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1. Introduction. We continue our work of [1], in which an old conjecture
of Erdős [5] was disproved. There also some cases were settled in the positive
and related questions were investigated. For further related work we refer to
[9]–[12], and [15]. While restating now the conjecture of Erdős in its original
form and its general form of [8], we also introduce our notation and some
basic definitions. Here we follow [1] as closely as possible.
N denotes the set of positive integers and P = {p1, p2, . . .} = {2, 3, 5, . . .}

denotes the set of all primes. For two numbers u, v ∈ N we write u | v iff u
divides v, (u, v) stands for the largest common divisor of u and v, [u, v] is
the smallest common multiple of u and v. The numbers u and v are called
coprimes if (u, v) = 1.

We are particularly interested in the sets

(1.1) Ns =
{
u ∈ N :

(
u,

s−1∏

i=1

pi

)
= 1
}

and

(1.2) Ns(n) = Ns ∩ 〈1, n〉,
where for i ≤ j, 〈i, j〉 equals {i, i+ 1, . . . , j}.

Erdős introduced in [5] (and also in [6]–[8], [10]) f(n, k, s) as the largest
integer r for which an

(1.3) A ⊂ Ns(n), |A| = r,

exists with no k + 1 numbers in A being coprimes.
Certainly the set

(1.4) E(n, k, s) = {u ∈ Ns(n) : u = ps+iv for some i = 0, 1, . . . , k − 1}
does not have k + 1 coprimes.

The case s = 1, in which we have N1(n) = 〈1, n〉, is of particular interest.

[77]
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Conjecture 1.

f(n, k, 1) = |E(n, k, 1)| for all n, k ∈ N.
It seems that this conjecture of Erdős appeared for the first time in print

in his paper [5] of 1962.

General Conjecture.

f(n, k, s) = |E(n, k, s)| for all n, k, s ∈ N.
Erdős mentions in [8] that he did not succeed in settling the case k = 1.

We focus on this special case by calling it

Conjecture 2.

f(n, 1, s) = |E(n, 1, s)| for all n, s ∈ N.
Notice that

E(n, 1, s) = {u ∈ N1(n) : ps |u; p1, . . . , ps−1 -u}.
Whereas in [1] Conjecture 1 was disproved for k = 212, Conjecture 2 was

almost settled with the following result.

Theorem 2 ([1]). For every s ∈ N and n ≥∏s−1
i=1 pi/(ps+1 − ps),

f(n, 1, s) = |E(n, 1, s)|
and the optimal configuration is unique.

After the presentation of these results on his 80th birthday at a con-
ference in his honour Erdős conjectured that with finitely many exceptions
“Erdős sets” are optimal or, in other terminology, that for every k ∈ N,
f(n, k, 1) 6= |E(n, k, 1)| occurs only for finitely many n.

We call this Conjecture 1∗. Analogously we speak of Conjecture 2∗ (which
is settled in the affirmative by Theorem 2 of [1]) and of the General∗ Con-
jecture, which is established in this paper.

Actually the main step is the proof of Conjecture 1∗. It can easily be
extended to the general case with a bulk of notation. To simplify notation
we write in the case s = 1,

N(n) , N1(n), f(n, k) , f(n, k, 1) and E(n, k) , E(n, k, 1).

We climbed the mountain to Conjecture 1∗ in 3 steps by going through a
series of weaker conjectures of increasing strength:

Conjecture 1A. The infinite Erdős set

E(∞, k) = {mpi : 1 ≤ i ≤ k, m ∈ N}
has maximal (lower) density among subsets of N without k + 1 coprimes.
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Conjecture 1B.

lim
n→∞

f(n, k)|E(n, k)|−1 = 1 for every k ∈ N.

A few more definitions and known facts are needed.
For A ⊂ N we define A(n) = A∩〈1, n〉 and |A| is the cardinality of A. We

call dA = lim infn→∞ |A(n)|/n the lower and dA = lim supn→∞ |A(n)|/n
the upper asymptotic density of A. If dA = limn→∞ |A(n)|/n exists, then we
call dA the asymptotic density of A.

Erdős sets can be nicely described in terms of sets of multiples. The set
of multiples of A is

M(A) = {m ∈ N : a |m for some a ∈ A}
and the set of non-multiples of A is

N(A) = N\M(A).

Thus E(n, k) = M({p1, . . . , pk}) ∩ 〈1, n〉 and also for any finite A = {a1, . . .
. . . , at} ⊂ N and a =

∏t
i=1 ai, N(A) ∩ 〈1, a〉 the set of integers in 〈1, a〉 not

divisible by any member of A. Already Dirichlet knew that

|N(A) ∩ 〈1, a〉| = a

t∏

i=1

(
1− 1

ai

)

if the elements of A are pairwise relatively prime.
For general A, by inclusion-exclusion,

|N(A) ∩ 〈1, a〉| = a

(
1−

t∑

i=1

1
ai

+
∑

i<j

1
[ai, aj ]

− . . .
)

and therefore

(1.5) dN(A) = 1−
t∑

i=1

1
ai

+
∑

i<j

1
[ai, aj ]

− . . .

2. The main results. It is convenient to introduce the family S(n, k, s)
of all subsets of Ns(n) no k + 1 elements of which are pairwise relatively
prime. In case s = 1 we also write S(n, k) and S(∞, k) in the unrestricted
case n =∞.

Theorem 1A.

sup
A∈S(∞,k)

dA = dE(∞, k) = 1−
k∏

i=1

(
1− 1

pi

)
.
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Theorem 1B.

lim
n→∞

f(n, k)
|E(n, k)| = 1 for every k ∈ N.

Theorem 1. For every k ∈ N there is an n(k) such that f(n, k) =
|E(n, k)| for all n > n(k) and the optimal set is unique.

After the example of [1] this is the strongest statement one can hope for.
A key tool in the proof of Theorem 1 is a combinatorial result of in-

dependent interest. For a subfamily A ⊂ ([m]
l

)
, that is, a set of l-element

subsets of an m-element set, the (lower) shadow ∆A is defined by

∆A =
{
B ∈

(
[m]
l − 1

)
: B ⊂ A for some A ∈ A

}

and the (upper) shadow of B ⊂ ([m]
l−1

)
is

δB =
{
A ∈

(
[m]
l

)
: B ⊂ A for some B ∈ B

}
.

With any function g : A → R+ we associate the function h : ∆A → R+,
where h(B) = maxA∈δ{B}∩A g(A).

Theorem 2. Let A ⊂ ([m]
l

)
have the property that no k + 1 elements

of A are disjoint. Then for any function g : A → R+ and its associated
function h : ∆A → R+ (defined as above)

∑

B∈∆A
h(B) ≥ 1

k

∑

A∈A
g(A).

In particular ,

|∆A| ≥ 1
k
|A|.

Even though Theorem 1A now follows from Theorem 1, we give our
original proof, because it is much simpler than that of Theorem 1, which is
based on Theorem 2. It also shows how the ideas developed. The original
proof of Theorem 1B is not based on Theorem 2, but since it is rather
technical, it is not presented in this paper.

It should be mentioned, however, that Theorem 1B implies

sup
A∈S(∞,k)

dA = sup
A∈S(∞,k)

dA = sup
A∈S(∞,k)

dA.

Finally, we remark that inspection of our methods and proofs shows that
they also apply to the general case of f(n, k, s) for s > 1. Only some extra
notation is needed. Therefore we just state the results.
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Theorem 1′. For every k, s ∈ N there exists an n(k, s) such that for all
n ≥ n(k, s),

|E(n, k, s)| = f(n, k, s)

and the optimal set is unique.

3. Reduction to left compressed sets. The operation “pushing to
the left” is frequently used in extremal set theory, but to our surprise it
seems not to be as popular in combinatorial number theory, perhaps because
its usefulness is less obvious. Anyhow, our first (but not only) idea is to
exploit it.

Definition 1. A ⊂ Ns is said to be left compressed if for any a ∈ A of
the form

a = pira1, (a1, pr) = 1,

and any pl of the form

ps ≤ pl < pr, (pl, a1) = 1,

it follows that a∗ = pila1 ∈ A as well.
For any n ∈ N ∪ {∞} we denote the family of all left compressed sets

from S(n, k, s) by C(n, k, s).
Lemma 1. For n ∈ N,

max
A∈S(n,k,s)

|A| = max
A∈C(n,k,s)

|A| = f(n, k, s).

P r o o f. For any A ∈ S(n, k, s) and ps ≤ pl < pr we consider the partition
of A,

A = A1 ∪̇ A0,

where

A1 = {a ∈ A : a = pira1 (i ≥ 1), (a1, prpl) = 1; pila1 6∈ A},
A0 = A \A1.

Define A1
∗ = {u ∈ Ns : u = pila1, (a1, plpr) = 1, pira1 ∈ A1} and notice

that by our definitions A1
∗ ⊂ Ns(n). Consider now A∗ = (A ∪ A1

∗) \ A1 and
observe that |A∗| = |A| and also that A∗ ∈ S(n, k, s).

Finitely many iterations of this procedure to primes ps ≤ pl < pr give
the result.

The operation which led from A to A∗ can be denoted by Ls,l,r. This is
a “left pushing” operation:

A∗ = Ls,l,r(A).
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Moreover, by countably many left pushing operations one can transform
every A ∈ S(∞, s) into a left compressed set A′ such that

(3.1) |A(n)| ≤ |A′(n)|
and therefore also

(3.2) dA ≤ dA′, dA ≤ dA′.
For the left compressed sets C(∞, k) in S(∞, k) we have thus shown the
following.

Lemma 2.

sup
B∈S(∞,n)

dB = sup
B∈C(∞,n)

dB

and
sup

B∈S(∞,n)
dB = sup

B∈C(∞,n)
dB.

Next we mention two useful observations.

Any optimal B ∈ S(n, k, s), that is |B| = f(n, k, s), is an “upset”:

(3.3) B = M(B) ∩ Ns(n)

and it is also a “downset” in the following sense:

(3.4) b ∈ B, b = qα1
1 . . . qαtt , αi ≥ 1⇒ b′ = q1 . . . qt ∈ B.

Finally, we introduce for any B ⊂ N the unique primitive subset P (B)
which has the properties

(3.5) b1, b2 ∈ P (B)⇒ b1 - b2 and B ⊂M(P (B)).

We know from (3.4) that for an optimal B ∈ S(n, k, s), P (B) consists only
of squarefree integers.

R e m a r k 1. We could use also the following concept of left compressed-
ness:

Definition 2. A ⊂ Ns is left compressed if for any a ∈ A of the form

a = pαii a1, αi ≥ 1, (a1, pi) = 1,

it follows that for any pj , ps ≤ pj < pi, in case αi ≥ 2,

a∗ = pjp
αi−1
i a1 ∈ A,

and in case αi = 1,

a∗ = pja1 ∈ A if (a1, pj) = 1.

While the two definitions are different in general, it can be easily seen
that if the considered set A ⊂ Ns is also an “upset” and a “downset”, then
both definitions of left compressedness coincide.
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Besicovitch has shown in the thirties (see [13]) that M(A) need not have
a density for general A. Erdős [4] has given a characterisation for sets A for
which dM(A) exists.

Here we have the following

Conjectures. The set of multiples M(A) of any left compressed set A
(in the sense of Definition 2) possesses asymptotic density. We conjecture
this even for left compressed sets in the sense of Definition 1. Moreover, we
think that even a stronger statement is true: For any left compressed set A
in the sense of Definitions 1 or 2, dA exists.

4. Proof of Theorem 1A. We remind the reader of the abbrevia-
tions f(n, k), E(n, k), N(n), S(n, k), C(n, k) for f(n, k, 1), E(n, k, 1), N1(k),
S(n, k, 1), and C(n, k, 1) resp. We also introduce

(4.1) O(n, k) = {B ∈ S(n, k) : |B| = f(n, k)}.
By the remarks at the end of Section 3 we know that for A ∈ O(n, k) we
have properties (I).

(I) (a) P (A) ⊂ N∗, the set of squarefree numbers,
(b) A = M(P (A)) ∩ N(n).

We also know from Lemma 1 that

(c) O(n, k) ∩ C(n, k) 6= ∅.
For infinite sets A ⊂ N we choose the lower asymptotic density dA as a

measure and define

(4.2) O(∞, k) = {A ∈ S(∞, k) : dA = sup
B∈S(∞,k)

dB},

which is not automatically non-empty. C(∞, k) are the left compressed sets
in S(∞, k). Again it suffices to look at A ∈ C(∞, k) with the properties

(a) P (A) ⊂ N∗,
(b) A = M(P (A)).

Sets of multiples have been studied intensively in the thirties (cf. Hal-
berstam and Roth [13]).

Let P (A) = {a1, a2, . . .}, where the elements are written in the usual
lexicographical (or alternatively in natural) order. It is easy to show (see
[13]) that

(4.3) dM(P (A)) =
∞∑

i=1

b(i),
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where

(4.4) b(i) =
1
ai
−
∑

j<i

1
[aj , ai]

+ . . .

is the density of the set B(i) of those integers in M(P (A)) which are divisible
by ai and not by a1, a2, . . . , or ai−1. We can say more about b(i) if we use
the prime number factorization of the squarefree numbers ai.

Lemma 3. Let ai = q1 . . . qr, q1 < . . . < qr and qj ∈ P for j = 1, . . . , r.
Then

(i) B(i) =
{
n ∈ N : n = qα1

1 . . . qαrr q with αj ≥ 1,
(
q,
∏

p≤qr
p
)

= 1
}
,

(ii) dB(i) = b(i) =
1

(q1 − 1) . . . (qr − 1)

∏

p≤qr

(
1− 1

p

)
.

P r o o f. Since A is left compressed and P (A) is written in lexicographical
order, q is of the described form and (i) holds.

To verify (ii) just observe that from (1.6),

dB(i) =
∑

αj≥1

1
qα1
1 . . . qαrr

∏

p≤qr

(
1− 1

p

)

=
∏

p≤qr

(
1− 1

p

) ∞∑
α1=1

1
qα1
1

. . .

∞∑
αr=1

1
qαrr

=
∏

p≤qr

(
1− 1

p

)
1

(q1 − 1) . . . (qr − 1)
.

We are now ready to prove Theorem 1A.
Suppose to the contrary that there exists an A ∈ S(∞, k) with

dA > 1−
k∏

j=1

(
1− 1

pj

)
.

We know already that we can assume A ∈ C(∞, k), P (A) ⊂ N∗,
M(P (A)) = A and that P (A) = {a1, a2, . . .} is in lexicographical order.
We have

∞∑

i=1

b(i) > 1−
k∏

j=1

(
1− 1

pj

)

and hence for a suitable m(A) also
m∑

i=1

b(i) > 1−
k∏

j=1

(
1− 1

pj

)
for m ≥ m(A).
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We can therefore consider A′ = M({a1, . . . , am}), because A′ ∈ S(∞, k) and
still

(4.5) dA′ = dA′ =
m∑

i=1

b(i) > 1−
k∏

j=1

(
1− 1

pj

)
.

Write P (A′) = {a1, . . . , am} in the form

(4.6) P (A′) = R1 ∪̇ . . . ∪̇ Rt,
where Rs is the set of all aj ’s with greatest prime factor p+(aj) = ps. Notice
that in case t > k by left compressedness we necessarily have pt 6∈ A′ and
also pt 6∈ Rt, because otherwise A′ 6∈ S(∞, k). Hence

dM(P (A′)) =
m∑

i=1

b(i) =
t∑

s=1

τ(Rs),

where

(4.7) τ(Rs) =
∑

a=q1...qrps∈Rs
q1<...<qr<ps

1
(q1 − 1) . . . (qr − 1)(ps − 1)

s∏

i=1

(
1− 1

pi

)
.

We now consider Rt = {al, al+1, . . . , am} for some l ≤ m. We have

(4.8) τ(Rt) =
m∑

i=l

b(i).

By the pigeon-hole principle there exists a subset R′t = {ai1 , . . . , air} ⊂ Rt
such that

(4.9)
r∑

j=1

b(ij) ≥ τ(Rt)
t− 1

and
(
ai1
pt
, . . . ,

air
pt

)
> 1.

Now we replace the set A′ by the set A′′ = M(R1 ∪ . . .∪Rt−1 ∪R′′t ), where

R′′t =
{
aij
pt

: aij ∈ R′j
}
.

One readily verifies that A′′ ∈ C(∞, k). We now estimate dA′′ from below.
The contribution of every element aij/pt ∈ R′′t to M(R1 ∪ . . . ∪ Rt−1 ∪
R′′t )\M(R1∪ . . .∪Rt−1) are the elements in the form u = qβ1

1 . . . qβrr q, where
aij = q1 . . . qrpt, βj ≥ 1, and (q,

∏t
i=1 pi) = 1. The density of this set of

integers equals

b′′(ij) =
1

(q1 − 1) . . . (qr − 1)

t∏

i=1

(
1− 1

pi

)
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and hence b′′(ij) = (pt − 1)b(ij). Therefore, using (4.9) we have

dA′′ ≥
t−1∑
s=1

τ(Rs) + (pt − 1)
τ(Rt)
t− 1

>

t∑
s=1

τ(Rs) = dA′,

because pt > t.
We notice that P (A′′) ⊆ R1 ∪ . . . ∪Rt−1 ∪R′′t and hence

max
a∈P (A′′)

p+(a) ≤ pt−1.

Continuing this procedure we arrive after finitely many steps at the set
M({p1, . . . , pk}) and by (4.5) at the statement that its density 1−∏k

i=1(1−
1/pi) must be bigger than itself. This proves that maxB∈S(∞,k) dB =
dE(∞, k).

5. A finite version of Lemma 3. We now work in N(n) and need
sharper estimates on cardinalities than just bounds on densities. It suffices
to consider A ∈ C(n, k) ∩ O(n, k). We know that P (A) = {a1 < . . . <
am} ⊂ N∗ and that A = M(P (A)) ∩ N(n). Define B(i)(n) = {u ∈ N(n) :
ai |u and aj -u for j = 1, . . . , i− 1} and write

(5.1) A =
m⋃

i=1

B(i)(n).

Lemma 4. Let ai = q1 . . . qr and q1 < . . . < qr with qj ∈ P. Then

(i) B(i)(n) =
{
u ∈ N(n) : u = qα1

1 . . . qαrr T, αi ≥ 1,
(
T,
∏

p≤qr
p
)

= 1
}

.

(ii) lim
n→∞

|B(i)(n)|
n

=
1

(q1 − 1) . . . (qr − 1)

∏

p≤qr

(
1− 1

p

)
.

(iii) For every ε > 0, every h ∈ N and every ai = q1 . . . qr, q1 < . . .
. . . < qr ≤ ph, there exists an n(h, ε) such that for n > n(h, ε) we have

(1− ε)n 1
(q1 − 1) . . . (qr − 1)

∏

p≤qr

(
1− 1

p

)
< |B(i)(n)|

< (1 + ε)n
1

(q1 − 1) . . . (qr − 1)

∏

p≤qr

(
1− 1

p

)
.

P r o o f. (i) immediately follows from the facts that A is compressed, an
“upset” and a “downset”.

(ii) We know that

dNm =
∏

p≤pm

(
1− 1

p

)
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for m ∈ N and hence

lim
n→∞

|B(i)(n)|
n

=
∑

αi≥1

1
qα1
1 . . . qαrr

∏

p≤qr

(
1− 1

p

)

=
1

(q1 − 1) . . . (qr − 1)

∏

p≤qr

(
1− 1

p

)
.

(iii) follows from (ii), because the constant number of sequences converges
uniformly.

6. Combinatorial result for shadows and a proof of Theorem 2.
For A ⊂ ([m]

l

)
and B ⊂ ([m]

l−1

)
the lower shadow ∆A and the upper shadow

δB were defined in Section 2. We begin with a special case of Theorem 2.

Lemma 5. Let A ⊂ ([m]
l

)
have the property that no k+ 1 of its members

are pairwise disjoint. Then

|∆A| ≥ 1
k
|A|.

P r o o f. The standard left pushing operation preserves the “no k + 1
disjoint”-property and only can decrease the shadow. We can assume there-
fore that A is left-compressed. We distinguish two cases.

C a s e 1: m ≤ (k + 1)l − 1. Counting pairs (A;B) with B ⊂ A in two
ways we get

|∆A| ≥ l

m− l + 1
|A| ≥ l

(k + 1)l − 1− l + 1
|A| = 1

k
|A|.

C a s e 2: m ≥ (k + 1)l. We consider the following partition of 〈1,m〉:
I1 = 〈1, k〉, I2 = 〈k+ 1, 2k+ 1〉, . . . , Ij = 〈(j− 1)(k+ 1), j(k+ 1)− 1〉, . . . ,

Il = 〈(l − 1)(k + 1), l(k + 1)− 1〉, Il+1 = 〈l(k + 1),m〉.
First we show that for every A ∈ A there exists an index j, 1 ≤ j ≤ l, for
which

(6.1) |A ∩ (I1 ∪ . . . ∪ Ij)| = j.

To see this, assume that this does not hold for some A ∈ A. Then
necessarily |A ∩ Il+1| ≥ 1, because otherwise |A ∩ (I1 ∪ . . . ∪ Il)| = l
since |A| = l. Therefore we must have |A ∩ (I1 ∪ . . . ∪ Il)| ≤ l − 1 and a
fortiori |A ∩ (I1 ∪ . . . ∪ Il−1)| ≤ l − 2, |A ∩ (I1 ∪ . . . ∪ Il−2)| ≤ l − 3, . . . ,
|A ∩ (I1 ∪ I2)| ≤ 1, |A ∩ I1| = 0.

However, since A is also left compressed, we can then choose k + 1 el-
ements from A (including A) which are pairwise disjoint. This contradicts
our assumption on A.
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Now, for every A ∈ A define jA, 1 ≤ jA ≤ l, as the largest index j for
which (6.1) holds. This can be used to partition A into disjoint subsets:

(6.2) A =
l.⋃

i=1

Ai, where Ai = {A ∈ A : jA = i}.

Some of the subsets may be empty. Consider now the shadows ∆Ai
(1 ≤ i ≤ l) and their subshadows ∆∗Ai = {B ∈ ∆Ai : |B ∩ (I1 ∪ . . .∪ Ii)| =
i− 1}. It follows immediately from the definition of the Ai that

(6.3) ∆∗Ai1 ∩∆∗Ai2 = ∅ for all i1 6= i2.

Moreover, using left compressedness of A it can be shown easily that

(6.4) ∆A =
l⋃

i=1

∆∗Ai.

In the light of (6.2)–(6.4) it suffices to show that

(6.5) |∆∗Ai| ≥ 1
k
|Ai| for i = 1, . . . , l.

We look therefore for fixed i at the intersections

Ui = {A ∩ (I1 ∪ . . . ∪ Ii) : A ∈ Ai}
and partition Ai as follows:

(6.6) Ai =
.⋃

U∈Ui
AUi , AUi = {A ∈ Ai : A ∩ (I1 ∪ . . . ∪ Ii) = U}.

Also, we introduce the intersections

Vi = {B ∩ (I1 ∪ . . . ∪ Ii) : B ∈ ∆∗Ai}
and partition ∆∗Ai as follows:

(6.7)
∆∗Ai =

.⋃

V ∈Vi
(∆∗Ai)V ,

(∆∗Ai)V = {B ∈ ∆∗Ai : B ∩ (I1 ∪ . . . ∪ Ii) = V }.
Now counting for the ∆∗-operation pairs again in two ways we get the
inequality

i
∑

U∈Ui
|AUi | ≤

∑

V ∈Vi
(i(k + 1)− 1− (i− 1))|(∆∗Ai)V | ≤ ik

∑

V ∈Vi
|(∆∗Ai)V |.

Together with (6.6) and (6.7) it implies (6.5).

The next result is of a more general structure. It enables us to get imme-
diately Theorem 2 from Lemma 5. Let G = (V,W,E) be a bipartite graph.
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Write σ(s) for the set of vertices adjacent to a vertex s and σ(S) for the set
of vertices adjacent to vertices in S. We assume that

σ(V ) = W.

Lemma 6. Suppose that for some α ∈ R+ we have, for every S ⊂ V ,

(6.8) |S| ≤ α|σ(S)|.
Then for every function g : V → R+ and associated function h : W → R+,
where h(b) = maxa∈σ(b) g(a) for all b ∈W ,

(6.9)
∑

a∈V
g(a) ≤ α

∑

b∈W
h(b).

P r o o f. Let {γ1 < . . . < γr} be the range of g. Then we have the partition
V = V1 ∪̇ . . . ∪̇ Vr, where

Vi = {v ∈ V : g(v) = γi}, 1 ≤ i ≤ r.
Clearly,

(6.10)
∑

a∈V
g(a) =

r∑

i=1

γi|Vi|.

By the definition of h obviously

(6.11) h(b) = γr for all b ∈ σ(Vr).

We now proceed by induction on r.
r = 1: Here h(b) = γ1 for all b ∈W and hence by (6.8),

∑

a∈V
g(a) = γ1|V | ≤ γ1α|W | = α

∑

b∈W
h(b).

r − 1 → r: We assume that (6.9) holds for every function g′ : V → R+

with r − 1 different values.
With our g under consideration we associate the function g∗ : V → R+

defined by

g∗(a) =
{
γi for a ∈ Vi, i ≤ r − 1,
γr−1 for a ∈ Vr.

Denote by h∗ : W → R+ the usual function corresponding to g∗. We verify
that

(6.12)
∑

a∈V
g(a) =

∑

a∈V
g∗(a) + (γr − γr−1)|Vr|,

(6.13)
∑

b∈W
h(b) =

∑

b∈W
h∗(b) + (γr − γr−1)|σ(Vr)|.
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From the condition (6.8) and the induction hypothesis applied to g∗ we
know that

|Vr| ≤ α|σ(Vr)| and
∑

a∈V
g∗(a) ≤ α

∑

b∈W
h∗(b).

These inequalities and (6.12), (6.13) give (6.9).

P r o o f o f T h e o r e m 2. ConsiderG = (V,W,E) = (A,∆A, E), where
(A;B) ∈ E iff A ⊃ B, and A satisfies the hypothesis of Theorem 2 and hence
also of Lemma 5. Since every subfamily A′ ⊂ A also satisfies this hypothesis,
we know that

(6.14) |∆A′| ≥ 1
k
|A′|.

Since ∆A′ = σ(A′), (6.14) guarantees (6.8) for α = k.
The conclusion (6.9) says now

∑

A∈A
g(A) ≤ k

∑

A∈∆A
h(A)

and Theorem 2 is established.

R e m a r k 2. One might consider instead of the (maximal) associated
function h an (average) associated function

h : ∆A → R+, where h(B) = |δ(B) ∩ A|−1
∑

A∈δ(B)∩A
g(A).

Obviously h(B) ≥ h(B) for all B ∈ ∆A.

While for the case m ≤ (k+1)l−1 one can replace h by h in Theorem 2,
this is not possible in general.

Example 1 (h cannot be replaced by h in Theorem 2). Choose m = 6,
l = 3, and k = 1 and define

A = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}} ∪ {{1, 3, 4}, {1, 3, 5}, {1, 3, 6}}
∪ {{2, 3, 4}, {2, 3, 5}, {2, 3, 6}}.

No two sets in A are disjoint and A is left compressed. Choose

g(A) =
{

1 for A = {1, 2, 3},
0 otherwise

and use the notation f(C) =
∑
C∈C f(C). Then 1

kg(A) = g(A) > h(∆A),
because |δ({1, 2}) ∩ A| = |δ({1, 3}) ∩ A| = |δ({2, 3}) ∩ A| = 4, and thus

h(∆A) = 3
1
4
< g(A) = 1.

7. A number-theoretical consequence of Theorem 2. We now
present a basic new auxiliary result for every S ∈ C(n, k) with Properties (I)
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in Section 4. S need not be optimal, that is, it can be in C(n, k)\O(n, k).
Define

(7.1) Si = {d ∈ S : pi | d, but (p1 . . . pi−1, d) = 1}.
Clearly,

(7.2) Si ∩ Sj = ∅ (i 6= j) and S =
.⋃

i≥1

Si.

Lemma 7. For every k, n ∈ N and every S ∈ C(n, k) with Properties (I)
we have

(i) |Sr| ≥ (1/k)
∑
i≥r+1 |Si| for every r ∈ N,

(ii) for every α ∈ R+ and for k(α) ≥ kα (independent of n!)

k(α)∑

i=1

|Sk+i| ≥ α
∑

j≥k+k(α)+1

|Sj |.

P r o o f. (ii) follows from (i), so we have to prove (i). We consider the set⋃
i≥r+1 Si and let, for every l ∈ N,

(7.3)

Tl =
{
d ∈

⋃

i≥r+1

Si : d has exactly l different primes in its factorization
}
.

Obviously,

(7.4)
.⋃

i≥r+1

Si =
.⋃

l≥1

Tl

and for d ∈ Tl,
(7.5) d = qβ1

1 . . . qβll , pr < q1 < . . . < ql, βi ≥ 1.

Since S ∈ C(n, k), we have

(7.6) di = pβir q
β1
1 . . . q

βi−1
i−1 q

βi+1
i+1 . . . qβll ∈ Sr for i = 1, . . . , l.

Define

(7.7) σ(d) = {d1, . . . , dl} and σ(Tl) =
⋃

d∈Tl
σ(d).

Since σ(Tl) ⊂ Sr and σ(Tl) ∩ σ(Tl′) = ∅ (l 6= l′), to prove (i) it is sufficient
to show that

(7.8) |σ(Tl)| ≥ 1
k
|Tl| for all l ∈ N.

Let T ∗l = Tl∩N∗ be the squarefree integers in Tl. Then σ(T ∗l ) =
⋃
d∈T∗

l
σ(d)

is the set of all squarefree integers of σ(Tl).
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For an a ∈ T ∗l , a = x1 . . . xl, x1 < . . . < xl, xi ∈ P, we consider

(7.9) T (a) = {d ∈ S : d = xβ1
1 . . . xβll , βi ≥ 1}

and for a b ∈ σ(T ∗l ), b = pry1 . . . yl−1, pr < y1 < . . . < yl−1, yi ∈ P, we
consider

U(b) = {d ∈ Sr : d = pγlr y
γ1
1 . . . y

γl−1
l−1 , γi ≥ 1,(7.10)

yγ1
1 . . . y

γl−1
l−1 x

γl ∈ Tl for some x ∈ P}.
It is clear that

(7.11) Tl =
.⋃

a∈T∗
l

T (a) and σ(Tl) =
.⋃

b∈σ(T∗
l

)

U(b).

Next we observe that for any b ∈ σ(T ∗l ),

(7.12) |U(b)| = max
bx/pr∈T∗l

∣∣∣∣T
(
b

pr
x

)∣∣∣∣
and this has brought us into the position to apply Theorem 2 to the sets
A ∼ T ∗l and ∆A ∼ σ(T ∗l ), where “∼” is the canonical correspondence
between squarefree numbers and subsets. We indicate the correspondence
by using small and capital letters such as a ∼ A.

We define g : A → R+ by

(7.13) g(A) = |T (a)|.
The associated function h : ∆A → R+ is defined by h(B) = |U(b)|. We see
from (7.12) that this definition is correct. Theorem 2 therefore yields (7.8)
and thus (i).

8. Further auxiliary results. We state first the only auxiliary result
which is not derived in this paper and is not trivial. It is the weaker version
of de Bruijn’s strengthening [2] of Buchstab’s result [3] that can be found
in [13].

Theorem. For the function

(8.1) φ(x, y) =
∣∣∣
{
a ≤ x :

(
a,
∏
p<y

p
)

= 1
}∣∣∣

there exist positive absolute constants c1, c2 such that

(8.2) c1x
∏
p<y

(
1− 1

p

)
≤ φ(x, y) ≤ c2x

∏
p<y

(
1− 1

p

)

for all x, y satisfying x ≥ 2y ≥ 4. Furthermore, the right side inequality in
(8.2) remains valid also for x < 2y.
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We also need

Lemma 8. For positive constants c1, c2, κ there exists a t(c1, c2, κ) such
that for t > t(c1, c2, κ),

c1
c2
pt
∏

p≥pt

(
1− 1

p

)
> κ.

P r o o f. Trivial.

Finally, we need a result on “bookkeeping”. We have two accounts at
time 0: x0 = x and y0 = y where x, y ∈ R+. In any step i, i ≥ 1, we
arbitrarily remove ai, bi with 0 ≤ ai ≤ xi−1, 0 ≤ bi ≤ yi−1, and add a∗i ≥ 0,
b∗i ≥ 0, where

a∗i + b∗i > β(ai + bi), β > 1.
The new accounts are

xi = xi−1 − ai + a∗i , yi = yi−1 − bi + b∗i .

Lemma 9. If for some l ∈ N the account yl = 0 (resp. xl = 0) occurs,
then we have xl > x+ βy (resp. yl > y + βx).

P r o o f. Beginning with accounts x and y at the end the amount y
has been removed and transferred to the first account with an increasing
factor β.

9. Proof of Theorem 1. We can assume that—as in Section 7—S ∈
C(n, k) satisfies Properties (I) and additionally is also optimal, that is, S ∈
O(n, k). Define Si as in (7.1) and recall (7.2). Notice also that P (S) =
P (S∩N∗). Equivalent to Theorem 1 is the statement that for large n always

(9.1)
⋃

i≥k+1

Si = ∅.

Henceforth we assume to the contrary that

(II)
⋃

i≥k+1

Si 6= ∅ for infinitely many n.

Let k0 ∈ N, k0 > k, be an integer to be specified later. By the disjointness
property (7.1) we can write

(9.2) S0 = S\
( ⋃

i≥k0+1

Si

)
=
( k⋃

i=1

Si

)
∪
( k0⋃

i=k+1

Si

)
.

From (i) in Lemma 7 we know that
∣∣∣

k0⋃

i=k+1

Si

∣∣∣ ≥ k0 − k
k

∣∣∣
⋃

i≥k0+1

Si

∣∣∣
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and hence also that

(9.3) |S| ≤
∣∣∣
k⋃

i=1

Si

∣∣∣+ γ
∣∣∣

k0⋃

i=k+1

Si

∣∣∣,

where γ = 1 + k/(k0 − k).
Let P (S0) be the primitive subset of S0, which generates S0. We notice

that by the properties of S,

(9.4) P (S0) ⊂ P (S),

because d′ ∈ P (S0) and d | d′ for some d ∈ S would by compressedness imply
the existence of an e′ ∈ P (S0) with e′ | d′.

Let pt be the largest prime occurring in any element of P (S0). In other
words, (pt, d) = pt for some d ∈ P (S0) and

(9.5) (pt′ , d) = 1 for all t′ > t and all d ∈ P (S0).

By assumption (II) we have pt > pk.
We now consider

(9.6) P t(S0) = {a ∈ P (S0) : (a, pt) = pt}.
From Lemma 3(i) we know that the contribution of every element a ∈
P t(S0), a = q1 . . . qrpt and q1 < . . . < qr < pt, to M(P (S0)) is the set
of integers

(9.7) B(a) =
{
u = qα1

1 . . . qαrr pβtQ : αi ≥ 1, β ≥ 1,
(
Q,
∏

p≤pt
p
)

= 1
}
.

We use the abbreviation

(9.8) Lt =
⋃

a∈P t(S0)

B(a).

We also consider the partition

(9.9) P t(S0) =
.⋃

1≤i≤k0

P ti (S0), P ti (S0) = P t(S0) ∩ Si.

By the pigeon-hole principle for some l, 1 ≤ l ≤ k0,

(9.10)
∣∣∣

⋃

a∈P t
l
(S0)

B(a)
∣∣∣ ≥ |Lt|/k0 if t > k0

and for some l, 1 ≤ l ≤ t− 1,

(9.11)
∣∣∣

⋃

a∈P t
l
(S0)

B(a)
∣∣∣ ≤ |Lt|/(t− 1) if k < t ≤ k0.
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Basic transformation. We consider for this l corresponding to t the set
(of squarefree numbers)

(9.12) P̃ (S0) = (P (S0)\P t(S0)) ∪Rtl(S0),

where

(9.13) Rtl(S
0) = {u ∈ N : upt ∈ P tl (S0)}.

It can happen that P̃ (S0) is not primitive, however, always P̃ (S0) ⊂ S(n, k) !
We state the main result for P̃ (S0) as

Proposition. For suitable n > n(k),

(9.14) |M(P̃ (S0)) ∩ N(n)| > |S0|+ γ|Lt|.
P r o o f. For an a ∈ Rtl(S0), a = q1 . . . qr, q1 < . . . < qr < pt, we consider

the set

D(a) =
{
v ∈ N(n) : v = qα1

1 . . . qαrr T1,
(
T1,

∏

p≤pt−1

p
)

= 1
}
.

Since pt was the biggest prime which occurred in P (S0), we observe that

(9.15) M(P (S0)\P t(S0)) ∩D(a) = ∅ for a ∈ Rtl(S0).

Moreover,

D(a) ∩D(a′) = ∅ for a, a′ ∈ Rtl(S0), a 6= a′.

Hence, in the light of (9.10) and (9.11), to show (9.14) it is sufficient to
prove that for n > n(k) and

B(apt)

=
{
u ∈ N(n) : u = qα1 . . . qαrr pβt T, αi ≥ 1, β ≥ 1 and

(
T,
∏

p≤pt
p
)

= 1
}
,

we have

(9.16) |D(a)| >
{
γk0|B(apt)| if t > k0,
γ(t− 1)|B(apt)| if t ≤ k0.

Three cases in proving (9.16). We always have a = q1 . . . qr, q1 < . . . <
qr < pt.

C a s e 1: n/(apt) ≥ 2 and t > t(c1, c2, k0). Using the right side of the
Theorem in Section 8, which is valid without restrictions, we get

|B(apt)| ≤ c2
∑

αi≥1, β≥1

n

qα1
1 . . . qαrr pβt

∏

p≤pt

(
1− 1

p

)
(9.17)

< c2n
1

(q1 − 1) . . . (qr − 1)

∏

p≤pt

(
1− 1

p

)
1

pt − 1
.
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For D(a) we have

D(a) ⊃ D′(a) =
{
u ∈ N(n) : u = q1 . . . qrT1,

(
T1,

∏

p≤pt−1

p
)

= 1
}
,

and since n/(q1 . . . qr) ≥ 2pt, we can apply the left side of the Theorem to get

|D(a)| > |D′(a)| ≥ c1n 1
q1 . . . qr

∏

p≤pt−1

(
1− 1

p

)
(9.18)

= c1n
1

q1 . . . qr
· pt
pt − 1

∏

p≤pt

(
1− 1

p

)
.

Comparing (9.17) and (9.18) we get

|D(a)|
|B(apt)| >

c1
c2

pt
(q1 − 1) . . . (qr − 1)

q1 . . . qr

≥ c1
c2

pt
∏

p≤pt−1

(
1− 1

p

)
> κ = γk0,

where in the last step we used Lemma 8. Thus we proved (9.16) in this case.

C a s e 2: n/(apt) ≥ 2 and t ≤ t(c1, c2, k0). First let us specify k0 and
hence γ. We choose k0 so large that

(9.19) pk+i > γ(k + i− 1) =
(

1 +
k

k0 − k
)

(k + i− 1) for all i ∈ N.

This is of course possible. Next we choose ε > 0 such that

(9.20) pk+i
1− ε
1 + ε

> γ(k + i− 1).

Let n(ε) be a positive integer so that for n > n(ε) we can apply Lemma 4(iii).
So we have

|B(apt)| < (1 + ε)n
1

(q1 − 1) . . . (qr − 1)(pt − 1)

∏

p≤pt

(
1− 1

p

)
,

|D(a)| > (1− ε)n 1
(q1 − 1) . . . (qr − 1)

∏

p≤pt−1

(
1− 1

p

)

= (1− ε)n 1
(q1 − 1) . . . (qr − 1)

· pt
pt − 1

∏

p≤pt

(
1− 1

p

)
,

and hence by (9.20),

|D(a)|
|B(apt)| >

1− ε
1 + ε

pt > γ(t− 1).

This establishes (9.16) in this case.
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C a s e 3: 1 ≤ n/(apt) < 2. In this case B(apt) consists of only one
element, namely q1 . . . qrpt. Let now t1 ∈ N satisfy

(9.21) pt1 > (pk0)γk0

and let

(9.22) n >
∏

p≤pt1
p.

Notice that in our case necessarily pt ≥ pt1 , because apt <
∏
p≤pt p and

pt1 > pt would imply

2apt < 2
∏

p≤pt
p <

∏

p≤pt1
p < n (by (9.22))

and this contradicts our case 2apt > n.
Now by (9.21), pt ≥ pt1 > (pk0)γk0 and since q1 ≤ pk0 we get finally

qγk0
1 < pt. Therefore

D(a) ⊃ {q1 . . . qr, q
2
1q2 . . . qr, . . . , q

γk0
1 q2 . . . qr, q1q2 . . . qrpt},

|D(a)| > γk0, and again (9.16) holds. k0, γ, and ε are already fixed and
depend only on k. Then for

(9.23) n(k) = max
{ ∏

p≤(pk0 )γk0

p, n(ε)
}

and n > n(k), (9.16) holds in all three cases and the proof of the Proposition
is complete.

Final iterative procedure and its accounting. We have already noticed
that P̃ (S0) may not be primitive. Moreover, M(P̃ (S0)) may even not be
left compressed.

Let now S1 ⊂ N(n) be any set which is obtained from M(P̃ (S0)) by left
pushing and is left compressed. We know that

(9.24) S1 ∈ C(n, k), |S1| ≥ |M(P̃ (S0)) ∩ N(n)|
and therefore we know from the Proposition that

(9.25) |S1| > |S0|+ γ|Lt|.
We notice that (a,

∏
p≤pk0

p) > 1 for every a ∈ S1 and the last prime pt1

which occurs as a factor of any primitive element of P (S1) is less than pt.
If S1 6⊂ E(n, k), then we repeat the whole procedure and get an S2 for

which

|S2| > |S1|+ γ|Lt1 |,
where Lt1 is defined analogously to Lt with respect to the largest prime pt1
occurring in a member of P (S1).
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By iteration we get an Si ∈ C(n, k) with

(9.26) |Si| > |Si−1|+ γ|Lti−1 |
and again in analogy to the first step we define Sij and the partition

Si =
( k⋃

j=i

Sij

)
∪
( k0⋃

j=k+1

Sij

)

and also the sets Rt
i

l (Si).
It is clear that the procedure is finite, i.e. there exists an m ∈ N for

which

(9.27)
k0⋃

j=k+1

Smj = ∅, Sm ⊂ E(n, k).

Now we do the accounting via Lemma 9. The integers x, y are here

x = x0 =
∣∣∣
k⋃

j=1

Sj

∣∣∣, y = y0 =
∣∣∣

k0⋃

j=k+1

Sj

∣∣∣

and β = γ > 1. Furthermore,

xi =
∣∣∣
k⋃

j=1

Sij

∣∣∣, yi =
∣∣∣

k0⋃

j=k+1

Sij

∣∣∣,

ai =
∣∣∣Lti−1 ∩

( k⋃

j=1

Si−1
j

)∣∣∣, bi =
∣∣∣Lti−1 ∩

( k0⋃

j=k+1

Si−1
j

)∣∣∣,

and so

ai + bi = Lti−1 and a∗ + b∗ =
∣∣∣
⋃

a∈Rti−1
l

D(a)
∣∣∣

count the new elements in the ith step.
We know from the Proposition that a∗+ b∗ > γ(ai + bi) and from (9.27)

that ym = 0. Hence, by Lemma 9,

|E(n, k)| ≥ xm = |Sm| > x+ γy(9.28)

=
∣∣∣
k⋃

j=0

Sj

∣∣∣+
∣∣∣

k0⋃

j=k+1

Sj

∣∣∣+ (γ − 1)
∣∣∣

k0⋃

j=k+1

Sj

∣∣∣ ≥ |S|,

because

γ = 1 +
k

k0 − k , S =
∣∣∣
k⋃

j=1

Sj

∣∣∣+
∣∣∣

k0⋃

j=k+1

Sj

∣∣∣+
∣∣∣
⋃

j≥k0+1

Sj

∣∣∣,
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and
∣∣∣

k0⋃

j=k+1

Sj

∣∣∣ ≥ k0 − k
k

∣∣∣
⋃

j≥k0+1

Sj

∣∣∣.

However, (9.28) says that E(n, k) > |S|, which contradicts the optimality
of S. Therefore (II) must be false and Theorem 1 is proved.

R e m a r k 3. For fixed k, s and every n let H(n, k, s) ∈ S(n, k, s) be a
set with

|H(n, k, s)| = max{|B| : B ∈ S(n, k, s), B 6⊂ E(n, k, s)}.
We know from the counterexample in [1] that |E(n, k, s)| − |H(n, k, s)| < 0
is possible and that |E(n, k, s)| − |H(n, k, s)| > 0 for all n > n(k, s) (unique-
ness). However, by the method of proof of Theorem 1 one can derive

lim
n→∞

(|E(n, k, s)| − |H(n, k, s)|) =∞
for all k, s ∈ N.
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[12] R. Freud, Paul Erdős, 80—A Personal Account , Period. Math. Hungar. 26 (2)

(1993), 87–93.
[13] H. Halberstam and K. F. Roth, Sequences, Oxford University Press, 1966,

Springer, 1983.
[14] R. R. Hal l and G. Tenenbaum, Divisors, Cambridge Tracts in Math. 90, 1988.



100 R. Ahlswede and L. H. Khachatrian
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