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Introduction. The base change lift of an automorphic form by means
of a theta kernel was first done by Kudla in [2, 3] and Zagier in [6]. Kudla’s
paper omitted the computation of the Fourier series coefficients; he instead
referred to the paper of Niwa [4] on the Shimura lift. Knowledge of these
Fourier coefficients lets one write the L-series of the lifted form as a product
of the original L-series and its quadratic twist. In this paper the factorization
of the L-series is shown directly. Niwa’s idea of splitting the theta function
lets us explicitly compute the Mellin transform L(s, f̃) of the lifted form f̃ .
It is a Rankin–Selberg convolution of the original form f with a Maass wave
form coming from the quadratic extension. The factorization of the L-series
then follows as in the work of Doi and Naganuma [1].

To avoid excessive notation, only the simplest case is considered: the
lift to Q(

√
q), with q an odd prime q ≡ 1 mod 4 such that h+(K) = 1.

We use χ to denote the Kronecker symbol
(

q
∗
)
. We take a cusp form

f(z) =
∑

a(n) exp(2πinz) of weight k for SL(2, Z), an eigenfunction of
all the Hecke operators. Recall that in Section 3 of [2] Kudla defined the
theta kernel

θ(z, z1, z2) = y
∑
l∈L

χ(m)(−mz1z2 + αz1 + σαz2 + n)ke{(xQ + iyR)[l]}

where

• z = x + iy is in H and (z1, z2) is in H2,

• the lattice variable l is written as
[

α
m

n
−σα

]
with α in O, σα the Galois

conjugate, and m,n in Z,

• Q[l] is the indefinite quadratic form −2 det(l),

• each zj = uj + ivj defines an element gj =
[√vj uj/

√
vj

0 1/
√

vj

]
in SL(2, R).

• The pair g = (g1, g2) acts on the vector space by g · l = g−1
2 lg1,

• R[l] is a majorant for Q defined by tr(t(g · l)g · l).

[101]
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Then the lifting f̃ is defined by

f̃(z1, z2) =
∫
F

f(z)θ(z, z1, z2)yk dx dy

y2
,

where F is a fundamental domain for Γ0(q)\H.

Splitting the theta function. Let

θ1,j(z, v) = y(1−j)/22−j
∑
α∈O

Hj(
√

πy(αv1/2 + σαv−1/2))

× exp(2πixNα− πy(α2v + σα2/v))

and

θ2,j(z, v) = y(1−j)/22−j
∑

m,n∈Z
χ(m)Hj(

√
πy(mv1/2 + nv−1/2))

× exp(2πixmn− πy(vm2 + n2/v)).

Lemma. Along the “purely imaginary axis” (z1, z2) = (iv1, iv2) in H2,

θ(z, iv1, iv2) = (−1)kπ−k/2
∑
2ν≤k

(−1)ν

(
k

2ν

)
θ1,2ν

(
z,

v1

v2

)
θ2,k−2ν(z, v1v2).

P r o o f. Along the imaginary axis

R[l] =
v1

v2
α2 +

v2

v1

σα2 + v1v2m
2 +

n2

v1v2

and the spherical polynomial term is equal to

(−1)k

(
m(v1v2)1/2 +

n

(v1v2)1/2
+ iα

(
v1

v2

)1/2

+ i σα

(
v2

v1

)1/2)k

.

Apply to this the Hermite identity

(a + ib)k = 2−k
k∑

j=0

(
k

j

)
Hk−j(a)Hj(b)ij

where Hj(x) = (−1)j exp(x2) dj

dxj (exp(−x2)) is the jth Hermite polynomial.
Include a factor of

√
πy (which will be needed later) to show that the spher-

ical polynomial term is

2−k(−1)k(πy)−k/2
k∑

j=0

(
k

j

)
Hk−j

(
m(πyv1v2)1/2 + n

(
πy

v1v2

)1/2)

×Hj

(
α

(
πyv1

v2

)1/2

+ σα

(
πyv2

v1

)1/2)
ij .
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Hj(x) is an odd or even function according to whether j is odd or even. If
j is odd, the α and −α terms in the sum defining gj cancel and gj(z) is
identically zero. Writing j = 2ν finishes the lemma.

The point of this is that the Dirichlet series L(s, f̃) is given by the Mellin
transform

L(s, f̃) =
∫

(R+)2/U+

f̃(iv1, iv2)(v1v2)s−1 dv1 dv2

=
∫

(R+)2/U+

∫
F

f(z)θ(z, iv1, iv2)yk dx dy

y2
(v1v2)s−k/2−1 dv1 dv2.

Here U+ is the group of totally positive units, generated by ε.
Change the variables to v′1 = v1/v2 and v′2 = v1v2 (and by abuse of

notation go back to writing v1 and v2). Then using the splitting of θ, the
Mellin transform becomes

L(s, f̃) = 2−1(−1)kπ−k/2
∑
2ν≤k

(−1)ν

(
k

2ν

)

×
∞∫

0

ε∫
ε−1

∫
F

f(z)θ1,2ν(z, v1)θ2,k−2ν(z, v2)yk dx dy

y2

dv1

v1
v

s−k/2
2

dv2

v2
.

Let

g2ν(z) =
ε∫

ε−1

θ1,2ν(z, v)
dv

v
and E2ν(z, s, 0) =

∞∫
0

θ2,2ν(z, v)vs−k/2 dv

v
.

Rearranging the integrals shows that L(s, f̃) is equal to

(1)
π−k/2

2

∑
2ν≤k

(
k

2ν

)
(−1)k−ν

∫
F

f(z)g2ν(z)Ek−2ν(z, s, 0)yk dx dy

y2
.

Two ugly lemmas. Now two lemmas are required. The first is folklore,
the second is sketched in [4].

Lemma 1. g2ν(z) is equal to

y1/2−ν2−2ν
ε∫

ε−1

∑
α∈O

H2ν(
√

πy(αv1/2 + σαv−1/2))

× exp(2πixNα− πy(α2v + σα2/v))
dv

v

and is a Maass wave form of weight 2ν.
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P r o o f. Computing the integral will show that this is the Fourier expan-
sion of a Maass form in terms of Whittaker functions. (Alternatively, one
could use the method of Vignéras [5] to see that the integral is a Maass form,
but in the end the Fourier expansion is wanted to apply the Rankin–Selberg
method.)

From ([H], Vol. 2, p. 193) H2ν(0) = (−1)ν2ν!/ν! so the α = 0 term
contributes 2−2νy1/2−ν(−1)ν2ν!/(ν!2 log(ε)). For the terms α 6= 0 in the sum
interchange the sum and the integral and change the variables by w = ε2nv
for n ∈ Z. This gives

y1/2−ν2−2ν
∑

α∈O/U+

α6=0

∞∫
0

H2ν(
√

πy(αw1/2 + σαw−1/2))

× exp(−πy(α2w + σα2/w))
dw

w
exp(2πixNα).

To compute the integral of the term corresponding to α in the sum change
variables again to let v = α(w/|Nα|)1/2 to get 2−2νy1/2−ν exp(2πixNα)
times

2
∞∫

0

H2ν((πy|Nα|)1/2(v ± 1/v)) exp(−πy|Nα|(v ± 1/v)2) exp(2πyNα)
dv

v

with the ± chosen according to whether Nα is positive or negative. A final
change of variables with t = log(v) gives

2
∞∫

−∞
H2ν

(
2(πy|Nα|)1/2 cosh t

sinh t

)
exp

(
−4πy|Nα| cosh2 t

sinh2 t

)
exp(2πyNα) dt.

For integral ν the parabolic cylinder functions are defined by ([H], Vol. 2,
p. 117)

D2ν(z) = 2−ν exp(−z2/4)H2ν(z/
√

2).
Thus the integral is

2ν+1
∞∫

−∞
D2ν

(
2a

cosh t

sinh t

)
exp

(
− a2 sinh2 t

cosh2 t

)
dt

with a = (2πy|Nα|)1/2. For Nα > 0 apply ([I], Vol. 2, p. 398, (20)) to see
that this is the Whittaker function

y−ν |Nα|−1/2Wν,0(4πy|Nα|) exp(2πixNα)

when the omitted constants are included.
For Nα < 0, use the imaginary phase shift

cosh t =− i sinh(t + iπ/2) = i sinh(t− iπ/2),
sinh t =− i cosh(t + iπ/2) = i cosh(t− iπ/2)
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to get

2ν+1
∞∫

−∞
D2ν(2a i cosh(t− iπ/2)) exp(a2 sinh2(t± iπ/2)) dt.

(The ± will be chosen later.)
The identity ([H], Vol. 2, p. 117)

D2ν(z) = (−1)ν 2ν!√
2π

(D−2ν−1(iz) + D−2ν−1(−iz))

gives

(−1)ν2ν+1 2ν!√
2π

∞∫
−∞

{D−2ν−1(−2a cosh(t− iπ/2))

+D−2ν−1(2a cosh(t− iπ/2))} exp(a2 sinh2(t± iπ/2)) dt.

In the first cylinder function, moving the −1 inside the cosh(t− iπ/2) adds
iπ to the argument, giving

(−1)ν2ν+1 2ν!√
2π

∞∫
−∞

{D−2ν−1(2a cosh(t + iπ/2))

+ D−2ν−1(2a cosh(t− iπ/2))} exp(a2 sinh2(t± iπ/2)) dt.

Write this as two integrals, choosing sinh2(t+iπ/2) in the first and sinh2(t−
iπ/2) in the second. Since D−2ν−1 is an entire function one can shift the
line of integration by ∓iπ/2 to get

(−1)ν2ν+2 2ν!√
2π

∞∫
−∞

D−2ν−1(2a cosh t) exp(a2 sinh2 t) dt.

Apply ([I], Vol. 2, p. 398, (21)) to see that this is the Whittaker function

(−1)ν Γ (ν + 1/2)2

π
y−ν |Nα|−1/2W−ν,0(4πy|Nα|) exp(2πixNα)

when the omitted constants are included. Summarizing, this gives

g2ν(z) = 21−2ν(−1)ν2ν!/(ν! log(ε)y1/2−ν) + (−1)νy−ν Γ (ν + 1/2)2

π

×
∑

α∈O/U+

Nα<0

|Nα|−1/2W−ν,0(4πy|Nα|) exp(2πixNα)

+ y−ν
∑

α∈O/U+

Nα>0

|Nα|−1/2Wν,0(4πy|Nα|) exp(2πixNα).
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Lemma 2. E2ν(z, s, 0) is equal to

y1/2−ν2−2ν
∞∫

0

∑
m,n∈Z

χ(m)H2ν(
√

πy(mv1/2 + nv−1/2))

× exp
(
− 2πixmn− πy

(
vm2 +

n2

v

))
vs−k/2 dv

v

and is a (non-holomorphic) Eisenstein series of weight 2ν.

P r o o f. The Fourier transform f̂(t) =
∫

f(s) exp(−2πist) ds of

H2ν(m(πyv)1/2 + (πy/v)1/2s) exp(−(m(πyv)1/2 + (πy/v)1/2s)2)

is

(−1)ν22νπν(v/y)ν+1/2t2ν exp(2πimvt) exp(−πvt2/y)

by ([I], Vol. 1, p. 39, (9)) and the usual Fourier transform theorems. The
Poisson summation formula (using {f̂}̂(s) = f(−s) and evaluating at
mz) then gives∑

n

H2ν(m(πyv)1/2 − n(πy/v)1/2)

× exp(−(m(πyv)1/2 − n(πy/v)1/2)2 + 2πimnz)

= (−π)ν22ν(v/y)ν+1/2
∑

n

(mz + n)2ν

× exp
(

2πimv(mz + n)− π
v

y
(mz + n)2

)
= (−π)ν22ν(v/y)ν+1/2

∑
n

(mz + n)2ν exp
(
− π

v

y
|mz + n|2

)
.

Thus E2ν(z, s, 0) is equal to the Mellin transform

y−2ν(−π)ν
∞∫

0

∑
m,n

χ(m)(mz + n)2ν exp
(
− π

v

y
|mz + n|2

)
vs+ν+(1−k)/2 dv

v

= (−1)νπ−s+(k−1)/2Γ (s + ν + (1− k)/2)

×
∑
m,n

χ(m)(mz + n)−2ν ys−ν+(1−k)/2

|mz + n|2s−2ν+1−k
.

The group Γ0(q) has two cusps, and thus two Eisenstein series. Unfor-
tunately, the above is the one for the cusp at 0, and the one for the cusp
at ∞ would be more convenient. This is a result of not making the optimal
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definition of the theta function above. To fix this, let ωq =
[
0−1
q 0

]
. Since ωq

normalizes Γ0(q), ω−1
q F is another fundamental domain. Thus the integral

in (1) can be written∫
ω−1

q F

f(ωqz)g2ν(ωqz)Ek−2ν(ωqz, s, 0)y(ωqz)k dx dy

y2

= qs+1/2
∫
F

f(qz)g2ν(z)Ek−2ν(z, s,∞)yk dx dy

y2
.

Here E2ν(z, s,∞) is equal to

(−1)νπ−s+(k−1)/2Γ (s + ν + (1− k)/2)

×
∑
m,n

n≡0 mod q

χ(m)(nz + m)−2ν ys−ν+(1−k)/2

|nz + m|2s−2ν+1−k
,

i.e., the Eisenstein series at ∞.

To do the Rankin trick write Ek−2ν(z, s,∞) as

(−1)k/2−ν2π−s+(k−1)/2Γ (s + 1/2− ν)L(2s− k + 1, χ)

times a sum over Γ∞\Γ0(q) and unfold the integral. This gives

L(s, f̃) = (−1)k/2π−s−1/2qs+1/2L(2s− k + 1, χ)

×
∑
2ν≤k

(
k

2ν

)
Γ (s + 1/2− ν)

∞∫
0

1∫
0

f(qz)g2ν(z)ys+ν+1/2 dx dy

y2

= (−1)k/2π−s−1/2qs+1/2L(2s− k + 1, χ)
∑
2ν≤k

(
k

2ν

)
Γ (s + 1/2− ν)

×
∞∑

n=1

a(n)t(nq)
(nq)1/2

∞∫
0

exp(−2πnqy)W ν,0(4πnqy)ys−1/2 dy

y
.

Here t(n) is the cardinality of the set {α ∈ O/U+ | Nα = n}, so by the
Euler product for the Dedekind zeta function t(nq) = t(n). The integral
representation of the Whittaker functions shows that W ν,0 = Wν,0 and
(7.621 (11)) in [G] gives the Mellin transform as a ratio of Gamma functions
Γ (s)2/Γ (s + 1/2− ν). One can show

∑
2ν≤k

(
k
2ν

)
= 2k−1. Finally, Doi and

Naganuma [1] have shown that L(2s − k + 1, χ)
∑

a(n)t(n)n−s is equal to
L(s, f)L(s, f ⊗ χ). This completes the proof of the

Theorem.

L(s, f̃) = (−1)k/22kq1/2(2π)−2sΓ (s)2L(s, f)L(s, f ⊗ χ).
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