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Notation. The letters p, q and l denote prime numbers. For a posi-
tive real number H, N(H, p) denotes the number of primes q ≤ H which
are primitive roots (mod p). N(σ, T, χ) denotes the number of zeros of the
Dirichlet L-function L(s, χ) in the rectangle σ ≤ Re s ≤ 1, −T ≤ Im s ≤ T .

For a given prime p, let

Fp(s) =
∏

χ (mod p)

L(s, χ).

For any positive integer k, logk x is defined as follows: log1 x := log x and
for k ≥ 2, we inductively define logk x = logk−1 log x.

[x] denotes the integral part of x.

1. Introduction. The purpose of this paper is to prove a result on the
distribution of primitive roots, similar to one which appeared in a paper of
Elliott [3], in which he obtained an asymptotic formula for N(H, p), valid for
“almost all” primes p. More precisely, he obtained the following (Theorem 1
of [3]):

Let ε and B be arbitrary positive constants. Then there is a set of primes
E, and a positive constant F = F (ε,B), so that for all p not in E the
estimate

N(H, p) =
φ(p− 1)
p− 1

π(H)
{

1 +O

(
1

(logH)B

)}

holds uniformly for H ≥ exp(F log2 p log3 p). Moreover , the sequence E sat-
isfies E(x) = O(xε) for all large values of x.

In proving the result, Elliott had applied the first fundamental lemma
(Lemma 4 of [3]), but there appears to be some discrepancy in the choice of
the parameters in the application of the lemma. In this paper, we use a zero
density estimate for L-functions and Brun’s sieve to obtain an asymptotic
formula for N(H, p) which holds uniformly, for “almost all” primes p, in a
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larger range for H than that stated in [3]. This arises as a special case of the
asymptotic formula for N(H, p) which holds for “almost all” p, in a wider
range for H at the expense of a weaker error term.

The theorem to be proved is the following:

Theorem 1.1. Let α be a real number satisfying 0 < αe1+α ≤ 1. Then
for almost all primes p, the following statement is true:

Let α ≥ c/(log2 p)
1/2, for a suitable constant c. Then, given B > 0, there

exists C = C(B) such that whenever H ≥ exp((C log2 p)/α),

(1) N(H, p) =
φ(p− 1)
p− 1

π(H)(1 +O(αB/α)).

Furthermore, the number of primes up to Y for which (1) does not hold is

O

(
exp

(
G log Y log2 Y

logH

))

where G is a constant.

Choosing α = log4 p/ log3 p in Theorem 1.1, we get the following:

Theorem 1.2. Let ε and B be arbitrary constants. Then for almost all
primes p, the following holds:

(2) N(H, p) =
φ(p− 1)
p− 1

π(H)
(

1 +O

(
1

(logH)B

))

whenever

H ≥ exp
(
C log2 p log3 p

log4 p

)
,

for some constant C = C(ε,B). Furthermore, the number of primes up to
Y for which (2) does not hold is O(Y ε).

Corollary 1.3. If E(Y ) denotes the number of primes up to Y for
which (1) does not hold , then E(Y ) = O((log Y )F ) when H ≥ Y δ, for some
δ and for some F , with 0 < δ < 1 and F = F (δ).

2. The exceptional primes. Call a prime p an exceptional prime if (1)
does not hold for p.

We need a lemma which was proved in a paper of Burgess and Elliott
[1]. However, for our purposes, we require a different approach. We shall
use Perron’s formula to prove this lemma, and then apply a zero density
estimate for L-functions. This will show that the number of exceptional
primes is small.

To start with, we recall below the notation of Burgess and Elliott [1]:
Let {βd,p} denote a double sequence of real numbers satisfying

0 ≤ βd,p ≤ 1/φ(d).
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Define

Tp =
∑

d|p−1
d>1

βd,p
∑

χd (mod p)

∣∣∣
∑

q≤H
χd(q)

∣∣∣

where χd runs through the characters (mod p) whose order is d. Let

%(p) =
∑

d|p−1
βd,p>0

1.

Let λ, R be positive real numbers, Y ≥ 3. Define

S1 = S1(λ,R) = {p ≤ Y : %(p) < R, Tp > π(H)/λ}.
Lemma 2.1. If p is a prime for which L(s, χ) does not vanish for any

character χ modulo p (that is, Fp(s) 6= 0) in Re s > 1 − ε, and %(p) < R,
then Tp = O(π(H)/λ), provided

ε ≥ max
(

4 logR
logH

,
2 log λ
logH

,
12 log2 p

logH

)
.

P r o o f. Let a and T be real numbers such that a > 1 and T is sufficiently
large. By Perron’s formula, we have

∑

n≤H
χd(n)Λ(n)=

1
2πi

a+iT∫
a−iT

{L′(s, χd)/L(s, χd)}H
s

s
ds+O

(
Ha log2 pT

T

)

since L′(s, χd)/L(s, χd) = O(log2 pT ) in −1 < Re s ≤ 2, for a suitable choice
of Im s = T . (See, for example, [2].) Choose a = 1 + 1/ logH.

Since we are considering only primes p with Fp(s) 6= 0 in Re s > 1 − ε,
moving the line of integration to Re s = 1− ε gives

∑

n≤H
χd(n)Λ(n) =

1
2πi

1−ε+iT∫
1−ε−iT

{L′(s, χd)/L(s, χd)}H
s

s
ds+O

(
H log2 pT

T

)

= O(H1−ε log2 pT log T ).

In particular, choosing T = p, we get

(3)
∑

n≤H
χd(n)Λ(n) = O(H1−ε log3 p).

Notice that ∑

q<H

χd(q) log q =
∑

n<H

χd(n)Λ(n) +O(H1/2)

and that ∑
n<m

χd(n)Λ(n) = O(m1−ε log3 p) for all m < H.
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Thus, using Abel’s identity and (3) it follows that

(4)
∑

q<H

χd(q) = O(H1−ε log3 p).

Therefore,

Tp =
∑

d|p−1
d>1

βd,p
∑

χd (mod p)

∣∣∣
∑

q<H

χd(q)
∣∣∣

� H1−ε log3 p
∑

d|p−1
d>1

βd,pφ(d) = H1−ε log3 p
( ∑

d|p−1
βd,p>0

1
)

= H1−ε(log3 p)R = H1−ε/4λ−1(H−ε/2λ)(H−ε/4R) log3 p.

Hence Tp = O(π(H)/λ) whenever the following conditions hold: (i) H−ε/2λ
< 1, (ii) H−ε/4R < 1 and (iii) log3 p < Hε/4.

This completes the proof of the lemma.

We choose R = (log p)A, where A is a sufficiently large constant, and
λ > R2; the value of λ will be chosen in due course.

Lemma 2.2.

#S1 � log14 Y exp
(
C

log λ log Y
logH

)
.

P r o o f. Let ε = 2 log λ/ logH. Then

ε ≥ max
(

4 logR
logH

,
2 log λ
logH

,
12 log2 p

logH

)
.

Further, for any p ∈ S1, Tp > π(H)/λ. Therefore, by Lemma 2.1, it follows
that

S1 ⊆ {p ≤ Y : Fp(s) = 0 for some s in the rectangle

1− ε ≤ Re s ≤ 1, −Y ≤ Im s ≤ Y }.
Using the estimate∑

p≤Y

∑
χ

′N(σ, T, χ)� (Y 2T )2(1−σ)/σ(log Y T )14

(here
∑′
χ = the sum over all primitive characters χ modulo p) for 4/5 ≤

σ ≤ 1 (cf. Montgomery [5], p. 99), and also using our specific choice of ε, we
see that ∑

Y <p≤2Y

∑

χ (mod p)

N(1− ε, Y, χ)� (Y 3)2ε/(1−ε)(log Y )14

� Y (C log λ)/ logH(log Y )14.

Hence #S1 � (log Y )14 exp(C log λ log Y/ logH), which proves the lemma.
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3. Derivation of the asymptotic formula. In this section, we consider
only those primes for which Fp(s) 6= 0 in Re s > 1 − ε, with ε as chosen in
Section 2. Given a prime p with this property, we obtain an asymptotic
formula for the number of prime primitive roots (mod p) which are less
than H.

Notice that if d | p− 1, then

1
d

∑

χ (mod p)
ordχ|d

1 =
{

1 if d | ind q,
0 otherwise,

where “ind q” stands for the index of q with respect to a fixed primitive root
modp.

Let l denote a prime divisor of p− 1. Then

#{q ≤ H : q is not a primitive root (mod p)}
≤
∑

l|p−1

1
l

∑

ordχ|l

∑

q≤H
χ(q) = π(H)

∑

l|p−1

1
l

+
∑

l|p−1

1
l

∑
χl

∑

q≤H
χl(q).

We break each sum into two parts: (i) l ≤ log2 p, (ii) l > log2 p.
Lemma 3.1 below deals with the sum in (i) using Brun’s sieve, and in

Lemma 3.2 we estimate the sum in (ii) using Lemma 2.1. With notations
as in [4], we state the following theorem, which is Brun’s sieve in the form
needed for our application (cf. [4], p. 57).

Theorem 3.1. Assume that the following conditions hold :

(a)

1 ≤ 1
1− ω(p)/p

≤ A1

for some suitable constant A1 ≥ 1.

(b) For suitable constants κ > 0 and A2 ≥ 1,
∑

w<p<z

ω(p) log p
p

≤ κ log
z

w
+A2

if 2 ≤ w ≤ z.

(c) |Rd| ≤ ω(d) if µ(d) 6= 0 and ω(d) 6= 0.

Let α be a real number satisfying 0 < αe1+α ≤ 1, and let b be a positive
integer. Then

(5) S(A;℘, z) ≤ XW (z)
{

1 + 2
α2b+1e2α

1− α2e2+2α exp
(

(2b+ 3)c1
α log z

)}

+O(z2b+{2.01/(e2α/κ−1)})
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and

(6) S(A;℘, z) ≥ XW (z)
{

1− 2
α2be2α

1− α2e2+2α exp
(

(2b+ 2)c1
α log z

)}

+O(z2b−1+{2.01/(e2α/κ−1)})

where

c1 =
A2

2

{
1 +A1

(
κ+

A2

log 2

)}
.

R e m a r k 1. The constants implied by the use of the O-notation do not
depend on b and α.

R e m a r k 2. The replacement of the condition (c) of the theorem by
the more general |Rd| ≤ Lω(d) changes the theorem only to the extent of
introducing a factor L into the last error term in each of (5) and (6).

Lemma 3.1 (Application of Brun’s sieve). Let p be a prime for which
Fp(s) is non-zero in Re s > 1 − (2 log λ/ logH). Let A = {ind q : q ≤ H},
z = log2 p, and ℘ = the set of all prime divisors l of p− 1. Then

S(A;℘, z) =
φ(p− 1)
p− 1

π(H)(1 +O(αB/α))

where α is a real number satisfying 0 < αe1+α ≤ 1, α � 1/(log z)1/2, and
B is a constant.

P r o o f. With these choices of A, ℘ and z, it follows that

ω(p) = 1 if p ∈ ℘, X = π(H), κ = 1,

and

W (z) =
∏

q|p−1
q<z

(
1− 1

q

)
.

We see that

#{q ≤ H : d | ind q, d | p− 1} =
1
d

∑

q≤H

∑

χ (mod p)
ordχ|d

χ(q).

Hence,

|Ad| = 1
d

∑

χ (mod p)
ordχ|d

∑

q≤H
χ(q) =

1
d
π(H) +

1
d

∑

χ6=χ0
ordχ|d

∑

q≤H
χ(q)

=
1
d
π(H) +

1
d

∑

t|d
t>1

∑
χt

∑

q≤H
χt(q)
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where χt runs through characters of order t. Therefore,

Rd =
1
d

∑

t|d
t>1

∑
χt

∑

q≤H
χt(q).

Using (4), we get

|Rd| � 1
d

∑

t|d

∑
χt

∣∣∣
∑

q≤H
χt(q)

∣∣∣�
(

1
d

∑

t|d

∑
χt

1
)
H1−ε log3 p

�
(

1
d

∑

t|d
φ(t)

)
H1−ε log3 p = H1−ε log3 p� π(H)/λ.

The last step follows as in the proof of Lemma 2.1. We take b = [1/α] in
Theorem 3.1, and Brun’s sieve then gives

(7) S(A;℘, z) ≤ π(H)W (z)
{

1 + 2
α2b+1e2α

1− α2e2+2α exp
(

(2b+ 3)c1
α log z

)}

+O

(
π(H)
λ

z2b+{2.01/(e2α−1)}
)

and

(8) S(A;℘, z) ≥ π(H)W (z)
{

1− 2
α2be2α

1− α2e2+2α exp
(

(2b+ 2)c1
α log z

)}

+O

(
π(H)
λ

z2b−1+{2.01/(e2α−1)}
)

with

W (z) =
∏

q|p−1

(
1− 1

q

) ∏

q|p−1
q≥z

(
1− 1

q

)−1

=
φ(p− 1)
p− 1

(
1 +O

(
1

log p log2 p

))
.

With our choice of b, we now estimate the error terms in (7). Similar esti-
mates can be obtained for the inequality (8). The estimate for the first error
term is

α2b+1e2α

1− α2e2+2α exp
(2b+ 3)c1
α log z

� αB/α

whenever α2 � 1/ log z. Since α is small, the last O-term satisfies

π(H)
λ

exp((2b+ {2.01/(e2α − 1)}) log z)� π(H)
λ

zB
′/α

for a constant B′. We choose λ > zB
′/α = (log p)2B′/α. For our purposes, we

take λ to satisfy log λ = (C ′ log2 p)/α, for a sufficiently large constant C ′.
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Using the estimates in (7) and (8), it follows that

S(A;℘, z) =
φ(p− 1)
p− 1

π(H)
(

1 +O

(
1

log p log2 p

))
(1 +O(αB/α))

+O

(
π(H)zB

′/α

λ

)
.

Therefore, we get

S(A;℘, z) =
φ(p− 1)
p− 1

π(H)(1 +O(αB/α)),

which proves the lemma.

We now consider the sum in (ii).

Lemma 3.2. Let

L =
∑

l>log2 p

1
l

(
π(H) +

∑
χl

∑

q≤H
χl(q)

)
.

Then L = O(π(H)/ log p).

P r o o f.

L = π(H)
∑

l>log2 p

1
l

+
∑

l>log2 p

1
l

∑
χl

∑

q≤H
χl(q).

Then

|L| ≤ π(H)
log p

+
∑

l>log2 p

1
l

∑
χl

∣∣∣
∑

q≤H
χl(q)

∣∣∣� π(H)
log p

+
π(H)
λ

,

applying Lemma 2.1 to the second sum on the right with

βl,p =
{

1/l if l | p− 1, l > log2 p,
0 otherwise.

Therefore, L = O(π(H)/ log p).

P r o o f o f T h e o r e m 1.1. Lemmas 3.1 and 3.2 imply that for almost
all primes p,

N(H, p) =
φ(p− 1)
p− 1

π(H)(1 +O(αB/α))

where α � 1/(log2 p)
1/2 and whenever H ≥ exp((C log2 p)/α) for some

constant C = C(B). Lemma 2.2 shows that the number of exceptional
primes up to Y is

� (log Y )14 exp
(
C log Y log2 Y

α logH

)
.

This completes the proof of Theorem 1.1.
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