On values of a polynomial at arithmetic progressions with equal products

by

N. SARADHA (Bombay), T. N. SHOREY (Bombay) and R. TIJDEMAN (Leiden)

1. Introduction. Let f(X) be a monic polynomial of degree $\nu > 0$ with rational coefficients. Let d_1, d_2, l, m with l < m and gcd(l, m) = 1 be given positive integers. In this paper, we consider the equation

(1) $f(x)f(x+d_1)\dots f(x+(lk-1)d_1) = f(y)f(y+d_2)\dots f(y+(mk-1)d_2)$

in integers x, y and $k \ge 2$ such that

(2)
$$f(x+jd_1) \neq 0 \quad \text{for } 0 \leq j \leq lk-1.$$

We refer to [3] and [4] for an account of results on equation (1) with f(X) = X. It was shown in [3] that for positive integers x, y and $k \ge 2$, equation (1) with f(X) = X implies that $\max(x, y, k) \le C_1$ where C_1 is an effectively computable number depending only on d_1, d_2, m unless

(3)
$$l = 1, m = k = 2, d_1 = 2d_2^2, x = y^2 + 3d_2y.$$

When f is a power of an irreducible polynomial, it was shown in [1] that equation (1) with $l = d_1 = d_2 = 1$ and (2) implies that $\max(|x|, |y|, k) \leq C_2$ where C_2 is an effectively computable number depending only on m and f. In this paper, we extend these results as follows.

THEOREM. (a) Equation (1) with (2) implies that k is bounded by an effectively computable number depending only on d_1, d_2, m and f.

(b) Let f be a power of an irreducible polynomial. There exists an effectively computable number C_3 depending only on d_1, d_2, m and f such that equation (1) with (2) implies that

(4)
$$\max(|x|, |y|, k) \le C_3$$

unless

(5)
$$l = 1, \quad m = k = 2, \quad d_1 = 2d_2^2,$$

 $f(X) = (X+r)^{\nu} \quad with \ r \in \mathbb{Z}, \ x+r = (y+r)(y+r+3d_2).$

It is clear that condition (2) is necessary. We observe that equation (1) is, in fact, satisfied in the cases given by (5). For irreducible f, we apply Theorem (b) to f^2 for deriving that if x, y and $k \ge 2$ are integers satisfying (2) and

$$|f(x)f(x+d_1)\dots f(x+(lk-1)d_1)| = |f(y)f(y+d_2)\dots f(y+(mk-1)d_2)|$$

then $\max(|x|, |y|, |k)$ is bounded by an effectively computable number de

then $\max(|x|, |y|, k)$ is bounded by an effectively computable number depending only on d_1, d_2, m and f unless (5) holds. In particular, we observe that if x, y and $k \ge 2$ are integers satisfying $x + jd_1 \ne 0$ for $0 \le j \le lk - 1$ and

$$x(x+d_1)\dots(x+(lk-1)d_1) = \pm y(y+d_2)\dots(y+(mk-1)d_2)$$

then $\max(|x|, |y|, k)$ is bounded by an effectively computable number depending only on d_1, d_2 and m, unless (3) holds.

2. Notation. Let $\{\alpha_1, \alpha_2, \ldots, \alpha_\nu\}$ be the roots of f and we assume without loss of generality that $|\alpha_1| \ge |\alpha_2| \ge \ldots \ge |\alpha_\nu|$. Let a_0 be the absolute value of the product of the denominators of the coefficients of f. We observe that $a_0\alpha_1, \ldots, a_0\alpha_\nu$ are algebraic integers. We define the coefficients A_0, A_1, \ldots and B_0, B_1, \ldots by

$$X^{-l} \prod_{j=0}^{lk-1} (f(X+jd_1))^{1/(\nu k)} = \prod_{i=1}^{\nu} \prod_{j=0}^{lk-1} \left(1 + \frac{jd_1 - \alpha_i}{X}\right)^{1/(\nu k)} = \sum_{n=0}^{\infty} A_n d_1^n X^{-n}$$

and

$$Y^{-m} \prod_{j=0}^{mk-1} (f(Y+jd_2))^{1/(\nu k)} = \prod_{i=1}^{\nu} \prod_{j=0}^{mk-1} \left(1 + \frac{jd_2 - \alpha_i}{Y}\right)^{1/(\nu k)}$$
$$= \sum_{n=0}^{\infty} B_n d_2^n Y^{-n}.$$

We observe that for $n \ge 1$, A_n and B_n are rational numbers and that $A_0 = B_0 = 1$. We put

 $\chi_n = ((a_0 \nu k)n!)^n$ for $n = 0, 1, 2, \dots$

Further, we write

$$F(X) = X^{l} + A_{1}d_{1}X^{l-1} + \ldots + A_{l}d_{1}^{l},$$

$$G(Y) = Y^{m} + B_{1}d_{2}Y^{m-1} + \ldots + B_{m}d_{2}^{m}$$

and

$$L(X,Y) = F(X) - G(Y).$$

We notice that F(X) and G(Y) are the polynomial parts of the νk th root of left and right hand sides of equation (1), respectively, with x and y re-

placed by X and Y. For a rational number β , we write $d(\beta)$ for the least positive integer such that $d(\beta)\beta$ is a rational integer. We denote by c_1, c_2, \ldots effectively computable positive numbers depending on d_1, d_2, m and f.

3. k is bounded. In this section, we shall show that equation (1) with (2) implies that $k \leq c_1$. The proof is similar to that of Theorem 2 of [1]. Therefore, we mention only the main steps of the proof and the readers are referred to [1] for details. We assume that equation (1) with (2) is satisfied. Then we observe that

(6)
$$|x|^l \le c_2(|y| + mkd_2)^m, \quad |y|^m \le c_3(|x| + lkd_1)^l.$$

For $n \geq 0$, A_n and B_n are polynomials in k of degrees not exceeding n satisfying

$$|A_n|d_1^n \le 2^{n+l}(lkd_1 + |\alpha_1|)^n, \quad |B_n|d_2^n \le 2^{n+m}(mkd_2 + |\alpha_1|)^n$$

and

$$d(A_n d_1^n) | \chi_n, \quad d(B_n d_2^n) | \chi_n.$$

Further, we obtain

(7)
$$\log(|y|+2) \ge c_4 k$$

For the proof of (7), we take prime p of Lemma 4 of [1] exceeding $a_0d_1d_2$ in place of a_0 .

We assume from now onward that $|y| > c_5$ with c_5 sufficiently large, otherwise (4) follows from (7) and (6). By taking νk th root on both the sides of equation (1), we have

$$x^{l}\left(1 + \frac{A_{1}d_{1}}{x} + \frac{A_{2}d_{1}^{2}}{x^{2}} + \dots\right) = y^{m}\left(1 + \frac{B_{1}d_{2}}{y} + \frac{B_{2}d_{2}^{2}}{y^{2}} + \dots\right).$$

This implies that

(8)
$$F(x) = G(y)$$

Further, we show that

(9)
$$A_{l+1} = \ldots = A_{2l-1} = 0$$
 or $B_{m+1} = \ldots = B_{2m-1} = 0$.

We prove (9) by contradiction. If not, there exist integers I and J with $1 \le I < l$ and $1 \le J < m$ such that

$$A_{l+1} = \ldots = A_{l+I-1} = 0, \quad A_{l+I} \neq 0$$

and

$$B_{m+1} = \ldots = B_{m+J-1} = 0, \quad B_{m+J} \neq 0.$$

Then we derive that

$$\frac{A_{l+I}d_1^{l+I}}{x^I} + \ldots = \frac{B_{m+J}d_2^{m+J}}{y^J} + \ldots$$

which implies that mI = lJ. This is not possible since gcd(l, m) = 1 and J < m. Further, we derive from (8) and (9) that

$$A_{l+1} = \ldots = A_{2l-1} = 0, \quad B_{m+1} = \ldots = B_{2m-1} = 0$$

and

$$B_{2m}d_2^{2m} = A_{2l}d_1^{2l}.$$

Finally, we apply the proof of §4 of [1] for deriving from the above relations that $k \leq c_1$. This completes the proof of Theorem (a).

4. Proof of Theorem (b). We assume that equation (1) with (2) is satisfied. Then, by Theorem (a), we restrict ourselves to $k \leq c_1$. Let k be fixed. By (6), we may assume that $|x| > c_5$ and $|y| > c_5$ with c_5 sufficiently large. Then the relation (8) is valid. Let $f = g_1^b$, where g_1 is irreducible and b is a positive integer. Then g_1 has rational coefficients and its leading coefficient is ± 1 . By putting $f = g_1^b$ in (1), we have

$$(g_1(x)g_1(x+d_1)\dots g_1(x+(lk-1)d_1))^b = (g_1(y)g_1(y+d_2)\dots g_1(y+(mk-1)d_2))^b.$$

Taking the *b*th root on either side, we see that

$$g_1(x)g_1(x+d_1)\dots g_1(x+(lk-1)d_1) = \pm g_1(y)g_1(y+d_2)\dots g_1(y+(mk-1)d_2)$$

Now, we set $g_1(x) = g(x)$ if g_1 is monic and $g_1(x) = -g(x)$ if g_1 has leading coefficient -1 so that g is a monic irreducible polynomial with rational coefficients. Then the latter equation is valid with g_1 replaced by g. Thus we assume that either f = g or $f = g^2$ in Theorem (b). Put $\delta = 1$ if f = gand $\delta = 2$ if $f = g^2$. Let μ be the degree of g. Thus $\mu = \nu/\delta$. Let $\beta_1, \ldots, \beta_{\mu}$ be the roots of $g, K = \mathbb{Q}(\beta_1, \ldots, \beta_{\mu})$ and we write a for the coefficient of $X^{\mu-1}$ in g(X). Further, let $\sigma_1, \ldots, \sigma_{\mu}$ be all the automorphisms of K and we write $\sigma_q(\beta) = \beta^{(q)}$ for $\beta \in K$ and $1 \leq q \leq \mu$. We set

$$H(X,Y) = (g(X) \dots g(X + (lk-1)d_1))^{\delta} - (g(Y) \dots g(Y + (mk-1)d_2))^{\delta},$$

$$T = \{\beta_i - Jd_1 \mid 1 \le i \le \mu, \ 0 \le J < lk\}$$

and

$$U = \{\beta_i - Jd_2 \mid 1 \le i \le \mu, \ 0 \le J < mk\}.$$

Since g is irreducible, we observe that $|T| = lk\mu$ and $|U| = mk\mu$. For $t = \beta_i - Jd_1 \in T$, we write $\overline{t} = Jd_1$. Similarly, for $u = \beta_i - Jd_2 \in U$, we write $\overline{u} = Jd_2$.

Let R(Y) be the resultant of H(X, Y) and L(X, Y) with respect to X. Then we observe from equations (1) and (8) that R(y) = 0, which implies that $R(Y) \equiv 0$ if c_5 is sufficiently large. By a result of Ehrenfeucht (see [2, p. 2]), L(X, Y) is irreducible over the field of complex numbers since gcd(l, m) = 1. Therefore, L(X, Y) divides H(X, Y), which implies that

$$L(X,Y) \mid (g(X) \dots g(X + (lk-1)d_1) \pm g(Y) \dots g(Y + (mk-1)d_2)).$$

Thus

$$F(X) - G(u) | g(X) \dots g(X + (lk - 1)d_1) \quad \text{for } u \in U$$

and

$$G(Y) - F(t) \mid g(Y) \dots g(Y + (mk - 1)d_2) \quad \text{for } t \in T$$

over K.

Let $v'_1, \ldots, v'_{s'}$ be the distinct values in $\{F(t) \mid t \in T\}$ and $v''_1, \ldots, v''_{s''}$ be the distinct values in $\{G(u) \mid u \in U\}$. Each v'_i is assumed by F at most ltimes. Therefore, $lk\mu \leq ls'$, which implies that $k\mu \leq s'$. Further, $G(y) - v'_i$ with $1 \leq i \leq s'$ are relatively coprime polynomials. Therefore, the product of these polynomials divides $g(Y) \ldots g(Y + (mk - 1)d_2)$. Thus $ms' \leq mk\mu$, which implies that $s' \leq k\mu$. Hence, we conclude that $s' = k\mu$ and each v'_i is assumed by F exactly l times in T. By a similar argument, we have $s'' = k\mu$ and each v''_i is assumed by G exactly m times in U. Thus, $s' = s'' = k\mu =: s$. Further, we have

$$g(X) \dots g(X + (lk - 1)d_1) = \prod_{i=1}^{s} (F(X) - v_i'')$$

and

$$g(Y) \dots g(Y + (mk - 1)d_2) = \prod_{i=1}^{s} (G(Y) - v'_i).$$

We write

$$\prod_{i=1}^{s} (F(X) - v_i'') = (F(X))^s + A_1'(F(X))^{s-1} + \ldots + A_s'$$

and

$$\prod_{i=1}^{s} (G(Y) - v'_i) = (G(Y))^s + B'_1(G(Y))^{s-1} + \dots + B'_s.$$

As $g(x)g(x+d_1)\dots g(x+(lk-1)d_1) = \pm g(y)g(y+d_2)\dots g(y+(mk-1)d_2)$, by (8) we have either

$$(A'_1 - B'_1)(F(x))^{s-1} + \ldots + (A'_s - B'_s) = 0$$

or

$$2(F(x))^{s} + (A'_{1} + B'_{1})(F(x))^{s-1} + \ldots + (A'_{s} + B'_{s}) = 0.$$

If c_5 is sufficiently large, the latter possibility is excluded and the former possibility implies that $A'_1 = B'_1, \ldots, A'_s = B'_s$. Consequently, we conclude

that

$$\{v'_1, \dots, v'_s\} = \{v''_1, \dots, v''_s\}$$

By rearrangement, if necessary, we may assume without loss of generality that $v'_i = v''_i =: v_i$ for $1 \le i \le s$ and we write $S = \{v_1, \ldots, v_s\}$. Then we have

(10)
$$F(X) - v_i = (X - t_{i,1}) \dots (X - t_{i,l}) \text{ for } 1 \le i \le s$$

and

(11)
$$G(Y) - v_i = (Y - u_{i,1}) \dots (Y - u_{i,m})$$
 for $1 \le i \le s$,

where $t_{i,p} = \gamma_{i,p} - \overline{t}_{i,p}$ for $1 \le p \le l$ and $u_{i,h} = \beta_{i,h} - \overline{u}_{i,h}$ for $1 \le h \le m$. Here $\gamma_{i,p}$ and $\beta_{i,h}$ belong to $\{\beta_1, \ldots, \beta_\mu\}$.

We now fix i with $1 \le i \le s$ and let r be the number of automorphisms of K which fix v_i . By re-arranging $\sigma_1, \ldots, \sigma_{\mu}$, there is no loss of generality in assuming that $\sigma_q(v_i) = v_i^{(q)} = v_i$ for $1 \leq q \leq r$. The sets $\{\sigma_q(t_{i,p}) \mid$ $1 \leq q \leq r$ for $1 \leq p \leq l$ are either disjoint or identical. Consequently, by considering the images under σ_q with $1 \leq q \leq r$ on both sides of (10), we observe that the number of times $\bar{t}_{i,p}$ with $1 \le p \le l$ occurs in $\{\bar{t}_{i,1}, \ldots, \bar{t}_{i,l}\}$ is a multiple of r. Consequently, we derive that l is a multiple of r. Similarly, by considering (11) and arguing as above, we derive that m is also a multiple of r. Since gcd(l,m) = 1, we have r = 1. In other words, every element of S has μ distinct conjugates. Therefore, the maximal number of elements of S such that no two of them are conjugates is precisely k. By re-arranging elements of S, we may assume that v_1, \ldots, v_k are such that no two of them are conjugates. Then we derive from (10) and (11) that $\bar{t}_{i,p}$ with $1 \leq i \leq i$ $k, 1 \leq p \leq l$ are pairwise distinct elements of the set $\{Jd_1 \mid 0 \leq J < lk\}$ and $\overline{u}_{i,h}$ with $1 \leq i \leq k, 1 \leq h \leq m$ are pairwise distinct elements of the set $\{Jd_2 \mid 0 \leq J < mk\}$. By subtracting (10) with X = x from (11) with Y = yand taking norms over K, we derive that

(12)
$$g(x+\overline{t}_{i,1})\dots g(x+\overline{t}_{i,l}) = g(y+\overline{u}_{i,1})\dots g(y+\overline{u}_{i,m})$$
 for $1 \le i \le k$.

Let $1 \le i, j \le k$ with $i \ne j$. This is possible since $k \ge 2$. We derive from (12) that

$$\frac{g(x+\overline{t}_{i,1})\dots g(x+\overline{t}_{i,l})}{g(x+\overline{t}_{j,1})\dots g(x+\overline{t}_{j,l})} = \frac{g(y+\overline{u}_{i,1})\dots g(y+\overline{u}_{i,m})}{g(y+\overline{u}_{j,1})\dots g(y+\overline{u}_{j,m})}.$$

Taking logarithms on both sides, we get

$$\frac{V_1}{x} + \frac{V_2}{x^2} + \ldots = \frac{W_1}{y} + \frac{W_2}{y^2} + \ldots$$

for certain numbers V_e, W_e , satisfying $\max(|V_e|, |W_e|) \leq c_6^e$ for $e \geq 1$. In

fact, we have

$$W_e = \frac{(-1)^{e-1}}{e} \sum_{h=1}^{m} \sum_{q=1}^{\mu} \{ (\overline{u}_{i,h} - \beta_q)^e - (\overline{u}_{j,h} - \beta_q)^e \}.$$

Now, we shall derive that

(13)
$$V_1 = \ldots = V_{l-1} = 0, \quad W_1 = \ldots = W_{m-1} = 0.$$

We prove (13) by contradiction like we proved (9). Suppose I and J are integers with $1 \leq I < l, 1 \leq J < m$ such that $V_1 = \ldots = V_{I-1} = 0, V_I \neq 0, W_1, \ldots, W_{J-1} = 0, W_J \neq 0$. Then

$$\frac{V_I}{x^I} + \ldots = \frac{W_J}{y^J} + \ldots,$$

which implies that mI = lJ. Since gcd(l, m) = 1, this implies l divides I and m divides J, whence (13) follows.

Now, by induction on e, it follows from (13) that

$$W'_{e} = \frac{(-1)^{e-1}}{e} \sum_{h=1}^{m} ((\overline{u}_{i,h})^{e} - (\overline{u}_{j,h})^{e})$$

satisfies $W'_1 = \ldots = W'_{m-1} = 0$. This implies that

$$\log \frac{\prod_{h=1}^{m} (1 + \overline{u}_{i,h}/y)}{\prod_{h=1}^{m} (1 + \overline{u}_{j,h}/y)} = \frac{W'_m}{y^m} + \dots$$

Thus

$$\prod_{h=1}^{m} (y + \overline{u}_{i,h}) = \prod_{h=1}^{m} (y + \overline{u}_{j,h}) + W'_{m} + O(1/y).$$

By taking y sufficiently large and writing $E_{i,j}$ for W'_m , we get the polynomial relation

(14)
$$\prod_{h=1}^{m} (Y + \overline{u}_{i,h}) = \prod_{h=1}^{m} (Y + \overline{u}_{j,h}) + E_{i,j} \quad \text{for } 1 \le i, j \le k, i \ne j$$

for some number $E_{i,j}$. We observe that $E_{i,j} \neq 0$ for $1 \leq i, j \leq k$ and $i \neq j$. We put

$$g_2(Y) = \prod_{h=1}^m (Y + \overline{u}_{1,h}).$$

By (14), we have

(15)
$$g_2(Y) = \prod_{h=1}^m (Y + \overline{u}_{j,h}) + E_j \quad \text{for } 2 \le j \le k \text{ with } E_j = E_{1,j}$$

We observe from (15) and (14) that E_j for $2 \le j \le k$ are pairwise distinct non-zero numbers. Further, we see from (15) that every number $0 =: E_1$, E_2, \ldots, E_k is assumed by the polynomial g_2 at m distinct integers from $\{-Jd_2 \mid 0 \leq J \leq mk-1\}$. Now, we may follow an argument of the proof of Theorem 2 of [3] to conclude that

(16)
$$\max(|x|, |y|) \le c_7 \quad \text{unless } m = 2.$$

This argument depends on Rolle's theorem. Here we give a proof of the preceding assertion without using Rolle's theorem.

As already observed, the elements of the sets $\overline{U}_i = \{\overline{u}_{i,1}, \ldots, \overline{u}_{i,m}\}$ for $1 \leq i \leq k$ are distinct and $\overline{U}_i \cap \overline{U}_j = \emptyset$ for $i \neq j, 1 \leq i, j \leq k$. Then

$$\sum_{i=1}^{k} \sum_{h=1}^{m} \overline{u}_{i,h} = \sum_{J=0}^{mk-1} Jd_2 = mk(mk-1)d_2/2.$$

Further, by equating the coefficients of Y^{m-1} on both sides of (14), we obtain

$$\sum_{h=1}^{m} \overline{u}_{i,h} = \sum_{h=1}^{m} \overline{u}_{j,h} \quad \text{for } 1 \le i, j \le k.$$

Consequently, we have

(17)
$$\sum_{h=1}^{m} \overline{u}_{i,h} = m(mk-1)d_2/2 \quad \text{for } 1 \le i \le k.$$

We assume without loss of generality that

(18) $\overline{u}_{i,1} < \overline{u}_{i,2} < \ldots < \overline{u}_{i,m} \quad \text{for } 1 \le i \le k$

and

(19)
$$0 = \overline{u}_{1,1} < \overline{u}_{2,1} < \ldots < \overline{u}_{k,1}.$$

We show by induction on i that

(20)
$$\overline{u}_{i,1} = (i-1)d_2 \quad \text{for } 1 \le i \le k.$$

We observe that (20) with i = 1 is true by (19). We assume that (20) is valid for $1 \leq i \leq i_0$ with $i_0 \leq k - 1$. If $i_0d_2 \in \overline{U}_{i_1}$ with $1 \leq i_1 \leq i_0$, we consider (14) with $i = i_1$, $j = i_0 + 1$ and we put $Y = -(i_1 - 1)d_2$, $-i_0d_2$ to get a contradiction. Then (20) with $i = i_0 + 1$ follows from (18) and (19).

Next, we show by induction on h that

(21)
$$\overline{u}_{k,h} = (k+h-2)d_2 \quad \text{for } 1 \le h \le m$$

If h = 1, we observe that (21) is (20) with i = k. We suppose that $\overline{u}_{k,h} = (k+h-2)d_2$ for $1 \le h \le h_0$ with $h_0 \le m-1$. If $(k+h_0-1)d_2 \in \overline{U}_{i_2}$ with $1 \le i_2 \le k-1$, we consider (14) with $i = i_2$, j = k and we put $Y = -(i_2 - 1)d_2$, $-(k+h_0 - 1)d_2$ to find that

$$(k-i_2)(k-i_2+1)\dots(k-i_2+h_0-1)(\overline{u}_{k,h_0+1}-(i_2-1)d_2)\dots$$

 $\dots(\overline{u}_{k,m}-(i_2-1)d_2)$

Values of a polynomial at arithmetic progressions

$$= (-1)^{h_0} h_0(h_0 - 1) \dots 1(\overline{u}_{k,h_0+1} - (k + h_0 - 1)d_2) \dots$$
$$\dots (\overline{u}_{k,m} - (k + h_0 - 1)d_2).$$

This is not possible since $(k - i_2) \dots (k - i_2 + h_0 - 1) \ge h_0!$ and (18). Hence (21) with $h = h_0 + 1$ follows. This completes the proof of (21). Then

$$\sum_{h=1}^{m} \overline{u}_{k,h} = \left(mk + \frac{1}{2}m(m-3)\right)d_2,$$

which, together with (17), implies that k = 1 whenever $m \ge 3$. This completes the proof of (16) without using Rolle's theorem.

Next we turn to the case m = 2. Then l = 1. Let $1 \le i < j \le k$. It follows from (13) that the corresponding W_1 satisfies $W_1 = 0$. Extending the argument used for proving (13) we see that $V_1 = W_2$. By definition $V_1 =$ $\mu(\bar{t}_{i,1} - \bar{t}_{j,1})$. Further, by $W_1 = 0$, we have $E_{i,j} = W'_2 = W_2$. Consequently, $E_{i,j} = \mu(\bar{t}_{i,1} - \bar{t}_{j,1})$. Hence and from (14), (20) and (17) we derive

(22)
$$(Y + (i-1)d_2)(Y + (2k-i)d_2)$$

= $(Y + (j-1)d_2)(Y + (2k-j)d_2) + \mu(\bar{t}_{i,1} - \bar{t}_{j,1}).$

Since z(2k-1-z) is an increasing function for $0 \le z \le k-1$, it follows that $\bar{t}_{i,1} < \bar{t}_{j,1}$ for i < j. Thus

(23)
$$\bar{t}_{i,1} = (i-1)d_1 \text{ for } 1 \le i \le k.$$

Suppose first $k \geq 3$. From (23) and (22) with i = 1, j = 2 we obtain $(2k-2)d_2^2 = \mu d_1$. Similarly, with i = 1, j = 3, we get $2(2k-3)d_2^2 = 2\mu d_1$. Hence 2k-2 = 2k-3, which is impossible.

It remains to consider m = k = 2. Then, from (23) and (22) with i = 1, j = 2, we have

Note that (17)–(20) imply that $\overline{u}_{1,1} = 0, \overline{u}_{2,1} = d_2, \overline{u}_{1,2} = 3d_2, \overline{u}_{2,2} = 2d_2$. Hence, by (12) and (23),

(25)
$$g(x) = g(y)g(y+3d_2), \quad g(x+d_1) = g(y+d_2)g(y+2d_2).$$

Write $g(X) = X^{\mu} + aX^{\mu-1} + bX^{\mu-2} + O(X^{\mu-3})$. Then the first equation of (25) implies $x = y^2 + O(y)$ in obvious notation. By computing the higher order terms we obtain

$$g(x+d_1) - g(x) = \mu d_1 x^{\mu-1} + O(x^{\mu-2})$$

and

$$g(y+d_2)g(y+2d_2) - g(y)g(y+3d_2) = \left(2\mu^2 - 4\binom{\mu}{2}\right)d_2^2y^{2\mu-2} + O(y^{2\mu-3}).$$

Hence, on using (25) and substituting $x = y^2 + O(y)$,

$$d_1 = 2d_2^2 + O(1/y).$$

Together with (24) this implies $\mu = 1$. Thus g(X) = X + a with $a \in \mathbb{Q}$. By (25) we find that $a \in \mathbb{Z}$ and (5) follows. This completes the proof of Theorem (b).

References

- [1] R. Balasubramanian and T. N. Shorey, On the equation $f(x+1) \dots f(x+k) = f(y+1) \dots f(y+mk)$, Indag. Math. N.S. 4 (1993), 257–267.
- J. W. S. Cassels, Factorization of polynomials in several variables, in: Proc. 15th Scandinavian Congress, Oslo 1968, Lecture Notes in Math. 118, Springer, 1970, 1–17.
- [3] N. Saradha, T. N. Shorey and R. Tijdeman, On arithmetic progressions with equal products, Acta Arith. 68 (1994), 89-100.
- [4] T. N. Shorey, On a conjecture that a product of k consecutive positive integers is never equal to a product of mk consecutive positive integers except for 8 · 9 · 10 = 6! and related questions, in: Number Theory, Séminaire de Théorie des Nombres, Paris 1992-3, S. David (ed.), London Math. Soc. Lecture Note Ser. 215, Cambridge Univ. Press, 1995, 231-244.

SCHOOL OF MATHEMATICSMATHEMATICAL INSTITUTETATA INSTITUTE OF FUNDAMENTAL RESEARCHLEIDEN UNIVERSITYHOMI BHABHA ROADP.O. BOX 9512BOMBAY 400005, INDIA2300 RA LEIDEN, THE NETHERLANDS

Received on 27.6.1994 and in revised form on 14.3.1995 (2633)

76