (x) seems to be very difficult and
delicate.

The formula (1.3) can be reformulated as

(1.4)
X∫

2

(F (x) + (4π2)−1x log2 x− κx log x) dx� X2

for a certain constant κ. This suggests to us the

Conjecture.

(1.5) F (x) = −(4π2)−1x log2 x+ κx log x+O(x).

As we have pointed out in [6], the O-term here is best possible; it is
oscillatory and cannot be o(x). So, this conjecture offers the best possible
asymptotic description for F (x).

In this paper, we shall strengthen (1.4) and furnish strong evidence in
support of our conjecture (1.5). We prove the following

Main Theorem. There exist constants κ and c such that for any real
number r ≥ 1, we have

X∫
2

|F (x) + (4π2)−1x log2 x− κx log x|r dx� (cr)4rXr+1.

The constant implied in the symbol � is independent of r.
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Clearly (1.4) is a direct consequence of the case r = 1. Furthermore, we
have the following

Corollary. There is a positive constant c′ such that for any increasing
function G(x) with 2 ≤ G(x) ≤ log4 x, we have

|F (x) + (4π2)−1x log2 x− κx log x| ≤ xG(x)

for all but O(X exp(−c′G(X)1/4)) values of x in [2, X]. In particular , con-
jecture (1.5) holds true for almost all values of x, that is, the more precise
asymptotic formula

X∫
2

∆(x)2 dx =
(
(6π2)−1

∞∑
m=1

d(m)2m−3/2
)
X3/2

− (4π2)−1X log2X + κX logX +O(X)

is true for almost all X ≥ 2.
The corollary follows easily from the Main Theorem by taking r =

(ec)−1G(X)1/4.
The plan of our proof of the Main Theorem is as follows: In Section 2 we

shall prove four preliminary lemmas. Then we compute the expected main
term for F (x) in Section 3, and finally in Section 4, we bound the rth power
moments of four remainder terms resulting from Section 3.

2. Notations and some preparations. Throughout the paper,
ε denotes an arbitrary small positive number and c, a positive number,
both of which may not be the same at each occurrence. The symbols
c0, c1, c2, . . . etc. denote certain unspecified constants. The well-known in-
equality: d(n) �ε nε for any ε > 0 will be used freely without explicit
reference. The constants implied in the symbols O and � may depend on
ε only.

The method of proof of our Main Theorem builds on the idea in [6]. One
of the main ingredients there is an asymptotic estimate for the sum

(2.1) ψh(y) =
∑
m≤y

d(m)d(m+ h) for y > 0, h > 0.

In connection with his work on the fourth power moment of the Riemann
zeta-function on the critical line, Heath-Brown [2] proved the following.

Lemma 1. We have

(2.2) ψh(y) = Ih(y) + Eh(y),

where the main term Ih(y) is of the form

(2.3) Ih(y) = y

2∑
j=0

logj y
∑
d|h

d−1(αj0 + αj1 log d+ αj2 log2 d)
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for certain constants αji, and the remainder Eh(y) satisfies

(2.4) Eh(y) � y5/6+ε

uniformly for h ≤ y5/6. In particular , α20 = 6π−2, α21 = α22 = 0.

The bound (2.4) for Eh(y) is not the sharpest known in the literature.
For instance, Motohashi [7] has Eh(y) � y2/3+ε uniformly for h ≤ y20/27.
But this does not help in reducing the bound in our Main Theorem and we
are content with Heath-Brown’s estimate. We note that Ih(y) is roughly of
the order y log2 y. In the computation of the main term for F (x), we shall
need I ′h(y), the derivative of Ih(y). By (2.3) we have

(2.5) I ′h(y) = a2(h) log2 y + a1(h) log y + a0(h),

where

(2.6)

a2(h) = 6π−2
∑
d|h

d−1,

a1(h) =
∑
d|h

d−1(12π−2 + α10 + α11 log d+ α12 log2 d),

a0(h) =
∑
d|h

d−1
2∑

i=0

(α0i + α1i) logi d.

For any y > 0, Q > 3, let

(2.7) ξ(y,Q) =
∑
h≤y

h−1(4a2(h) log2 hQ+ 2a1(h) log hQ+ a0(h)).

We have proved in [6] the following.

Lemma 2. For any y > 0, Q > 3,

ξ(y,Q) = 4
3 log3 yQ+ c4 log2 yQ− 4

3 log3Q+ c5 log2Q+ c6 logQ

+ c7 log y + c8 +O(y−1|log3 y| log2 yQ).

Another salient feature in our argument is the use of the Bessel functions.
For ν ≥ 0, let

(2.8) f(ν) = ν−1/2J1/2(ν)− 2ν−3/2J3/2(ν),

where Jk denotes the Bessel function of order k. By the well-known estimate
(for this and other properties of Jk, consult [11])

Jk(z) � min(|z|k, |z|−1/2)

for any real z, we have, for any ν ≥ 0,

f(ν) � min(1, ν−1),(2.9)
f(ν) = ν−1/2J1/2(ν) +O(ν−2) = (2/π)1/2ν−1 sin ν +O(ν−2)(2.10)
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and

(2.11) f ′(ν) = −ν−1/2J3/2(ν) + 2ν−3/2J5/2(ν) � ν−1.

Lemma 3. For 0 ≤ a ≤ 1/2, 2 ≤ A and j = 0, 1, 2, 3, we have
A∫

a

f(ν) logj ν dν = cj +O(a|log a|j +A−1 logj A)

with c0 = 0 and c1 = −2−3/2
√
π.

P r o o f. The argument in [6, Lemma 5] shows that

(2.12)
∞∫

0

f(ν)νs logj ν dν =
dj

dsj

{
−s2s−3/2Γ

(
1
2 (s+ 1)

)
/Γ (2− s/2)

}
for −1 < Re s < 0. Actually, this equation holds for all complex numbers s
which satisfy |s| < 1. Indeed, for any C > B > 2 we have, by (2.10),

C∫
B

f(ν)νs logj ν dν

=
(

2
π

)1/2 C∫
B

(sin ν)νs−1 logj ν dν +O
( C∫

B

ν−2|νs| logj ν dν
)
.

Thus, uniformly for |s| < 1− ε we have

(2.13)
C∫

B

f(ν)νs logj ν dν = Oε(BRe s−1 logj B),

by applying partial integration to the first integral on the right hand side.
This shows that the integral

∫∞
0
f(ν)νs logj ν dν converges uniformly for

|s| < 1 − ε and hence defines an analytic function in the region |s| < 1.
Clearly, the right hand side of (2.12) is also analytic in the same region. So
(2.12) holds for |s| < 1. Equating both sides at s = 0 then yields

∞∫
0

f(ν) logj ν dν = cj

for j = 0, 1, 2, 3 with c0 = 0 and c1 = −2−3/2
√
π. Finally, by (2.13) at s = 0,

we have
∞∫

A

f(ν) logj ν dν � A−1 logj A,

and by (2.9),
a∫

0

f(ν) logj ν dν �
a∫

0

|logj ν| dν � a|log a|j .
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This proves our lemma.

Lemma 4. Let y ≥ 2.

(a) If 0 < α < 1 and α+ β ≥ 2 then∑
m≤n≤y

d(m)m−αd(n)n−β � (1− α)−1 min(log3 y, (α+ β − 2)−3).

(b) If β ≥ 1 then∑
h≤m≤y

d(m)m−βd(m+ h)h−1 � min(log4 y, (β − 1)−4).

P r o o f. (a) For any y ≥ 2,∑
m≤y

d(m)m−α =
∑
u≤y

u−α
∑

v≤y/u

v−α � (1− α)−1
∑
u≤y

u−α(y/u)1−α

� (1− α)−1y1−α log y.

Hence∑
n≤y

( ∑
m≤n

d(m)m−α
)
d(n)n−β � (1− α)−1

∑
n≤y

n1−α−βd(n) log n

= 2(1− α)−1
∑
u≤y

u1−α−β log u
∑

v≤y/u

v1−α−β .

Since 1− α− β ≤ −1, we have∑
u≤y

u1−α−β log u
∑

v≤y/u

v1−α−β ≤
∑
u≤y

u−1 log u
∑
v≤y

v−1 � log3 y.

On the other hand, for 1− α− β < −1,∑
u≤y

u1−α−β log u
∑

v≤y/u

v1−α−β � (α+ β − 2)−1
∑
u≤y

u1−α−β log u

� (α+ β − 2)−3.

This proves part (a).
(b) We split the sum in part (b) into∑
m≤y

d(m)m−β
∑

m5/6<h≤m

d(m+ h)h−1

+
∑

h≤y5/6

h−1
∑

h6/5<m≤y

d(m)d(m+ h)m−β = Σ1 +Σ2,

say. For Σ1 we use the asymptotic formula∑
m≤t

d(m) = t(log t+ 2γ − 1) +O(t1/3)
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and partial summation to show that∑
m5/6<h≤m

d(m+ h)h−1 � log2m.

Then

Σ1 �
∑
m≤y

d(m)m−β log2m =
∑

uv≤y

(uv)−β log2(uv)(2.14)

≤ 2
∑

u≤v≤y

(uv)−β log2 v �
∑
v≤y

v−β log3 v

� min(log4 y, (β − 1)−4).

For Σ2 we use Lemma 1 and partial summation to obtain∑
h6/5<m≤y

d(m)d(m+ h)m−β =
y∫

h6/5

u−βI ′h(u) du+O(h−1/6).

Then

(2.15) Σ2 =
y∫

1

u−β
∑

h≤u5/6

h−1I ′h(u) du+O(1).

By (2.5) we have

(2.16)
∑

h≤u5/6

h−1I ′h(u)

=
∑

h≤u5/6

h−1a2(h) log2 u+
∑

h≤u5/6

h−1a1(h) log u+
∑

h≤u5/6

h−1a0(h).

An elementary argument shows that∑
h≤y

h−1aj(h) � log y for j = 0, 1, 2

(see [6, (2.19)]). Hence, by inserting this into (2.16) we find from (2.15) that

Σ2 �
y∫

1

u−β log3 u du+ 1 � min(log4 y, (β − 1)−4).

This together with (2.14) proves part (b). Our lemma is thus established.

3. The main term of F (x). Let x ≥ 2 be any real number and
M = x7. Clearly, we may assume throughout that x is large. Our starting
point is the following formula [6, (2.2)–(2.4)]:

(3.1) F (x) = S1(x) + S2(x) +O(x),
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where

S1(x) = (2π2)−1
∑

m<n≤M

d(m)d(n)(mn)−3/4(3.2)

×
x∫

2

√
y cos(4π(

√
n−

√
m)
√
y) dy

and

S2(x) = (4π2)−1
∑

m,n≤M

d(m)d(n)(mn)−3/4(3.3)

×
x∫

2

√
y sin(4π(

√
n+

√
m)
√
y) dy.

We shall extract a main term from S1(x) and leave four remainder terms
for Section 4.

By the well-known integral representation for the Bessel functions [11,
Section 3.3]:

Jk+1/2(z) =
2√
π

(
z

2

)k+1/2 1
k!

1∫
0

(1− v2)k cos(zv) dv, k = 0, 1, 2, . . . ,

we find easily that, for any nonzero real number α,

(3.4)
x∫

2

√
y cos(α

√
y) dy = 2x3/2

1∫
0

v2 cos(α
√
xv) dv −

2∫
0

√
y cos(α

√
y) dy

= 2x3/2{
√
π(2α

√
x)−1/2J1/2(α

√
x)−

√
2π(α

√
x)−3/2J3/2(α

√
x)}

− 2

√
2∫

0

u2 cosαudu

=
√

2πx3/2f(α
√
x) +O(|α|−1),

by (2.8). For convenience, write

(3.5) θm,n = 4π
√
x(
√
n−

√
m)

and

(3.6) φm,n = d(m)d(n)(mn)−3/4f(θm,n).

Then by (3.2) and (3.4),

S1(x) =
1√
2

(
x

π

)3/2 ∑
m<n≤M

φm,n

+O
( ∑

m<n≤M

d(m)d(n)(mn)−3/4(
√
n−

√
m)−1

)
.
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The O-term is

�Mε
∑

m<n≤M

(mn)−3/4
√
n(n−m)−1 �Mε

∑
n≤M

n−1 log n� xε,

since M = x7. Hence we can write

(3.7) S1(x) = S3(x) + S4(x) +O(xε),

where

S3(x) =
1√
2

(
x

π

)3/2 ∑
n/2<m<n≤M

φm,n

and

(3.8) S4(x) =
1√
2

(
x

π

)3/2 ∑
m≤n/2≤M/2

φm,n.

In the double sum S3(x), we put n = m + h with h ≥ 1 and further
decompose it into three sub-sums, namely,

S3(x) =
1√
2

(
x

π

)3/2 ∑
h≤M/2

∑
h<m≤M−h

φm,m+h(3.9)

= S5(x) + S6(x) + S7(x),

where

S5(x) =
1√
2

(
x

π

)3/2 ∑
h≤H

∑
D<m≤M−h

φm,m+h,(3.10)

S6(x) =
1√
2

(
x

π

)3/2 ∑
h≤H

∑
h<m≤D

φm,m+h,(3.11)

S7(x) =
1√
2

(
x

π

)3/2 ∑
H<h≤M/2

∑
h<m≤M−h

φm,m+h,(3.12)

(3.13) H = xτ , τ = 49/16,

and for each h ≤ H,

(3.14) D = Dh = (h
√
x)7/4.

We now proceed to evaluate the sum S5(x) which contains the main term
of F (x).
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By Riemann–Stieltjes integration, (2.1), (2.2) and (3.6), we have∑
D<m≤M−h

φm,m+h =
M−h∫
D

(y(y + h))−3/4f(θy,y+h) dψh(y)

=
M−h∫
D

(y(y + h))−3/4f(θy,y+h)I ′h(y) dy

+ Eh(y)(y(y + h))−3/4f(θy,y+h)
∣∣∣M−h

D

−
M−h∫
D

Eh(y)
d

dy
{(y(y + h))−3/4f(θy,y+h)} dy

= W1(h) +W2(h)−W3(h),

say. Note that

θy,y+h = 4π
√
x(

√
y + h−√y) ≈ 2πh

√
x/y.

Hence by (2.9),

(3.15) f(θy,y+h) � √
yh−1x−1/2.

As D > h6/5, we may apply (2.4) to bound Eh(y) in W2(h) and W3(h). So
by (3.15) and (3.14), we have

W2(h) � D−1/6+εh−1x−1/2 � (h
√
x)−5/4.

With the help of (2.11) and (2.9), similar argument yields

W3(h) �
M−h∫
D

y5/6+ε{y−5/2 + y−3/2√yh−1x−1/2h
√
xy−3/2} dy

� D−2/3+ε � (h
√
x)−13/12.

Whence

(3.16)
∑

D<m≤M−h

φm,m+h = W1(h) +O((h
√
x)−13/12).

To evaluate the integral

W1(h) =
M−h∫
D

(y(y + h))−3/4f(θy,y+h)I ′h(y) dy,

we make the change of variable:

(3.17) ω = θy,y+h = 4π
√
x(

√
y + h−√y).

Then ω lies in the interval [u1, u2] where

(3.18) u1 = 4π
√
x(
√
M −

√
M − h) = 2πhx−3 +O(h2x−10)



Mean square of the remainder term 289

and

(3.19) u2 = 4π
√
x(
√
D + h−

√
D) ≈ 2πh

√
xD−1/2 ≥ 2πHx−3,

by (3.14). Moreover, we notice that ω2x−1h−1 � x−7/8 for ω ∈ [u1, u2].
Thus by (3.17) we find that

y = 4π2xω−2h2 − 1
2h+ (64π2x)−1ω2 = 4π2xh2ω−2(1 +O(ω2x−1h−1)),

so that

(y(y + h))−3/4 = (4π2xh2ω−2 − (64π2x)−1ω2)−3/2

= ω3(2πh
√
x)−3(1 +O(ω4x−2h−2))

and
dy

dω
= −8π2xh2ω−3(1 +O(ω4x−2h−2)).

Moreover, by (2.5) and (2.6) (which shows a0(h), a1(h) � log3 h and a2(h)
� log h) we have

I ′h(y) = Bh(ω) +O(ω2x−1h−1 log3 x),

where

(3.20) Bh(ω) = 4a2(h) log2(2πh
√
xω−1) + 2a1(h) log(2πh

√
xω−1) + a0(h).

With all these approximations we find that

W1(h) = (π
√
x)−1

u2∫
u1

f(ω)h−1(Bh(ω) +O(ω2x−1h−1 log3 x)) dω.

By (2.9), (3.19) and (3.14) the O-term in the integrand contributes no more
than

h−2x−3/2 log3 x
u2∫

u1

min(1, ω−1)ω2dω � x−1/2D−1 log3 x ≤ x−1/2h−7/4.

Moreover, by (3.18), when we replace the lower integration limit by 2πhx−3,
the error induced in W1(h) is

� (h
√
x)−1h2x−10(a2(h) log2 x+ |a1(h)| log x+ |a0(h)|) � hx−21/2 log4 x.

Similarly, by (2.10), if we change the upper integration limit to 2πHx−3,
the error induced in W1(h) is bounded by

(3.21) (h
√
x)−1

∣∣∣ u2∫
2πHx−3

(ω−1 sinω +O(ω−2))Bh(ω) dω
∣∣∣.

The contribution of the term O(ω−2) is � (h
√
x)−1(Hx−3)−1 log4 x, while
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by partial integration
u2∫

2πHx−3

ω−1 sinωBh(ω) dω

= O((Hx−3)−1 log4 x) +
u2∫

2πHx−3

cosω
d

dω
{ω−1Bh(ω)} dω

= O((Hx−3)−1 log4 x) +O
( u2∫

2πHx−3

ω−2 log4 x dω
)

= O((Hx−3)−1 log4 x).

Hence the expression in (3.21) is

� (h
√
x)−1(Hx−3)−1 log4 x� x−9/16h−1 log4 x,

by (3.13). With all these estimations and simplifications, we can now write

W1(h) = (π
√
x)−1

2πHx−3∫
2πhx−3

f(ω)h−1Bh(ω) dω

+O(x−1/2h−7/4 + x−21/2h log4 x+ x−9/16h−1 log4 x).

Then by (3.16), (3.10) and (3.13), we have

S5(x) = (2π5)−1/2x
∑
h≤H

2πHx−3∫
2πhx−3

f(ω)h−1Bh(ω) dω +O(x).

Interchanging the summation and integration, and in view of (2.7), (3.20)
we find that

(3.22) S5(x) = (2π5)−1/2x
2πHx−3∫
2πx−3

f(ω)ξ
(
x3ω

2π
,
2π
√
x

ω

)
dω +O(x).

Now by Lemma 2,

ξ

(
x3ω

2π
,
2π
√
x

ω

)
= logω log2 x+ (c9 logω + c10 log2 ω) log x

+ Φ1(logω) + Φ2(log x) +O(ω−1x−3 log5 x),

where Φ1,Φ2 are certain polynomials of degrees at most 3. Thus by Lemma 3,
2πHx−3∫
2πx−3

f(ω)ξ
(
x3ω

2π
,
2π
√
x

ω

)
dω = − 2−3/2

√
π log2 x+ c11 log x+ c12

+O((x3H−1 + x−3) log3 x+ x−3 log6 x).
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Inserting this into (3.22) and in view of (3.13), we have

S5(x) = −(4π2)−1x log2 x+ κx log x+O(x)

for a certain constant κ. Combining this with (3.1), (3.7) and (3.9), we have
proved that

(3.23) F (x) + (4π2)−1x log2 x− κx log x
= S2(x) + S4(x) + S6(x) + S7(x) +O(x).

4. Completion of the proof of Main Theorem. We are now ready
to complete the proof of our Main Theorem.

Let X be any large number (which is independent of r). In view of
(3.23), it is sufficient to prove

(4.1)j

X∫
2

|Sj(x)|r dx� (cr)4rXr+1 for j = 2, 4, 6, 7,

in order to obtain our Main Theorem. Recall that the symbol c denotes a
certain positive constant which may not be the same at each occurrence.

Let δ = 10−4. It is easy to verify that

(4.2) X−δ log4r X ≤
(

4r
eδ

)4r

.

Hence in the course of our analysis, errors and bounds of the form
X1+r−δ(c logX)4r are acceptable. Furthermore, by Hölder’s inequality, we
need only to prove (4.1)j for positive even integers r.

Consider first the easiest case (4.1)2, that is, the bound

(4.3)
X∫

2

(S2(x))r dx� (cr)4rXr+1.

Recall from (3.3) the definition of S2(x). Since∫√
y sin(α

√
y) dy = −2yα−1 cosα

√
y + 4

√
yα−2 sinα

√
y + 4α−3 cosα

√
y

for any α 6= 0, we can rewrite

(4.4) S2(x) = −(2π)−3x
∑

m,n≤M

d(m)d(n)(mn)−3/4(
√
n+

√
m)−1

× cos(4π(
√
n+

√
m)
√
x)

+O
( ∑

m,n≤M

d(m)d(n)(mn)−3/4(
√
x(
√
n+

√
m)−2 + (

√
n+

√
m)−1)

)
.

The O-term here is

�
√
x

∑
m≤n≤M

d(m)d(n)m−3/4n−7/4 +
∑

m≤n≤M

d(m)d(n)m−3/4n−5/4 �
√
x,
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by Lemma 4(a). Hence

(4.5)
X∫

2

(S2(x))r dx� cr
∑

mi,nj≤X7

r∏
i=1

b(mi, ni)

×
X∫

maxi,j(mi,nj)
1/7

xr
r∏

i=1

cos(4πσi

√
x) dx+O((cX)r/2+1),

where σi =
√
ni +

√
mi and

(4.6) b(m,n) = d(m)d(n)(mn)−3/4(
√
n+

√
m)−1.

The product
∏r

i=1 cos(4πσi
√
x) is equal to a sum of 2r−1 terms, each of

which is of the form 2−r+1 cos(4π
√
x(σ1 ± σ2 ± . . . ± σr)). By the second

mean value theorem (see [9, Lemma 4.3]),

(4.7)
X∫

X0

xreiα
√

x dx� min(Xr+1, Xr+1/2|α|−1)

for any X0 > 0 and any real number α. Applying this we find that
X∫

maxi,j(mi,nj)
1/7

xr
r∏

i=1

cos(4πσi

√
x) dx

� 2−r
∑

± min(Xr+1, Xr+1/2|σ1 ± σ2 ± . . .± σr|−1),

where the last summation
∑
± is over all the 2r−1 possible combinations of

the ± signs. In view of (4.5), the bound (4.3) would follow once we establish
the inequality

(4.8)
∑

mi,nj≤X7

r∏
i=1

b(mi, ni) min(Xr+1, Xr+1/2|σ1 ± σ2 ± . . .± σr|−1)

� (cr)4rXr+1

for each combination of the ± signs. Let us now consider the left hand
side of (4.8) for a fixed combination of the ± signs. We may, in addition,
assume n1 to be the largest among all the ni, mj in the summation. Write
σ′ = ±σ2±. . .±σr for short. Then on considering the two cases: |σ1+σ′| > 1
and |σ1 + σ′| ≤ 1, we see that the sum on the left hand side of (4.8) is less
than or equal to

(4.9) Xr+1/2
∑

mi,nj≤X7

r∏
i=1

b(mi, ni) +Xr+1
∑

mi,nj≤X7

|σ1+σ′|≤1

r∏
i=1

b(mi, ni)

= Xr+1/2Σ′ +Xr+1Σ′′,
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say. By Lemma 4(a) and (4.6),

Σ′ =
( ∑

m,n≤X7

b(m,n)
)r

(4.10)

� cr
( ∑

m≤n≤X7

d(m)m−3/4d(n)n−5/4
)r

� (c log3X)r.

In Σ′′, for given m2, . . . ,mr, n1, . . . , nr the condition |σ1 +σ′| ≤ 1 stipulates
that

√
m1 must lie in an interval [v, v + 2] for some v = v(m2, . . . , nr) with

v � √
n1. Hence m1 is determined up to O(

√
n1) consecutive values so that∑

m1

d(m1)m
−3/4
1 ≤

∑
m1�

√
n1

m
−3/4+δ
1 � n

1/8+δ
1 .

Then

Σ′′ ≤
∑

ni,mi≤X7

i≥2

r∏
i=2

b(mi, ni)
∑
n1

d(n1)n
−5/4
1 n

1/8+δ
1

�
∑

ni,mi≤X7

i≥2

r∏
i=2

b(mi, ni)(max
i≥2

(ni,mi))−1/9,

since n1 ≥ maxi≥2(ni,mi). Consequently,

Σ′′ �
∑

ni,mi≤X7

i≥2

r∏
i=2

(b(mi, ni) max(ni,mi)−1/(9r))

� cr
( ∑

m≤n≤X7

d(m)m−3/4d(n)n−5/4−1/(9r)
)r−1

� crr3r,

by (4.6) and Lemma 4(a). Combining this estimate with that in (4.10), we
find that the right hand side of (4.9) is bounded by Xr+1/2(c log3X)r +
Xr+1(cr)3r which, in view of (4.2), yields the inequality (4.8).

Next we consider (4.1)4, that is, the inequality

(4.11)
X∫

2

(S4(x))r dx� (cr)4rXr+1.

By (3.8), (3.6) and (2.10), we can write

S4(x) = π−2x3/2
∑

m≤n/2≤M/2

d(m)d(n)(mn)−3/4θ−1
m,n sin θm,n

+O
(
x3/2

∑
m≤n/2≤M/2

d(m)d(n)(mn)−3/4θ−2
m,n

)
.
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By (3.5) and Lemma 4(a), the O-term is

�
√
x

∑
m≤n/2≤M/2

d(m)d(n)(mn)−3/4(
√
n−

√
m)−2

�
√
x

∑
m≤n/2≤M/2

d(m)m−3/4d(n)n−7/4 �
√
x.

Hence

S4(x) = (4π3)−1x
∑

m≤n/2≤M/2

d(m)d(n)(mn)−3/4(
√
n−

√
m)−1

× sin(4π
√
x(
√
n−

√
m)) +O(

√
x).

The double sum here can be compared with that for S2(x) in (4.4). Here
we have the factor

√
n −

√
m instead of

√
n +

√
m. But since m ≤ n/2,√

n −
√
m has the same order as

√
n +

√
m. Thus, the foregoing analysis

can be carried over and we obtain in much the same way the bound (4.11).
The proof of the remaining two inequalities in (4.1) requires a bit more

effort. We consider first the bound (4.1)6, that is,

(4.12)
X∫

2

(S6(x))r dx� (cr)4rXr+1.

Recall from (3.11) and (3.6) the definition of S6(x). Firstly, similar to
the treatment of S4(x), we make the substitution

f(θm,m+h) = (2/π)1/2θ−1
m,m+h sin θm,m+h +O(θ−2

m,m+h)

in S6(x). Then

S6(x) = π−2x3/2
∑
h≤H

∑
h<m≤D

d(m)d(m+ h)(m(m+ h))−3/4

× θ−1
m,m+h sin θm,m+h

+O
(√

x
∑
h≤H

∑
h<m≤D

d(m)d(m+ h)(m(m+ h))−3/4(
√
m+ h−

√
m)−2

)
.

Since
√
m+ h−

√
m ≈ 1

2hm
−1/2, the O-term is

�
√
x

∑
h≤H

h−2
∑

h<m≤D

d(m)d(m+ h)m−1/2 �
√
x

∑
h≤H

h−2D1/2+ε � x,

by (3.14). Hence
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(4.13)
X∫

2

(S6(x))r dx

�
X∫

2

(
x

∑
h≤H

∑
h<m≤D

d(m)d(m+ h)(m(m+ h))−3/4

× (
√
m+ h−

√
m)−1 sin θm,m+h

)r

dx+ crXr+1.

As in the previous two cases, we multiply out the r-fold product in the in-
tegrand and then interchange the integration with the multiple summation.
Let ηi =

√
mi + hi −

√
mi. Then by (4.7) we have

X∫
X0

xr
r∏

i=1

sin(θmi,mi+hi
) dx

� 2−r
∑

± min(Xr+1, Xr+1/2|η1 ± η2 ± . . .± ηr|−1).

Moreover,

(4.14) d(m)d(m+ h)(m(m+ h))−3/4(
√
m+ h−

√
m)−1

� d(m)d(m+ h)m−1h−1 = g(m,h),

say. We deduce from (4.13) that

X∫
2

(S6(x))r dx� 2−r
∑

±

∑
hi≤Xτ

∑
hi<mi≤(hi

√
X)7/4

r∏
i=1

g(mi, hi)

×min(Xr+1, Xr+1/2|η1 ± η2 ± . . .± ηr|−1)
+ crXr+1.

In order to obtain (4.12), it is therefore sufficient to prove that

(4.15)
∑

hi≤Xτ

∑
hi<mi≤(hi

√
X)7/4

r∏
i=1

g(mi, hi) min(X,X1/2|η1±η2±. . .±ηr|−1)

� (cr)4rX

for each possible combination of the ± signs. Let us consider one such
combination and write η′ = ±η2 ± . . . ± ηr for short. Then the part of the
sum in (4.15) for which |η1 + η′| > X−1/2+δ is obviously

� X1−δ
( ∑

h≤Xτ

∑
h<m≤(h

√
X)7/4

g(m,h)
)r

� X1−δ(c log4X)r,

by (4.14) and Lemma 4(b). According to (4.2), this is bounded by X(cr)4r
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and hence is acceptable. It remains to prove the inequality

(4.16)
∑

hi≤Xτ

∑
hi<mi≤(hi

√
X)7/4

|η1+η′|≤X−1/2+δ

r∏
i=1

g(mi, hi) � (cr)4r.

Without loss of generality, we may assume m1 to be the largest among all
the mi’s. Let h1, . . . , hr,m2, . . . ,mr be given and consider the sum

(4.17)
∑
m1

|η1+η′|≤X−1/2+δ

g(m1, h1).

The numberm1 falls in the interval [max(h1,m2, . . . ,mr), (h1

√
X)7/4] which

we can cover by abutting intervals of the form [zj , 2zj ] with

(4.18) (h1m2 . . .mr)1/r ≤ zj ≤ (h1

√
X)7/4.

The condition |η1+η′| ≤ X−1/2+δ stipulates that
√
m1 + h1−

√
m1 lies in an

interval of length 2X−1/2+δ. For fixed h1 such that h1 � y,
√
y + h1 −

√
y

is a monotonically decreasing function of y with derivative ≈ − 1
4h1y

−3/2.
Hence

#{m1 ∈ [zj , 2zj ] : |η1 + η′| ≤ X−1/2+δ} � h−1
1 z

3/2
j X−1/2+δ + 1.

The sum in (4.17) is therefore

≤
∑

j

∑
m1∈[zj ,2zj ]

|η1+η′|≤X−1/2+δ

d(m1)d(m1 + h1)m−1
1 h−1

1

�
∑

j

zδ
j z
−1
j h−1

1 (h−1
1 z

3/2
j X−1/2+δ + 1),

since for h1 < m1 and m1 ∈ [zj , 2zj ], we have d(m1)d(m1 + h1) � zδ
j . By

(4.18) the last sum over j is

� X−1/2+δh−2
1 (h1

√
X)(7/4)(1/2+δ) + h−1

1 (h1m2 . . .mr)(1/r)(−1+δ)

� X−δh−1−δ
1 + h

−1−1/(2r)
1 (m2 . . .mr)−1/(2r).

Summing this for h1 ≤ Xτ and then inserting into (4.16), we see that the
multiple sum in (4.16) is

�
∑

hi≤Xτ

i≥2

∑
hi<mi≤(hi

√
X)7/4

i≥2

r∏
i=2

g(mi, hi)(X−δ + r(m2 . . .mr)−1/(2r))

� X−δ
( ∑

h≤Xτ

∑
h<m≤(h

√
X)7/4

g(m,h)
)r−1
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+ r
( ∑

h≤Xτ

∑
h<m≤(h

√
X)7/4

m−1/(2r)g(m,h)
)r−1

� X−δ(c log4X)r + (cr)4r,

by (4.14) and Lemma 4(b). In view of (4.2), this yields the desired bound
for the multiple sum in (4.16) and (4.15) thus follows.

Finally, we consider the integral
∫ X

2
(S7(x))r dx. Using the same argu-

ment as for S6(x), we find from (3.12) that

(4.19) S7(x) = (4π3)−1x
∑

H<h≤M/2

∑
h<m≤M−h

d(m)d(m+h)(m(m+h))−3/4

× (
√
m+ h−

√
m)−1 sin θm,m+h +O(x).

In obtaining the O-term, we have used (3.13) and M = x7. Let Y be any
large number not exceeding X/2. We shall prove (4.1)7 by showing that

2Y∫
Y

(S7(x))r dx� (cr)4rY r+1.

In view of (4.19), this will follow from the inequality

(4.20)
2Y∫

Y

(
x

∑
H<h≤M/2

∑
h<m≤M−h

d(m)d(m+ h)(m(m+ h))−3/4

×(
√
m+ h−

√
m)−1 sin θm,m+h

)r

dx� (cr)4rY r+1.

This integral is essentially the same as that on the right hand side of (4.13)
except for the different ranges for h and m. So following the same argument
there, we reduce the proof of (4.20) to proving the following:

(4.21)
∑

Y τ <hi<
1
2 (2Y )7

∑
hi<mi≤(2Y )7−hi

r∏
i=1

g(mi, hi)

×min(Y, Y 1/2|η1 ± η2 ± . . .± ηr|−1) � (cr)4rY

for each combination of the ± signs (cf. (4.14) and (4.15)). Again we fix one
such combination of the ± signs and put η′ = ±η2 ± . . . ± ηr. The part of
the above sum for which |η1 + η′| > Y −1/2+δ is

� Y 1−δ
( ∑

Y τ <h< 1
2 (2Y )7

∑
h<m≤(2Y )7−h

g(m,h)
)r

(4.22)

� Y 1−δ(c log4 Y )r ≤ Y (cr)4r,

by (4.14), Lemma 4(b) and (4.2).
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For given m1,m2, . . . ,mr, h2, . . . , hr, the condition |η1 + η′| ≤ Y −1/2+δ

says that
√
m1 + h1 lies in an interval of length 2Y −1/2+δ. As

√
m1 + y is an

increasing function of y with derivative≈ 1
2m

−1/2
1 , there are� Y −1/2+δ√m1

+ 1 values of h1 satisfying the condition |η1 + η′| ≤ 2Y −1/2+δ. Thus∑
Y τ <h1< 1

2 (2Y )7

∑
h1<m1≤(2Y )7−h1

|η1+η′|≤2Y −1/2+δ

g(m1, h1)

�
∑

Y τ <m1≤(2Y )7

∑
Y τ <h1<m1

|η1+η′|≤2Y −1/2+δ

m−1+δ
1 h−1

1

�
∑

Y τ <m1≤(2Y )7

m−1+δ
1 Y −τ (Y −1/2+δ√m1 + 1) � Y −δ,

by (3.13). Hence the part of the sum (4.21) for which |η1 + η′| ≤ 2Y −1/2+δ

is

� Y 1−δ
( ∑

Y τ <h< 1
2 (2Y )7

∑
h<m≤(2Y )7−h

g(m,h)
)r−1

� Y 1−δ(c log4 Y )r � (cr)4rY,

by (4.14), Lemma 4(b) and (4.2). This and (4.22) prove (4.21) and we have
thus established that

X∫
2

(S7(x))r dx� X1+r(cr)4r.

This completes the proof of (4.1)j and hence our Main Theorem is proved
as well.
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