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1. Introduction. Let f(X) be a monic polynomial of degree ν > 0 with
rational coefficients. Let d1, d2, l,m with l < m and gcd(l,m) = 1 be given
positive integers. In this paper, we consider the equation

(1) f(x)f(x+d1) . . . f(x+(lk−1)d1) = f(y)f(y+d2) . . . f(y+(mk−1)d2)

in integers x, y and k ≥ 2 such that

(2) f(x+ jd1) 6= 0 for 0 ≤ j ≤ lk − 1.

We refer to [3] and [4] for an account of results on equation (1) with f(X) =
X. It was shown in [3] that for positive integers x, y and k ≥ 2, equation (1)
with f(X) = X implies that max(x, y, k) ≤ C1 where C1 is an effectively
computable number depending only on d1, d2,m unless

(3) l = 1, m = k = 2, d1 = 2d2
2, x = y2 + 3d2y.

When f is a power of an irreducible polynomial, it was shown in [1] that
equation (1) with l = d1 = d2 = 1 and (2) implies that max(|x|, |y|, k) ≤ C2

where C2 is an effectively computable number depending only on m and f .
In this paper, we extend these results as follows.

Theorem. (a) Equation (1) with (2) implies that k is bounded by an
effectively computable number depending only on d1, d2,m and f .

(b) Let f be a power of an irreducible polynomial. There exists an effec-
tively computable number C3 depending only on d1, d2,m and f such that
equation (1) with (2) implies that

(4) max(|x|, |y|, k) ≤ C3

unless

(5)
l = 1, m = k = 2, d1 = 2d2

2,

f(X) = (X + r)ν with r ∈ Z, x+ r = (y + r)(y + r + 3d2).

[67]
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It is clear that condition (2) is necessary. We observe that equation (1)
is, in fact, satisfied in the cases given by (5). For irreducible f , we apply
Theorem (b) to f2 for deriving that if x, y and k ≥ 2 are integers satisfying
(2) and

|f(x)f(x+ d1) . . . f(x+ (lk − 1)d1)| = |f(y)f(y + d2) . . . f(y + (mk − 1)d2)|
then max(|x|, |y|, k) is bounded by an effectively computable number de-
pending only on d1, d2, m and f unless (5) holds. In particular, we observe
that if x, y and k ≥ 2 are integers satisfying x+ jd1 6= 0 for 0 ≤ j ≤ lk − 1
and

x(x+ d1) . . . (x+ (lk − 1)d1) = ±y(y + d2) . . . (y + (mk − 1)d2)

then max(|x|, |y|, k) is bounded by an effectively computable number de-
pending only on d1, d2 and m, unless (3) holds.

2. Notation. Let {α1, α2, . . . , αν} be the roots of f and we assume
without loss of generality that |α1| ≥ |α2| ≥ . . . ≥ |αν |. Let a0 be the
absolute value of the product of the denominators of the coefficients of f . We
observe that a0α1, . . . , a0αν are algebraic integers. We define the coefficients
A0, A1, . . . and B0, B1, . . . by

X−l
lk−1∏

j=0

(f(X+jd1))1/(νk) =
ν∏

i=1

lk−1∏

j=0

(
1+

jd1 − αi
X

)1/(νk)

=
∞∑
n=0

And
n
1X
−n

and

Y −m
mk−1∏

j=0

(f(Y + jd2))1/(νk) =
ν∏

i=1

mk−1∏

j=0

(
1 +

jd2 − αi
Y

)1/(νk)

=
∞∑
n=0

Bnd
n
2Y
−n.

We observe that for n ≥ 1, An and Bn are rational numbers and that
A0 = B0 = 1. We put

χn = ((a0νk)n!)n for n = 0, 1, 2, . . .

Further, we write

F (X) = X l +A1d1X
l−1 + . . .+Ald

l
1,

G(Y ) = Y m +B1d2Y
m−1 + . . .+Bmd

m
2

and

L(X,Y ) = F (X)−G(Y ).

We notice that F (X) and G(Y ) are the polynomial parts of the νkth root
of left and right hand sides of equation (1), respectively, with x and y re-
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placed by X and Y . For a rational number β, we write d(β) for the least
positive integer such that d(β)β is a rational integer. We denote by c1, c2, . . .
effectively computable positive numbers depending on d1, d2,m and f .

3. k is bounded. In this section, we shall show that equation (1) with
(2) implies that k ≤ c1. The proof is similar to that of Theorem 2 of [1].
Therefore, we mention only the main steps of the proof and the readers are
referred to [1] for details. We assume that equation (1) with (2) is satisfied.
Then we observe that

(6) |x|l ≤ c2(|y|+mkd2)m, |y|m ≤ c3(|x|+ lkd1)l.

For n ≥ 0, An and Bn are polynomials in k of degrees not exceeding n
satisfying

|An|dn1 ≤ 2n+l(lkd1 + |α1|)n, |Bn|dn2 ≤ 2n+m(mkd2 + |α1|)n
and

d(Andn1 ) |χn, d(Bndn2 ) |χn.
Further, we obtain

(7) log(|y|+ 2) ≥ c4k.
For the proof of (7), we take prime p of Lemma 4 of [1] exceeding a0d1d2 in
place of a0.

We assume from now onward that |y| > c5 with c5 sufficiently large,
otherwise (4) follows from (7) and (6). By taking νkth root on both the
sides of equation (1), we have

xl
(

1 +
A1d1

x
+
A2d

2
1

x2 + . . .

)
= ym

(
1 +

B1d2

y
+
B2d

2
2

y2 + . . .

)
.

This implies that

(8) F (x) = G(y).

Further, we show that

(9) Al+1 = . . . = A2l−1 = 0 or Bm+1 = . . . = B2m−1 = 0.

We prove (9) by contradiction. If not, there exist integers I and J with
1 ≤ I < l and 1 ≤ J < m such that

Al+1 = . . . = Al+I−1 = 0, Al+I 6= 0

and
Bm+1 = . . . = Bm+J−1 = 0, Bm+J 6= 0.

Then we derive that

Al+Id
l+I
1

xI
+ . . . =

Bm+Jd
m+J
2

yJ
+ . . . ,
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which implies that mI = lJ . This is not possible since gcd(l,m) = 1 and
J < m. Further, we derive from (8) and (9) that

Al+1 = . . . = A2l−1 = 0, Bm+1 = . . . = B2m−1 = 0

and

B2md
2m
2 = A2ld

2l
1 .

Finally, we apply the proof of §4 of [1] for deriving from the above relations
that k ≤ c1. This completes the proof of Theorem (a).

4. Proof of Theorem (b). We assume that equation (1) with (2) is
satisfied. Then, by Theorem (a), we restrict ourselves to k ≤ c1. Let k be
fixed. By (6), we may assume that |x| > c5 and |y| > c5 with c5 sufficiently
large. Then the relation (8) is valid. Let f = gb1, where g1 is irreducible
and b is a positive integer. Then g1 has rational coefficients and its leading
coefficient is ±1. By putting f = gb1 in (1), we have

(g1(x)g1(x+ d1) . . . g1(x+ (lk − 1)d1))b

= (g1(y)g1(y + d2) . . . g1(y + (mk − 1)d2))b.

Taking the bth root on either side, we see that

g1(x)g1(x+ d1) . . . g1(x+ (lk − 1)d1)

= ±g1(y)g1(y + d2) . . . g1(y + (mk − 1)d2).

Now, we set g1(x) = g(x) if g1 is monic and g1(x) = −g(x) if g1 has leading
coefficient −1 so that g is a monic irreducible polynomial with rational
coefficients. Then the latter equation is valid with g1 replaced by g. Thus
we assume that either f = g or f = g2 in Theorem (b). Put δ = 1 if f = g
and δ = 2 if f = g2. Let µ be the degree of g. Thus µ = ν/δ. Let β1, . . . , βµ
be the roots of g,K = Q(β1, . . . , βµ) and we write a for the coefficient of
Xµ−1 in g(X). Further, let σ1, . . . , σµ be all the automorphisms of K and
we write σq(β) = β(q) for β ∈ K and 1 ≤ q ≤ µ. We set

H(X,Y ) = (g(X) . . . g(X + (lk − 1)d1))δ − (g(Y ) . . . g(Y + (mk − 1)d2))δ,

T = {βi − Jd1 | 1 ≤ i ≤ µ, 0 ≤ J < lk}
and

U = {βi − Jd2 | 1 ≤ i ≤ µ, 0 ≤ J < mk}.
Since g is irreducible, we observe that |T | = lkµ and |U | = mkµ. For t =
βi − Jd1 ∈ T , we write t = Jd1. Similarly, for u = βi − Jd2 ∈ U , we write
u = Jd2.

Let R(Y ) be the resultant of H(X,Y ) and L(X,Y ) with respect to X.
Then we observe from equations (1) and (8) that R(y) = 0, which implies
that R(Y ) ≡ 0 if c5 is sufficiently large. By a result of Ehrenfeucht (see
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[2, p. 2]), L(X,Y ) is irreducible over the field of complex numbers since
gcd(l,m) = 1. Therefore, L(X,Y ) divides H(X,Y ), which implies that

L(X,Y ) | (g(X) . . . g(X + (lk − 1)d1)± g(Y ) . . . g(Y + (mk − 1)d2)).

Thus

F (X)−G(u) | g(X) . . . g(X + (lk − 1)d1) for u ∈ U
and

G(Y )− F (t) | g(Y ) . . . g(Y + (mk − 1)d2) for t ∈ T
over K.

Let v′1, . . . , v
′
s′ be the distinct values in {F (t) | t ∈ T} and v′′1 , . . . , v

′′
s′′ be

the distinct values in {G(u) | u ∈ U}. Each v′i is assumed by F at most l
times. Therefore, lkµ ≤ ls′, which implies that kµ ≤ s′. Further, G(y) − v′i
with 1 ≤ i ≤ s′ are relatively coprime polynomials. Therefore, the product
of these polynomials divides g(Y ) . . . g(Y + (mk − 1)d2). Thus ms′ ≤ mkµ,
which implies that s′ ≤ kµ. Hence, we conclude that s′ = kµ and each v′i is
assumed by F exactly l times in T . By a similar argument, we have s′′ = kµ
and each v′′i is assumed by G exactly m times in U . Thus, s′ = s′′ = kµ =: s.
Further, we have

g(X) . . . g(X + (lk − 1)d1) =
s∏

i=1

(F (X)− v′′i )

and

g(Y ) . . . g(Y + (mk − 1)d2) =
s∏

i=1

(G(Y )− v′i).

We write
s∏

i=1

(F (X)− v′′i ) = (F (X))s +A′1(F (X))s−1 + . . .+A′s

and
s∏

i=1

(G(Y )− v′i) = (G(Y ))s +B′1(G(Y ))s−1 + . . .+B′s.

As g(x)g(x+d1) . . . g(x+(lk−1)d1) = ±g(y)g(y+d2) . . . g(y+(mk−1)d2),
by (8) we have either

(A′1 −B′1)(F (x))s−1 + . . .+ (A′s −B′s) = 0

or

2(F (x))s + (A′1 +B′1)(F (x))s−1 + . . .+ (A′s +B′s) = 0.

If c5 is sufficiently large, the latter possibility is excluded and the former
possibility implies that A′1 = B′1, . . . , A

′
s = B′s. Consequently, we conclude
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that

{v′1, . . . , v′s} = {v′′1 , . . . , v′′s }.
By rearrangement, if necessary, we may assume without loss of generality
that v′i = v′′i =: vi for 1 ≤ i ≤ s and we write S = {v1, . . . , vs}. Then we
have

(10) F (X)− vi = (X − ti,1) . . . (X − ti,l) for 1 ≤ i ≤ s
and

(11) G(Y )− vi = (Y − ui,1) . . . (Y − ui,m) for 1 ≤ i ≤ s,
where ti,p = γi,p − ti,p for 1 ≤ p ≤ l and ui,h = βi,h − ui,h for 1 ≤ h ≤ m.
Here γi,p and βi,h belong to {β1, . . . , βµ}.

We now fix i with 1 ≤ i ≤ s and let r be the number of automorphisms
of K which fix vi. By re-arranging σ1, . . . , σµ, there is no loss of generality
in assuming that σq(vi) = v

(q)
i = vi for 1 ≤ q ≤ r. The sets {σq(ti,p) |

1 ≤ q ≤ r} for 1 ≤ p ≤ l are either disjoint or identical. Consequently, by
considering the images under σq with 1 ≤ q ≤ r on both sides of (10), we
observe that the number of times ti,p with 1 ≤ p ≤ l occurs in {ti,1, . . . , ti,l}
is a multiple of r. Consequently, we derive that l is a multiple of r. Similarly,
by considering (11) and arguing as above, we derive that m is also a multiple
of r. Since gcd(l,m) = 1, we have r = 1. In other words, every element of
S has µ distinct conjugates. Therefore, the maximal number of elements of
S such that no two of them are conjugates is precisely k. By re-arranging
elements of S, we may assume that v1, . . . , vk are such that no two of them
are conjugates. Then we derive from (10) and (11) that ti,p with 1 ≤ i ≤
k, 1 ≤ p ≤ l are pairwise distinct elements of the set {Jd1 | 0 ≤ J < lk}
and ui,h with 1 ≤ i ≤ k, 1 ≤ h ≤ m are pairwise distinct elements of the set
{Jd2 | 0 ≤ J < mk}. By subtracting (10) with X = x from (11) with Y = y
and taking norms over K, we derive that

(12) g(x+ ti,1) . . . g(x+ ti,l) = g(y + ui,1) . . . g(y + ui,m) for 1 ≤ i ≤ k.
Let 1 ≤ i, j ≤ k with i 6= j. This is possible since k ≥ 2. We derive from

(12) that

g(x+ ti,1) . . . g(x+ ti,l)
g(x+ tj,1) . . . g(x+ tj,l)

=
g(y + ui,1) . . . g(y + ui,m)
g(y + uj,1) . . . g(y + uj,m)

.

Taking logarithms on both sides, we get

V1

x
+
V2

x2 + . . . =
W1

y
+
W2

y2 + . . .

for certain numbers Ve,We, satisfying max(|Ve|, |We|) ≤ ce6 for e ≥ 1. In
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fact, we have

We =
(−1)e−1

e

m∑

h=1

µ∑
q=1

{(ui,h − βq)e − (uj,h − βq)e}.

Now, we shall derive that

(13) V1 = . . . = Vl−1 = 0, W1 = . . . = Wm−1 = 0.

We prove (13) by contradiction like we proved (9). Suppose I and J are
integers with 1 ≤ I < l, 1 ≤ J < m such that V1 = . . . = VI−1 = 0, VI 6=
0,W1, . . . ,WJ−1 = 0,WJ 6= 0. Then

VI
xI

+ . . . =
WJ

yJ
+ . . . ,

which implies that mI = lJ . Since gcd(l,m) = 1, this implies l divides I
and m divides J , whence (13) follows.

Now, by induction on e, it follows from (13) that

W ′e =
(−1)e−1

e

m∑

h=1

((ui,h)e − (uj,h)e)

satisfies W ′1 = . . . = W ′m−1 = 0. This implies that

log
∏m
h=1(1 + ui,h/y)∏m
h=1(1 + uj,h/y)

=
W ′m
ym

+ . . .

Thus
m∏

h=1

(y + ui,h) =
m∏

h=1

(y + uj,h) +W ′m +O(1/y).

By taking y sufficiently large and writing Ei,j for W ′m, we get the polynomial
relation

(14)
m∏

h=1

(Y + ui,h) =
m∏

h=1

(Y + uj,h) + Ei,j for 1 ≤ i, j ≤ k, i 6= j

for some number Ei,j . We observe that Ei,j 6= 0 for 1 ≤ i, j ≤ k and i 6= j.
We put

g2(Y ) =
m∏

h=1

(Y + u1,h).

By (14), we have

(15) g2(Y ) =
m∏

h=1

(Y + uj,h) + Ej for 2 ≤ j ≤ k with Ej = E1,j .

We observe from (15) and (14) that Ej for 2 ≤ j ≤ k are pairwise distinct
non-zero numbers. Further, we see from (15) that every number 0 =: E1,
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E2, . . . , Ek is assumed by the polynomial g2 at m distinct integers from
{−Jd2 | 0 ≤ J ≤ mk− 1}. Now, we may follow an argument of the proof of
Theorem 2 of [3] to conclude that

(16) max(|x|, |y|) ≤ c7 unless m = 2.

This argument depends on Rolle’s theorem. Here we give a proof of the
preceding assertion without using Rolle’s theorem.

As already observed, the elements of the sets U i = {ui,1, . . . , ui,m} for
1 ≤ i ≤ k are distinct and U i ∩ U j = ∅ for i 6= j, 1 ≤ i, j ≤ k. Then

k∑

i=1

m∑

h=1

ui,h =
mk−1∑

J=0

Jd2 = mk(mk − 1)d2/2.

Further, by equating the coefficients of Y m−1 on both sides of (14), we
obtain

m∑

h=1

ui,h =
m∑

h=1

uj,h for 1 ≤ i, j ≤ k.

Consequently, we have

(17)
m∑

h=1

ui,h = m(mk − 1)d2/2 for 1 ≤ i ≤ k.

We assume without loss of generality that

(18) ui,1 < ui,2 < . . . < ui,m for 1 ≤ i ≤ k
and

(19) 0 = u1,1 < u2,1 < . . . < uk,1.

We show by induction on i that

(20) ui,1 = (i− 1)d2 for 1 ≤ i ≤ k.
We observe that (20) with i = 1 is true by (19). We assume that (20) is
valid for 1 ≤ i ≤ i0 with i0 ≤ k − 1. If i0d2 ∈ U i1 with 1 ≤ i1 ≤ i0, we
consider (14) with i = i1, j = i0 + 1 and we put Y = −(i1 − 1)d2, −i0d2 to
get a contradiction. Then (20) with i = i0 + 1 follows from (18) and (19).

Next, we show by induction on h that

(21) uk,h = (k + h− 2)d2 for 1 ≤ h ≤ m.
If h = 1, we observe that (21) is (20) with i = k. We suppose that uk,h =
(k + h − 2)d2 for 1 ≤ h ≤ h0 with h0 ≤ m − 1. If (k + h0 − 1)d2 ∈ U i2
with 1 ≤ i2 ≤ k − 1, we consider (14) with i = i2, j = k and we put
Y = −(i2 − 1)d2, −(k + h0 − 1)d2 to find that

(k − i2)(k − i2 + 1) . . . (k − i2 + h0 − 1)(uk,h0+1 − (i2 − 1)d2) . . .

. . . (uk,m − (i2 − 1)d2)



Values of a polynomial at arithmetic progressions 75

= (−1)h0h0(h0 − 1) . . . 1(uk,h0+1 − (k + h0 − 1)d2) . . .

. . . (uk,m − (k + h0 − 1)d2).

This is not possible since (k− i2) . . . (k− i2 + h0− 1) ≥ h0! and (18). Hence
(21) with h = h0 + 1 follows. This completes the proof of (21). Then

m∑

h=1

uk,h =
(
mk +

1
2
m(m− 3)

)
d2,

which, together with (17), implies that k = 1 whenever m ≥ 3. This com-
pletes the proof of (16) without using Rolle’s theorem.

Next we turn to the case m = 2. Then l = 1. Let 1 ≤ i < j ≤ k. It
follows from (13) that the corresponding W1 satisfies W1 = 0. Extending
the argument used for proving (13) we see that V1 = W2. By definition V1 =
µ(ti,1 − tj,1). Further, by W1 = 0, we have Ei,j = W ′2 = W2. Consequently,
Ei,j = µ(ti,1 − tj,1). Hence and from (14), (20) and (17) we derive

(22) (Y + (i− 1)d2)(Y + (2k − i)d2)

= (Y + (j − 1)d2)(Y + (2k − j)d2) + µ(ti,1 − tj,1).

Since z(2k − 1 − z) is an increasing function for 0 ≤ z ≤ k − 1, it follows
that ti,1 < tj,1 for i < j. Thus

(23) ti,1 = (i− 1)d1 for 1 ≤ i ≤ k.
Suppose first k ≥ 3. From (23) and (22) with i = 1, j = 2 we obtain
(2k − 2)d2

2 = µd1. Similarly, with i = 1, j = 3, we get 2(2k − 3)d2
2 = 2µd1.

Hence 2k − 2 = 2k − 3, which is impossible.
It remains to consider m = k = 2. Then, from (23) and (22) with i =

1, j = 2, we have

(24) 2d2
2 = µd1.

Note that (17)–(20) imply that u1,1 = 0, u2,1 = d2, u1,2 = 3d2, u2,2 = 2d2.
Hence, by (12) and (23),

(25) g(x) = g(y)g(y + 3d2), g(x+ d1) = g(y + d2)g(y + 2d2).

Write g(X) = Xµ + aXµ−1 + bXµ−2 +O(Xµ−3). Then the first equation of
(25) implies x = y2 + O(y) in obvious notation. By computing the higher
order terms we obtain

g(x+ d1)− g(x) = µd1x
µ−1 +O(xµ−2)

and

g(y+ d2)g(y+ 2d2)− g(y)g(y+ 3d2) =
(

2µ2 − 4
(
µ

2

))
d2

2y
2µ−2 +O(y2µ−3).
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Hence, on using (25) and substituting x = y2 +O(y),

d1 = 2d2
2 +O(1/y).

Together with (24) this implies µ = 1. Thus g(X) = X + a with a ∈ Q.
By (25) we find that a ∈ Z and (5) follows. This completes the proof of
Theorem (b).
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