Theta and L-function splittings

by
Jeffrey Stopple (Santa Barbara, Cal.)

Introduction. The base change lift of an automorphic form by means of a theta kernel was first done by Kudla in [2, 3] and Zagier in [6]. Kudla's paper omitted the computation of the Fourier series coefficients; he instead referred to the paper of Niwa [4] on the Shimura lift. Knowledge of these Fourier coefficients lets one write the L-series of the lifted form as a product of the original L-series and its quadratic twist. In this paper the factorization of the L-series is shown directly. Niwa's idea of splitting the theta function lets us explicitly compute the Mellin transform $L(s, \widetilde{f})$ of the lifted form \widetilde{f}. It is a Rankin-Selberg convolution of the original form f with a Maass wave form coming from the quadratic extension. The factorization of the L-series then follows as in the work of Doi and Naganuma [1].

To avoid excessive notation, only the simplest case is considered: the lift to $\mathbb{Q}(\sqrt{q})$, with q an odd prime $q \equiv 1 \bmod 4$ such that $h_{+}(K)=1$. We use χ to denote the Kronecker symbol $\left(\frac{q}{*}\right)$. We take a cusp form $f(z)=\sum a(n) \exp (2 \pi i n z)$ of weight k for $S L(2, \mathbb{Z})$, an eigenfunction of all the Hecke operators. Recall that in Section 3 of [2] Kudla defined the theta kernel

$$
\theta\left(z, z_{1}, z_{2}\right)=y \sum_{l \in L} \chi(m)\left(-m z_{1} z_{2}+\alpha z_{1}+{ }^{\sigma} \alpha z_{2}+n\right)^{k} e\{(x Q+i y R)[l]\}
$$

where

- $z=x+i y$ is in \mathcal{H} and $\left(z_{1}, z_{2}\right)$ is in \mathcal{H}^{2},
- the lattice variable l is written as $\left[\begin{array}{cc}\alpha & n \\ m & -\sigma_{\alpha}\end{array}\right]$ with α in $\mathcal{O},{ }_{\alpha}$ the Galois conjugate, and m, n in \mathbb{Z},
- $Q[l]$ is the indefinite quadratic form $-2 \operatorname{det}(l)$,
- each $z_{j}=u_{j}+i v_{j}$ defines an element $g_{j}=\left[\begin{array}{cc}\sqrt{v_{j}} \\ 0 & u_{j} / \sqrt{\sqrt{v_{j}}} \\ 1 / \sqrt{v_{j}}\end{array}\right]$ in $S L(2, \mathbb{R})$.
- The pair $g=\left(g_{1}, g_{2}\right)$ acts on the vector space by $g \cdot l=g_{2}^{-1} l g_{1}$,
- $R[l]$ is a majorant for Q defined by $\operatorname{tr}\left({ }^{t}(g \cdot l) g \cdot l\right)$.

Then the lifting \widetilde{f} is defined by

$$
\widetilde{f}\left(z_{1}, z_{2}\right)=\int_{\mathcal{F}} f(z) \bar{\theta}\left(z, z_{1}, z_{2}\right) y^{k} \frac{d x d y}{y^{2}},
$$

where \mathcal{F} is a fundamental domain for $\Gamma_{0}(q) \backslash \mathcal{H}$.
Splitting the theta function. Let

$$
\begin{aligned}
& \theta_{1, j}(z, v)=y^{(1-j) / 2} 2^{-j} \sum_{\alpha \in \mathcal{O}} H_{j}\left(\sqrt{\pi y}\left(\alpha v^{1 / 2}+{ }^{\sigma} \alpha v^{-1 / 2}\right)\right) \\
& \times \exp \left(2 \pi i x N \alpha-\pi y\left(\alpha^{2} v+{ }^{\sigma} \alpha^{2} / v\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\theta_{2, j}(z, v)=y^{(1-j) / 2} 2^{-j} \sum_{m, n \in \mathbb{Z}} \chi(m) & H_{j}\left(\sqrt{\pi y}\left(m v^{1 / 2}+n v^{-1 / 2}\right)\right) \\
& \times \exp \left(2 \pi i x m n-\pi y\left(v m^{2}+n^{2} / v\right)\right) .
\end{aligned}
$$

Lemma. Along the "purely imaginary axis" $\left(z_{1}, z_{2}\right)=\left(i v_{1}, i v_{2}\right)$ in \mathcal{H}^{2},

$$
\theta\left(z, i v_{1}, i v_{2}\right)=(-1)^{k} \pi^{-k / 2} \sum_{2 \nu \leq k}(-1)^{\nu}\binom{k}{2 \nu} \theta_{1,2 \nu}\left(z, \frac{v_{1}}{v_{2}}\right) \theta_{2, k-2 \nu}\left(z, v_{1} v_{2}\right) .
$$

Proof. Along the imaginary axis

$$
R[l]=\frac{v_{1}}{v_{2}} \alpha^{2}+\frac{v_{2}}{v_{1}} \sigma^{2}+v_{1} v_{2} m^{2}+\frac{n^{2}}{v_{1} v_{2}}
$$

and the spherical polynomial term is equal to

$$
(-1)^{k}\left(m\left(v_{1} v_{2}\right)^{1 / 2}+\frac{n}{\left(v_{1} v_{2}\right)^{1 / 2}}+i \alpha\left(\frac{v_{1}}{v_{2}}\right)^{1 / 2}+i^{\sigma} \alpha\left(\frac{v_{2}}{v_{1}}\right)^{1 / 2}\right)^{k} .
$$

Apply to this the Hermite identity

$$
(a+i b)^{k}=2^{-k} \sum_{j=0}^{k}\binom{k}{j} H_{k-j}(a) H_{j}(b) i^{j}
$$

where $H_{j}(x)=(-1)^{j} \exp \left(x^{2}\right) \frac{d^{j}}{d x^{j}}\left(\exp \left(-x^{2}\right)\right)$ is the j th Hermite polynomial. Include a factor of $\sqrt{\pi y}$ (which will be needed later) to show that the spherical polynomial term is

$$
\begin{aligned}
2^{-k}(-1)^{k}(\pi y)^{-k / 2} \sum_{j=0}^{k}\binom{k}{j} & H_{k-j}\left(m\left(\pi y v_{1} v_{2}\right)^{1 / 2}+n\left(\frac{\pi y}{v_{1} v_{2}}\right)^{1 / 2}\right) \\
& \times H_{j}\left(\alpha\left(\frac{\pi y v_{1}}{v_{2}}\right)^{1 / 2}+{ }^{\sigma} \alpha\left(\frac{\pi y v_{2}}{v_{1}}\right)^{1 / 2}\right) i^{j} .
\end{aligned}
$$

$H_{j}(x)$ is an odd or even function according to whether j is odd or even. If j is odd, the α and $-\alpha$ terms in the sum defining g_{j} cancel and $g_{j}(z)$ is identically zero. Writing $j=2 \nu$ finishes the lemma.

The point of this is that the Dirichlet series $L(s, \widetilde{f})$ is given by the Mellin transform

$$
\begin{aligned}
L(s, \tilde{f}) & =\int_{\left(\mathbb{R}^{+}\right)^{2} / U^{+}} \tilde{f}\left(i v_{1}, i v_{2}\right)\left(v_{1} v_{2}\right)^{s-1} d v_{1} d v_{2} \\
& =\int_{\left(\mathbb{R}^{+}\right)^{2} / U^{+}} \int_{\mathcal{F}} f(z) \bar{\theta}\left(z, i v_{1}, i v_{2}\right) y^{k} \frac{d x d y}{y^{2}}\left(v_{1} v_{2}\right)^{s-k / 2-1} d v_{1} d v_{2}
\end{aligned}
$$

Here U^{+}is the group of totally positive units, generated by ε.
Change the variables to $v_{1}^{\prime}=v_{1} / v_{2}$ and $v_{2}^{\prime}=v_{1} v_{2}$ (and by abuse of notation go back to writing v_{1} and v_{2}). Then using the splitting of θ, the Mellin transform becomes

$$
\begin{aligned}
L(s, \widetilde{f})= & 2^{-1}(-1)^{k} \pi^{-k / 2} \sum_{2 \nu \leq k}(-1)^{\nu}\binom{k}{2 \nu} \\
& \times \int_{0}^{\infty} \int_{\varepsilon^{-1}}^{\varepsilon} \int_{\mathcal{F}} f(z) \bar{\theta}_{1,2 \nu}\left(z, v_{1}\right) \bar{\theta}_{2, k-2 \nu}\left(z, v_{2}\right) y^{k} \frac{d x d y}{y^{2}} \frac{d v_{1}}{v_{1}} v_{2}^{s-k / 2} \frac{d v_{2}}{v_{2}}
\end{aligned}
$$

Let

$$
g_{2 \nu}(z)=\int_{\varepsilon^{-1}}^{\varepsilon} \theta_{1,2 \nu}(z, v) \frac{d v}{v} \quad \text { and } \quad E_{2 \nu}(z, s, 0)=\int_{0}^{\infty} \bar{\theta}_{2,2 \nu}(z, v) v^{s-k / 2} \frac{d v}{v}
$$

Rearranging the integrals shows that $L(s, \widetilde{f})$ is equal to

$$
\begin{equation*}
\frac{\pi^{-k / 2}}{2} \sum_{2 \nu \leq k}\binom{k}{2 \nu}(-1)^{k-\nu} \int_{\mathcal{F}} f(z) \bar{g}_{2 \nu}(z) E_{k-2 \nu}(z, s, 0) y^{k} \frac{d x d y}{y^{2}} \tag{1}
\end{equation*}
$$

Two ugly lemmas. Now two lemmas are required. The first is folklore, the second is sketched in [4].

Lemma 1. $g_{2 \nu}(z)$ is equal to

$$
\begin{aligned}
y^{1 / 2-\nu} 2^{-2 \nu} \int_{\varepsilon^{-1}}^{\varepsilon} \sum_{\alpha \in \mathcal{O}} H_{2 \nu}(\sqrt{\pi y} & \left.\left(\alpha v^{1 / 2}+{ }^{\sigma} \alpha v^{-1 / 2}\right)\right) \\
& \times \exp \left(2 \pi i x N \alpha-\pi y\left(\alpha^{2} v+{ }^{\sigma} \alpha^{2} / v\right)\right) \frac{d v}{v}
\end{aligned}
$$

and is a Maass wave form of weight 2ν.

Proof. Computing the integral will show that this is the Fourier expansion of a Maass form in terms of Whittaker functions. (Alternatively, one could use the method of Vignéras [5] to see that the integral is a Maass form, but in the end the Fourier expansion is wanted to apply the Rankin-Selberg method.)

From $\left([\mathrm{H}]\right.$, Vol. 2, p. 193) $H_{2 \nu}(0)=(-1)^{\nu} 2 \nu!/ \nu!$ so the $\alpha=0$ term contributes $2^{-2 \nu} y^{1 / 2-\nu}(-1)^{\nu} 2 \nu!/(\nu!2 \log (\varepsilon))$. For the terms $\alpha \neq 0$ in the sum interchange the sum and the integral and change the variables by $w=\varepsilon^{2 n} v$ for $n \in \mathbb{Z}$. This gives

$$
\begin{aligned}
& y^{1 / 2-\nu} 2^{-2 \nu} \sum_{\substack{\alpha \in \mathcal{O} / U^{+} \\
\alpha \neq 0}} \int_{0}^{\infty} H_{2 \nu}\left(\sqrt{\pi y}\left(\alpha w^{1 / 2}+{ }^{\sigma} \alpha w^{-1 / 2}\right)\right) \\
& \times \exp \left(-\pi y\left(\alpha^{2} w+{ }^{\sigma} \alpha^{2} / w\right)\right) \frac{d w}{w} \exp (2 \pi i x N \alpha)
\end{aligned}
$$

To compute the integral of the term corresponding to α in the sum change variables again to let $v=\alpha(w /|N \alpha|)^{1 / 2}$ to get $2^{-2 \nu} y^{1 / 2-\nu} \exp (2 \pi i x N \alpha)$ times

$$
2 \int_{0}^{\infty} H_{2 \nu}\left((\pi y|N \alpha|)^{1 / 2}(v \pm 1 / v)\right) \exp \left(-\pi y|N \alpha|(v \pm 1 / v)^{2}\right) \exp (2 \pi y N \alpha) \frac{d v}{v}
$$

with the \pm chosen according to whether $N \alpha$ is positive or negative. A final change of variables with $t=\log (v)$ gives
$\left.2 \int_{-\infty}^{\infty} H_{2 \nu}\left(2(\pi y|N \alpha|)^{1 / 2} \cosh t\right) \sinh t\right) \exp \left(-4 \pi y|N \alpha| \begin{array}{c}\cosh ^{2} t \\ \sinh ^{2} t\end{array}\right) \exp (2 \pi y N \alpha) d t$.
For integral ν the parabolic cylinder functions are defined by ([H], Vol. 2, p. 117)

$$
D_{2 \nu}(z)=2^{-\nu} \exp \left(-z^{2} / 4\right) H_{2 \nu}(z / \sqrt{2})
$$

Thus the integral is

$$
2^{\nu+1} \int_{-\infty}^{\infty} D_{2 \nu}\left(2 a \begin{array}{c}
\cosh t \\
\sinh t
\end{array}\right) \exp \left(-a^{2} \begin{array}{c}
\sinh ^{2} t \\
\cosh ^{2} t
\end{array}\right) d t
$$

with $a=(2 \pi y|N \alpha|)^{1 / 2}$. For $N \alpha>0$ apply ([I], Vol. 2, p. 398, (20)) to see that this is the Whittaker function

$$
y^{-\nu}|N \alpha|^{-1 / 2} W_{\nu, 0}(4 \pi y|N \alpha|) \exp (2 \pi i x N \alpha)
$$

when the omitted constants are included.
For $N \alpha<0$, use the imaginary phase shift

$$
\begin{aligned}
\cosh t & =-i \sinh (t+i \pi / 2)
\end{aligned}=i \sinh (t-i \pi / 2),
$$

to get

$$
2^{\nu+1} \int_{-\infty}^{\infty} D_{2 \nu}(2 a i \cosh (t-i \pi / 2)) \exp \left(a^{2} \sinh ^{2}(t \pm i \pi / 2)\right) d t .
$$

(The \pm will be chosen later.)
The identity ([H], Vol. 2, p. 117)

$$
D_{2 \nu}(z)=(-1)^{\nu} \frac{2 \nu!}{\sqrt{2 \pi}}\left(D_{-2 \nu-1}(i z)+D_{-2 \nu-1}(-i z)\right)
$$

gives

$$
\begin{aligned}
& (-1)^{\nu} 2^{\nu+1} \frac{2 \nu!}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left\{D_{-2 \nu-1}(-2 a \cosh (t-i \pi / 2))\right. \\
& \left.\quad+D_{-2 \nu-1}(2 a \cosh (t-i \pi / 2))\right\} \exp \left(a^{2} \sinh ^{2}(t \pm i \pi / 2)\right) d t
\end{aligned}
$$

In the first cylinder function, moving the -1 inside the $\cosh (t-i \pi / 2)$ adds $i \pi$ to the argument, giving

$$
\begin{aligned}
& (-1)^{\nu} 2^{\nu+1} \frac{2 \nu!}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left\{D_{-2 \nu-1}(2 a \cosh (t+i \pi / 2))\right. \\
& \left.\quad+D_{-2 \nu-1}(2 a \cosh (t-i \pi / 2))\right\} \exp \left(a^{2} \sinh ^{2}(t \pm i \pi / 2)\right) d t
\end{aligned}
$$

Write this as two integrals, choosing $\sinh ^{2}(t+i \pi / 2)$ in the first and $\sinh ^{2}(t-$ $i \pi / 2)$ in the second. Since $D_{-2 \nu-1}$ is an entire function one can shift the line of integration by $\mp i \pi / 2$ to get

$$
(-1)^{\nu} 2^{\nu+2} \frac{2 \nu!}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} D_{-2 \nu-1}(2 a \cosh t) \exp \left(a^{2} \sinh ^{2} t\right) d t
$$

Apply ([I], Vol. 2, p. 398, (21)) to see that this is the Whittaker function

$$
(-1)^{\nu} \frac{\Gamma(\nu+1 / 2)^{2}}{\pi} y^{-\nu}|N \alpha|^{-1 / 2} W_{-\nu, 0}(4 \pi y|N \alpha|) \exp (2 \pi i x N \alpha)
$$

when the omitted constants are included. Summarizing, this gives

$$
\begin{aligned}
g_{2 \nu}(z)= & 2^{1-2 \nu}(-1)^{\nu} 2 \nu!/\left(\nu!\log (\varepsilon) y^{1 / 2-\nu}\right)+(-1)^{\nu} y^{-\nu} \frac{\Gamma(\nu+1 / 2)^{2}}{\pi} \\
& \times \sum_{\substack{\alpha \in \mathcal{O} / U^{+} \\
N \alpha<0}}|N \alpha|^{-1 / 2} W_{-\nu, 0}(4 \pi y|N \alpha|) \exp (2 \pi i x N \alpha) \\
& +y^{-\nu} \sum_{\substack{\alpha \in \mathcal{O} / U^{+} \\
N \alpha>0}}|N \alpha|^{-1 / 2} W_{\nu, 0}(4 \pi y|N \alpha|) \exp (2 \pi i x N \alpha) .
\end{aligned}
$$

Lemma 2. $E_{2 \nu}(z, s, 0)$ is equal to

$$
\begin{aligned}
y^{1 / 2-\nu} 2^{-2 \nu} \int_{0}^{\infty} \sum_{m, n \in \mathbb{Z}} & \chi(m) H_{2 \nu}\left(\sqrt{\pi y}\left(m v^{1 / 2}+n v^{-1 / 2}\right)\right) \\
& \times \exp \left(-2 \pi i x m n-\pi y\left(v m^{2}+\frac{n^{2}}{v}\right)\right) v^{s-k / 2} \frac{d v}{v}
\end{aligned}
$$

and is a (non-holomorphic) Eisenstein series of weight 2ν.
Proof. The Fourier transform $\widehat{f}(t)=\int f(s) \exp (-2 \pi i s t) d s$ of

$$
H_{2 \nu}\left(m(\pi y v)^{1 / 2}+(\pi y / v)^{1 / 2} s\right) \exp \left(-\left(m(\pi y v)^{1 / 2}+(\pi y / v)^{1 / 2} s\right)^{2}\right)
$$

is

$$
(-1)^{\nu} 2^{2 \nu} \pi^{\nu}(v / y)^{\nu+1 / 2} t^{2 \nu} \exp (2 \pi i m v t) \exp \left(-\pi v t^{2} / y\right)
$$

by ([I], Vol. 1, p. 39, (9)) and the usual Fourier transform theorems. The Poisson summation formula (using $\left\{f^{\wedge}\right\}^{\wedge}(s)=f(-s)$ and evaluating at $m z)$ then gives

$$
\begin{aligned}
& \sum_{n} H_{2 \nu}\left(m(\pi y v)^{1 / 2}-n(\pi y / v)^{1 / 2}\right) \\
& \quad \times \exp \left(-\left(m(\pi y v)^{1 / 2}-n(\pi y / v)^{1 / 2}\right)^{2}+2 \pi i m n z\right) \\
&=(-\pi)^{\nu} 2^{2 \nu}(v / y)^{\nu+1 / 2} \sum_{n}(m z+n)^{2 \nu} \\
& \quad \times \exp \left(2 \pi i m v(m z+n)-\pi \frac{v}{y}(m z+n)^{2}\right) \\
&=(-\pi)^{\nu} 2^{2 \nu}(v / y)^{\nu+1 / 2} \sum_{n}(m z+n)^{2 \nu} \exp \left(-\pi \frac{v}{y}|m z+n|^{2}\right)
\end{aligned}
$$

Thus $E_{2 \nu}(z, s, 0)$ is equal to the Mellin transform

$$
\begin{aligned}
y^{-2 \nu}(-\pi)^{\nu} \int_{0}^{\infty} \sum_{m, n} \chi(m)(m z & +n)^{2 \nu} \exp \left(-\pi \frac{v}{y}|m z+n|^{2}\right) v^{s+\nu+(1-k) / 2} \frac{d v}{v} \\
= & (-1)^{\nu} \pi^{-s+(k-1) / 2} \Gamma(s+\nu+(1-k) / 2) \\
& \times \sum_{m, n} \chi(m)(m \bar{z}+n)^{-2 \nu} \frac{y^{s-\nu+(1-k) / 2}}{|m z+n|^{2 s-2 \nu+1-k}}
\end{aligned}
$$

The group $\Gamma_{0}(q)$ has two cusps, and thus two Eisenstein series. Unfortunately, the above is the one for the cusp at 0 , and the one for the cusp at ∞ would be more convenient. This is a result of not making the optimal
definition of the theta function above. To fix this, let $\omega_{q}=\left[\begin{array}{cc}0 & -1 \\ q & 0\end{array}\right]$. Since ω_{q} normalizes $\Gamma_{0}(q), \omega_{q}^{-1} \mathcal{F}$ is another fundamental domain. Thus the integral in (1) can be written

$$
\begin{aligned}
& \int_{\omega_{q}^{-1} \mathcal{F}} f\left(\omega_{q} z\right) \bar{g}_{2 \nu}\left(\omega_{q} z\right) E_{k-2 \nu}\left(\omega_{q} z, s, 0\right) y\left(\omega_{q} z\right)^{k} \frac{d x d y}{y^{2}} \\
&=q^{s+1 / 2} \int_{\mathcal{F}} f(q z) \bar{g}_{2 \nu}(z) E_{k-2 \nu}(z, s, \infty) y^{k} \frac{d x d y}{y^{2}} .
\end{aligned}
$$

Here $E_{2 \nu}(z, s, \infty)$ is equal to

$$
\begin{aligned}
(-1)^{\nu} \pi^{-s+(k-1) / 2} & \Gamma(s+\nu+(1-k) / 2) \\
& \times \sum_{\substack{m, n \\
n \equiv 0 \bmod q}} \chi(m)(n \bar{z}+m)^{-2 \nu} \frac{y^{s-\nu+(1-k) / 2}}{|n z+m|^{2 s-2 \nu+1-k}},
\end{aligned}
$$

i.e., the Eisenstein series at ∞.

To do the Rankin trick write $E_{k-2 \nu}(z, s, \infty)$ as

$$
(-1)^{k / 2-\nu} 2 \pi^{-s+(k-1) / 2} \Gamma(s+1 / 2-\nu) L(2 s-k+1, \chi)
$$

times a sum over $\Gamma_{\infty} \backslash \Gamma_{0}(q)$ and unfold the integral. This gives

$$
\begin{aligned}
L(s, \widetilde{f})= & (-1)^{k / 2} \pi^{-s-1 / 2} q^{s+1 / 2} L(2 s-k+1, \chi) \\
& \times \sum_{2 \nu \leq k}\binom{k}{2 \nu} \Gamma(s+1 / 2-\nu) \int_{0}^{\infty} \int_{0}^{1} f(q z) \bar{g}_{2 \nu}(z) y^{s+\nu+1 / 2} \frac{d x d y}{y^{2}} \\
= & (-1)^{k / 2} \pi^{-s-1 / 2} q^{s+1 / 2} L(2 s-k+1, \chi) \sum_{2 \nu \leq k}\binom{k}{2 \nu} \Gamma(s+1 / 2-\nu) \\
& \times \sum_{n=1}^{\infty} \frac{a(n) t(n q)}{(n q)^{1 / 2}} \int_{0}^{\infty} \exp (-2 \pi n q y) \bar{W}_{\nu, 0}(4 \pi n q y) y^{s-1 / 2} \frac{d y}{y} .
\end{aligned}
$$

Here $t(n)$ is the cardinality of the set $\left\{\alpha \in \mathcal{O} / U^{+} \mid N \alpha=n\right\}$, so by the Euler product for the Dedekind zeta function $t(n q)=t(n)$. The integral representation of the Whittaker functions shows that $\bar{W}_{\nu, 0}=W_{\nu, 0}$ and (7.621 (11)) in [G] gives the Mellin transform as a ratio of Gamma functions $\Gamma(s)^{2} / \Gamma(s+1 / 2-\nu)$. One can show $\sum_{2 \nu \leq k}\binom{k}{2 \nu}=2^{k-1}$. Finally, Doi and Naganuma [1] have shown that $L(2 s-k+1, \chi) \sum a(n) t(n) n^{-s}$ is equal to $L(s, f) L(s, f \otimes \chi)$. This completes the proof of the

Theorem.

$$
L(s, \widetilde{f})=(-1)^{k / 2} 2^{k} q^{1 / 2}(2 \pi)^{-2 s} \Gamma(s)^{2} L(s, f) L(s, f \otimes \chi) .
$$

References

[I] A. Erdélyi et al., Tables of Integral Transforms, based, in part, on notes left by Harry Bateman, McGraw-Hill, 1954.
[H] -, Higher Transcendental Functions, based, in part, on notes left by Harry Bateman, McGraw-Hill, 1953.
[G] I. S. Gradshteĭn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 4th ed., Academic Press, 1980.
[1] K. Doi and H. Naganuma, On the functional equation of certain Dirichlet series, Invent. Math. 9 (1969), 1-14.
[2] S. Kudla, Theta functions and Hilbert modular forms, Nagoya Math. J. 69 (1978), 97-106.
[3] -, Relations between automorphic forms produced by theta-functions, in: Modular Functions of One Variable VI, Lecture Notes in Math. 627, Springer, 1977, 277-285.
[4] S. Niwa, Modular forms of half integral weight and the integral of certain thetafunctions, Nagoya Math. J. 56 (1974), 147-161.
[5] M.-F.Vignéras, Séries thêta des formes quadratiques indéfinies, in: Modular Functions of One Variable VI, Lecture Notes in Math. 627, Springer, 1977, 227-239.
[6] D. Zagier, Modular forms associated to real quadratic fields, Invent. Math. 30 (1975), 1-46.

MATHEMATICS DEPARTMENT

UNIVERSITY OF CALIFORNIA
SANTA BARBARA, CALIFORNIA 93106
U.S.A.

E-mail: STOPPLE@MATH.UCSB.EDU

