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On the converse of Wolstenholme’s Theorem
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1. Introduction. Gauss ([Disquisitiones Arithmeticae, 1801, art. 329])
wrote:

The problem of distinguishing prime numbers from composite numbers
(. . .) is known to be one of the most important and useful in arithmetic.
(. . .) The dignity of the science itself seems to require that every possible
means be explored for the solution of a problem so elegant and so celebrated.

Wilson’s Theorem states that if p is prime then (p− 1)! ≡ −1 (mod p).
It is easy to see that the converse of Wilson’s Theorem also holds. Thus
Wilson’s Theorem can be used to identify the primes. Another congruence
identifying the primes is

(p+ 1)(2p+ 1)(3p+ 1) . . . ((p− 1)p+ 1) ≡ 0 (mod (p− 1)!).

(For a proof see [21].) It is not difficult to show that
(2p−1
p−1

) ≡ 1 (mod p)
for all primes p. In 1819 Babbage [5, p. 271] observed that the stronger con-
gruence

(2p−1
p−1

) ≡ 1 (mod p2) holds for all primes p ≥ 3, and Wolstenholme

[5, p. 271], in 1862, proved that
(2p−1
p−1

) ≡ 1 (mod p3) for all primes p ≥ 5.

The congruence
(2n−1
n−1

) ≡ 1 (mod n3) has no composite solutions n < 109.
J. P. Jones ([9, problem B31, p. 47], [23, p. 21] and [12]) has conjectured
that there are no composite solutions. Unlike that of Wilson’s Theorem the
converse of Wolstenholme’s Theorem is a very difficult problem.

A set S of positive integers is a Diophantine set if there exists a polyno-
mial P (n, x1, . . . , xm) with integer coefficients such that n ∈ S if and only if
there exist nonnegative integers x1, . . . , xm for which P (n, x1, . . . , xm) = 0.
If we define Q(n, x1, . . . , xm) = n(1 − P (n, x1, . . . , xm)2), then the set S is
identical to the positive range of Q as n, x1, . . . , xm range over the nonnega-
tive integers. One of the most important results obtained in the investigation
of Hilbert’s tenth problem (which asks for an algorithm to decide whether a
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polynomial equation in several variables has a solution in integers) is that S
is Diophantine if and only if S is recursively enumerable. (See [17], [4], [19]
and [13].) From this it follows that the set of all prime numbers is Diophan-
tine. In 1977 Yuri Matijasevič [18] proved the existence of a polynomial in
10 variables whose positive range is exactly the set of all prime numbers.
It is not known if the primes can be represented by a polynomial with less
than 10 variables. However, if the converse of Wolstenholme’s Theorem were
true, this would imply the existence of a prime representing polynomial in
7 variables [12].

In this article criteria for solutions of
(2n−1
n−1

) ≡ 1 (mod nr) are given
in terms of the p-adic digits of n, sums of reciprocal cubes and Bernoulli
numbers. Using heuristic arguments we formulate several conjectures on the
solutions of these congruences.

2. A generalization of Wolstenholme’s Theorem. For positive in-
tegers n, define the modified binomial coefficient

(
2n− 1
n− 1

)′
=

n∏

k=1
(k,n)=1

2n− k
k

and observe that for primes p,
(2p−1
p−1

)′
=
(2p−1
p−1

)
.

Gauss ([Disquisitiones Arithmeticae, 1801, art. 78] and [5, p. 65]) stated
the generalization of Wilson’s Theorem: The product of the positive integers
< n and prime to n is congruent modulo n to −1 if n = 4, pm or 2pm, where
p is an odd prime, but to +1 if n is not of one of these three forms.

Wolstenholme’s Theorem has the following generalization.

Theorem 1. For n ≥ 3,

(1)
(

2n− 1
n− 1

)′
≡ 1 + n2εn (mod n3),

where

εn =





n/2 if n is a power of 2,
(−1)r+1n/3 if n ≡ 0 (mod 3) and n has exactly

r distinct prime factors, each 6≡ 1 (mod 6),
0 otherwise.

P r o o f. Let φ(n) be the Euler phi-function and let a1, . . . , aφ(n) be the
positive integers not exceeding n that are relatively prime to n. Let Sk be
the kth elementary symmetric function on the set {a1, . . . , aφ(n)}. For n ≥ 3,
φ(n) is even, and therefore



Converse of Wolstenholme’s Theorem 383

Sφ(n) =
∏

i

ai =
∏

i

(n− ai)

= nφ(n) − nφ(n)−1S1 + . . .+ n2Sφ(n)−2 − nSφ(n)−1 + Sφ(n).

Hence
0 = nφ(n) − nφ(n)−1S1 + . . .+ n2Sφ(n)−2 − nSφ(n)−1.

Adding this equation to the identity∏

i

(n+ ai) = nφ(n) + nφ(n)−1S1 + . . .+ n2Sφ(n)−2 + nSφ(n)−1 + Sφ(n),

we obtain∏

i

(n+ ai) = 2nφ(n) + 2nφ(n)−2S2 + . . .+ 2n2Sφ(n)−2 + Sφ(n).

Thus ∏

i

(n+ ai) ≡ 2n2Sφ(n)−2 + Sφ(n) (mod n4)

and therefore(
2n− 1
n− 1

)′
=
∏

i

n+ ai
ai

≡ Sφ(n) + 2n2Sφ(n)−2

Sφ(n)

= 1 + n2
∑

i6=j
a−1
i a−1

j = 1 + n2
{(∑

i

a−1
i

)2
−
∑

i

a−2
i

}

≡ 1− n2
∑

i

a−2
i (mod n4),

because ∑

i

a−1
i ≡ 0 (mod n),

which follows from the fact that (a−1
1 , a−1

2 , . . . , a−1
φ(n)) is a permutation mod-

ulo n of (a1, . . . , aφ(n)) and

∑

i

ai =
φ(n)/2∑

i=1

ai +
φ(n)/2∑

i=1

(n− ai) =
φ(n)

2
n ≡ 0 (mod n).

Again, using the fact that (a−1
1 , a−1

2 , . . . , a−1
φ(n)) is a permutation modulo n

of (a1, . . . , aφ(n)), we obtain
(

2n− 1
n− 1

)′
≡ 1− n2

∑

i

a−2
i ≡ 1− n2

∑

i

a2
i (mod n3).

It remains to show that ∑

i

a2
i ≡ −εn (mod n),

where εn is defined in the statement of the theorem.
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Since
n∑

k=1

k2 =
∑

d|n

n∑

k=1
(k,n)=d

k2 =
∑

d|n
d 2

n/d∑

j=1
(j,n/d)=1

j2 =
∑

d|n

(
n

d

)2 d∑

j=1
(j,d)=1

j2,

we have by Möbius inversion

∑

i

a2
i =

n∑

k=1
(k,n)=1

k2 =
∑

d|n

(
n

d

)2

µ

(
n

d

) d∑

k=1

k2

=
∑

d|n
µ

(
n

d

)
n2(d+ 1)(2d+ 1)

6d
.

The value of the last sum modulo n depends on the divisors of n. It is
congruent to 0 if n is relatively prime to 6. The other cases are more tedious;
since they are not needed elsewhere in this paper their proofs are omitted.

H. W. Brinkmann [1] in his partial solution to David Segal’s conjecture
observed the following relation between the ordinary binomial coefficient
and the modified binomial coefficient:

(2)
(

2n− 1
n− 1

)
=
∏

d|n

(
2d− 1
d− 1

)′
.

3. The congruence
(2n−1
n−1

) ≡ 1 (mod n). By (1) and (2) it is not
difficult to show that the congruence

(3)
(

2n− 1
n− 1

)
≡ 1 (mod n)

is satisfied by primes, squares of odd primes and cubes of primes ≥ 5.
A beautiful theorem of E. Lucas ([16] and [5, p. 271]) states that for

every prime p,
(
n

k

)
≡
(
n0

k0

)(
n1

k1

)(
n2

k2

)
· · ·
(
nr
kr

)
(mod p)

(with the usual convention that
(
a
b

)
= 0 if a < b), where the base p expan-

sions of n and k are

n = n0 + n1p+ n2p
2 + . . .+ nrp

r (0 ≤ ni ≤ p− 1)

and

k = k0 + k1p+ k2p
2 + . . .+ krp

r (0 ≤ ki ≤ p− 1).
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E. Kummer ([14] and [5, p. 270]) proved that if pm is the highest power of a
prime p dividing

(
n
k

)
, then m is equal to the number of carries when adding

k and n − k in base p arithmetic. We immediately see that for odd primes
p a necessary condition for(

2n− 1
n− 1

)
≡ 1 (mod p)

is that each base p digit ni ≤ (p− 1)/2.

Example. If p ≡ 1 (mod 4) is prime and n = (p− 1)/2 + pr for r ≥ 1,
then (

2n− 1
n− 1

)
≡
(

p− 2
(p− 3)/2

)(
2
1

)
=
(

p− 1
(p− 1)/2

)
≡ 1 (mod p).

The only solutions n < 109 of (3) that are not prime powers are 29×937
and 787 × 2543. Beyond this range we found one more solution: 69239 ×
231433. None of these satisfy Wolstenholme’s congruence.

4. The congruence
(2p−1
p−1

) ≡ 1 (mod p4). From (1) and (2) we see that
for primes p the following are equivalent:

(4)
(

2p− 1
p− 1

)
≡ 1 (mod p4),

n = p2 satisfies

(5)
(

2n− 1
n− 1

)
≡ 1 (mod n2),

and n = p4 satisfies (3). The only composite solution n < 109 of (5) is
283686649 = 168432. We conjecture that n ≥ 3 satisfies (5) if and only if
n is a prime or n is the square of a prime satisfying (4). We call primes
satisfying (4) Wolstenholme primes. There are many equivalent conditions
for Wolstenholme primes, some of which are very useful in the computer
search for new Wolstenholme primes.

By the same method used in the proof of (1) we can show that for all
primes p ≥ 7,

(
2p− 1
p− 1

)
≡ 1− p2

p−1∑

k=1

1
k2 (mod p5).

Thus we can determine if p is a Wolstenholme prime by summing recipro-
cal squares modulo p2. Ernst Jacobsthal [2, p. 53] proved a more general
congruence that simplifies with m = 2 and n = 1 to the congruence

(
2p− 1
p− 1

)
≡ 1− 2p2

(p−1)/2∑

k=1

1
k2 − 2p3

(p−1)/2∑

k=1

1
k3 (mod p5)
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for all primes p ≥ 7. For computational purposes this is not much better.
Our computations would be much easier if we can work modulo p rather
than modulo p2. Using the Bernoulli numbers Bk defined by the generating
function

x

ex − 1
=
∞∑

k=0

Bk
xk

k!

we obtain a congruence very useful for computational purposes.

Theorem 2. For all primes p ≥ 11,
(

2p− 1
p− 1

)
≡ 1− 2

3
p3Bp−3 ≡ 1− 2

63
p3

[p/4]∑

k=[p/6]+1

1
k3 (mod p4).

P r o o f. The first congruence is a special case of Glaisher’s congruence
([7, p. 21], [8, p. 323])(

hp− 1
p− 1

)
≡ 1− 1

3
h(h− 1)p3Bp−3 (mod p4), h ≥ 1.

Stafford and Vandiver [24] proved that

(4p−2k + 3p−2k − 6p−2k − 1)
B2k

4k
≡

[p/4]∑

j=[p/6]+1

j2k−1 (mod p),

1 ≤ k ≤ (p− 3)/2.

Setting 2k = p− 3 and applying Fermat’s Little Theorem we get for primes
p ≥ 11,

Bp−3 ≡ 1
21

[p/4]∑

j=[p/6]+1

1
j3 (mod p).

Substituting this into the first congruence completes the proof of the theo-
rem.

There are many congruences similar to those above involving sums of like
powers of numbers in arithmetic progression and Bernoulli numbers modulo
prime powers. For an excellent source we refer the reader to a paper by
Emma Lehmer [15].

Corollary. For all primes p ≥ 11 the following are equivalent :

(i) p is a Wolstenholme prime,
(ii) p divides the numerator of Bp−3, and

(iii)
[p/4]∑

k=[p/6]+1

1
k3 ≡ 0 (mod p).
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Condition (ii) appears in a criterion concerning Fermat’s Last Theorem.
A prime p is regular if and only if p does not divide the numerators of
the Bernoulli numbers B2, B4, . . . , Bp−3. For all such primes Fermat’s Last
Theorem is true (see [6, p. 244] and [22, p. 10]). This does not imply, of
course, that Fermat’s Last Theorem is false for irregular primes, but only
that more powerful techniques are required. This is one of the main reasons
for the search of irregular primes. J. Buhler, R. Crandall, R. Ernvall, and
T. Metsänkylä [3] calculated all irregular primes up to 4 × 106 by evalu-
ating sums of like powers of numbers in arithmetic progression and using
congruences similar to the above congruence of Stafford and Vandiver.

The Wolstenholme primes are those irregular primes where p divides the
numerator of Bp−3. Using the congruence in condition (iii) above we found
only two Wolstenholme primes < 2× 108, namely, 16843 and 2124679. The
first was found (though not explicitly reported) by Selfridge and Pollak (No-
tices Amer. Math. Soc. 11 (1964), 97), and later confirmed by W. Johnson
[10] and S. S. Wagstaff (Notices Amer. Math. Soc. 23 (1976), A-53). The
second was found by J. Buhler, R. Crandall, R. Ernvall, and T. Metsänkylä
[3], and later, independently, by the author.

We conjecture that there are infinitely many Wolstenholme primes and
provide the following heuristic argument. For each prime p ≥ 5 define the
Wolstenholme quotient Wp by

Wp =

(2p−1
p−1

)− 1

p3 .

Thus p is a Wolstenholme prime if and only ifWp ≡ 0 (mod p). As numerical
evidence suggests, we assume that the remainder modulo p of Wp is random.
It follows from the prime number theorem that the number of Wolstenholme
primes ≤ x is about ln(lnx), which grows very slowly to infinity (see [23,
p. 333]). A similar argument suggests that there are at most finitely many
primes p satisfying (

2p− 1
p− 1

)
≡ 1 (mod p5).

We conjecture that there are none. Observe that if p is prime and n = p2

satisfies (
2n− 1
n− 1

)
≡ 1 (mod n3)

(a counterexample to the converse of Wolstenholme’s Theorem), then by (1)
and (2), p must satisfy (

2p− 1
p− 1

)
≡ 1 (mod p6),

a rather unlikely event.
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In view of the numerical and probabilistic evidence the converse of Wol-
stenholme’s Theorem is undoubtedly true, but a rigorous proof has not yet
been obtained.
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