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Covering the integers by arithmetic sequences
by

Zu1 WEI SuN (Nanjing)

1. Introduction. Let R be the field of real numbers and Rt the set of
positive reals. For o« € R and 8 € R* we call

a+pZ=A{...,a-20,a—p,a,a+B,a+20,...}

an arithmetic sequence with common difference 3. In the case a € Z and
B €Z", a+ BZ is just the residue class & mod 3 with modulus 3.
Let m be a positive integer. A finite system

(1) A={a,+6.2Y_, (o1,...,apr €ERand By,...,0 € R")

of arithmetic sequences is said to be an (exact) m-cover of Z if it covers each
integer at least (resp., exactly) m times. Instead of “l-cover” and “exact
1-cover” we use the terms “cover” and “exact cover” respectively.

Since they were introduced by P. Erdds ([5]) in the early 1930’s, covers
of Z by (finitely many) residue classes have been studied seriously and many
nice applications have been found. (Cf. sections A19, B21, E23, F13 and
F14 of R. K. Guy [9].) For problems and results in this area we refer the
reader to surveys of Erdés [7, 8], S. Porubsky [13] and S. Zném [21]. Recently
further progress was made by various authors.

If a finite system

(2) A={as+nZ}_,  (a1,...,ar € Z and ny,...,ny € ZT)

of residue classes forms an m-cover of Z, then Z’;zl 1/ng > m, and the
equality holds if and only if (2) is an exact m-cover of Z. This becomes
apparent if we calculate

k N-1

Z\{O <x< N:z=as; (mod ng)} :Z Hl1<s<k:z=as; (mod n)}
s=1 =0
where N is the least common multiple of nq,...,ng.
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110 Z. W. Sun

In this paper we investigate properties of m-covers of Z in the form (1).
In the next section we shall give three equivalent conditions for (1) to be
an m-cover of Z. One is that (1) covers W consecutive integers at least m

times where
w-l{{z i e n )

sel

([x] and {z} stand for the integral and fractional parts of a real x respectively
throughout the paper), the other two are finite systems of equalities (not
inequalities) involving roots of unity. Our tools used to deduce them include
Vandermonde determinants, Stirling numbers, a little analysis and linear
algebra.

In Sections 3 and 4 we will derive a number of results including the
following ones:

(I) Let (1) be an m-cover of Z and J C {1,...,k}. Then

{Zﬂl}_{z;} for some I C {1,...,k} with I # J,
s seJ 78

sel

provided Z§:1 1/8s =m (e.g. (1) is an exact m-cover of Z with as € Z and
Bs € ZT for s = 1,...,k) we have >, 1/8, = > ., 1/Bs for some I C
{1,... k} with T # Jif 0 # J C {1,...,k}, when }° ., 1/8s = > ., 1/Bs
for no I C {1,...,k} with I # J there are at least m nonzero integers of
the form ), 1/8s — > c;1/8s where I C{1,... k}.

(IT) Let k > 1 > 0 be integers. Then 2*~!(I + 1) is the smallest n € Z+
such that any system of k£ arithmetic sequences with at least [ equal common
differences covers an arithmetic sequence at least m times if it covers n
consecutive terms in the sequence at least m times.

The last section contains some unsolved problems related to possible
extensions.

2. Characterizations of m-covers. Let us provide several technical
lemmas the first of which serves as the starting point of our new approach.

LEMMA 1. Let m € Z* and x € R. Then (1) covers x at least m times
if and only if

k
@ JLa=rremes i S o -t (=),

s=1

Proof. Set I ={1 <s<k:zx€a;+F:Z} and I' = {1,...,k}\ I
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Clearly,
I e,y
o1 (1 — )]
_ 1/Bs
= lim (1 — ¢t/ Bs e2rilas—)/Bs) | Jim 1o /
r—1 r—1 1—7r
sel’ sel
T — d
_ H (1— e2mias x)/ﬁs) . H %(Tl/ﬁg)
sel’ sel r=1
- [Tt/ L6:" o,
sel’ sel
and hence
. Hle(l . ,r.l/,ﬁ‘S e?wi(as—x)/ﬁs)
ol (1 —r)m1
O TTFL, (1 = /B e2mitan—a) /6y —
= lim i (1—r)
r—1 (1 — r)‘ |

o i I >m-—1,
oo if|I]<m—1.

Now it is apparent that |I| > m if and only if (3) holds. We are done.

LEMMA 2. Let 64,...,6, be real numbers with distinct fractional parts.
For any € > 0 there exists a § > 0 such that if

n
’ § :627m89t$t‘ < 5
t=1

for every s =1,...,n then |z < e forallt=1,...,n.
Proof. Let A be the matrix (e?™%%),,<, . Then
1<t<n
1 1 .. 1
627”'91 627”'62 o 627”'9”
‘A’ (62m'91)2 (627ri92)2 o (€2m‘9n)2
62”91 627”'92 . ezﬂwn I
(627ri6'1 )n—l (6271'1'92 )n—l o (627ri0n )n—l

is a determinant of Vandermonde’s type. As |A| # 0 the inverse matrix of

A exists; we denote it by B = (bst) 1<s<n -
1§t§n

Let b = max{|bs| : s,t =1,...,n} >0 and § = ¢/(bn). Let z1,...,x,
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be any complex numbers, and set
n
Ys = Zegmsgtxt fors=1,...,n.
t=1

Let
Z1 Y1
T = : and ¢ =
Tn Yn
Then ¥ = BAZ = By. If |ys| < § for every s = 1,...,n, then

lxs| = ‘sttyt’ < Zb|yt| <bnd=c¢ foralls=1,...,n.
t=1 t=1

This concludes the proof.

LEMMA 3. Let m € ZT. Then

(4) i ant" " =0(1)  (t —0)

if and only if ap = ... = am-1 = 0.
Proof. The “if” direction is trivial. When ay, ..., a,,_1 are not all zero,
for the least k such that ay # 0 we have
m—1 m—1
Z ap (z™1)nmm T = Z anz™ " ~apz™ R (2 — 00),
n=0 n==k

which contradicts (4). This ends the proof.

LEMMA 4. Let n > m > 0 be integers and a1, ..., a, distinct numbers.
Then the system

x1+...+l'n:0,
a1y + ... +apx, =0,
(5) adry +...+atz, =0,

1 equivalent to

a11r1 + ...+ apnx, =0,
as1x1 + ...+ aspx, =0,

(6)

amiT1 + ... + @ppny, =0,
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where

m
Qst = Il
a; — Qg

i=1
i#£s

Proof. Rewrite (5) in the form

By Cramer’s rule, this says that

1

fors=1,...mand t=1,...,n.

$1+...+Z’m:— E T,
m<t<n
a1 + + amTm — E AT,
m<t<n
2 _ 2
a1y + ...+ 0Ty, = — a; T,
m<t<n
T 4. ad" e, = — E amt
m<t<n
1 - Zm<t§n Tt 1
As—1 = Domecr<n UTt syl
2 2 2
As_q Zm<t<n ay Tt Agy1
m—1 m—1 m—1
ag_q Zm<t<n A A |
-1
1
am
ay,
m—1
am
1 1 1 1
a1 as—1 a As+1
2 2 2 2
ajy As—1 ay Ast1
-1 m—1 -1 m—1
a; g1 Gy As11
-1
1
A
2
am
m—1
a’m

113
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H (at —a;) - H (a; —az) - H (aj —a;)
- N <i<s s<i<m l_izyji;m
m;:fn I (@s—a)- I (@i—as)- [ (a;—ai)

1<i<s s<i<m 1<i<j<m
1,J#S
= — E st (Vandermonde)
m<t<n
for every s =1,...,m, i.e.
m
g Ost Ty + E agry =0 fors=1,...,m
t=1 m<t<n
where d; is the Kronecker delta. Since ag; = 5 for s,t = 1,...,m, we have

finished the proof.
Now we are ready to present

THEOREM 1. Let A = {ag + BsZ}r_,, where ay,...,ap € R and
By, 0k € RY. Let m € ZT and

S:{0§0<1:{Zﬁl}zﬂforsomelg{l,...,k‘}}.

sel
Let
1 1
V(9) = {Z :IC{1,...,k} and Z—eez}

= O = Os
and U(0) be a set of m distinct numbers comparable with V (0) (i.e. |U(0)]
= m, and either U(0) C V(0) or U(0) 2 V(0)). Then the following state-
ments are equivalent:

(a) A is an m-cover of Z.

(b) A covers |S| consecutive integers at least m times.
(¢c) For each 8 € S,

(7) Z (_1)|I| <[Zs€[ 1/58])627ri2se1as/,85 -0
1C{L,....k} n
{25611/:35}:9

holds for everyn =0,1,...,m—1. (As usual (¥) denotes w)

n 1-2-...-(n—1)n
(d) For any 6 € S,

(8) Z aupf(v) =0 for allu € U(H),

veV(0)
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where
aw= [] T and flo)= 3 (~Dlle2meras/is,
weu(0) © IC{1,...k}
wu Seerl/Bs=v

Proof. (a)=(b). This is obvious.
(b)=(c). Suppose that each of z+1,...,2+[S| is covered by A at least

m times, where x is an integer. By Lemma 1 for every n = 1,...,|S| we
have
) Hk—l(l . Tl/ﬁSeZﬂi(as—m—n)/ﬁs)
0= lim —%=
r—1 (1 — ’[“)m_l
= lin% ((1 —p)t=m
X 2 (_1)|I‘r’a25611/65GQWiESEI(O‘S_x)/ﬁse_Qﬂ'inzsell/ﬁs)
IC{1,....k}
= lin% F(r, 9)6_2”"9,
" hes
where
F(’I“, (9) — Z (71)|I\TEsell/,BS627”'2561045/556—2#1':59/(1 o T)m—l‘
Ig{l 7777 k}

{25611//35}29

Let € be an arbitrary positive number. By Lemma 2 there is an n > 0

such that if
‘ Z e—2win0x0‘ < n
6eS

for every n =1,...,|S| then |zg| < € for all # € S. Since
ZF(T’, f)e= ™m0 — (1) (r—1) forn=1,...,|9],
0es
there exists a 0 > 0 such that whenever |r — 1| < 4,
) N F(r,0)e ™| < foralln=1,...,|]
0esS

and hence by the above |F(r,0)| < € for each § € S. This shows that
lim, 1 F(r,0) =0 for every 6 € S.
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For any 6 € S we have

— 3 o |I‘ 23 Il/ﬁs QTI”L'ES Ias/,BS _ m—1
0= lim > (=) lpPeert/Beg2mizee J(1=7)
IC{1,....k}
{25611//85}:9

=l I _ 4\ [Zserl/Bs]+0,1—m 2mi% cras /Bs
_}E}% E (=1)FI(1 —¢)l=es t—"™e €
IC{1,... .k}
{25611/55}29

[ZSEll/ﬁs}
1/8s ;
_ liH(l) Z (_1)|I| Z ([Zsel //8 ]) (_t)ntl—me%mzselas/ﬁs
Y e n—0 n

{25611/65}:0

— llm Z ((-1)'1627”;2561as/ﬁs

t—0
I1C{1,..., k}
{25611//85}:9

S (et Uy

n—
nS[ESGIl/BS]

m—1
1 _1\n NI [Zsel 1/55] 2mi¥seras/Bs | gn—m~+1
_}%(1)<Z(1)< ’ e t .

n=0 I1C{1,....k}

{23611/65}:6

In view of Lemma 3, (7) holds for every n = 0,1,...,m — 1. Therefore part
(c) follows.

(¢)=(d). Fix 8 € S. For each n =0,1,...,m — 1,

x”:ZS(n,j)m(x—l)...(x—j—i—l)
§=0

where S(n,j) (0 < j < n) are Stirling numbers of the second kind, so by (c)
we have

S [Zl/ﬂsreﬁmsems/ﬁs

IC{1,....k} sel
{Esell/ﬁs}ze
=Y j!S(n, ) > (—1)“([28651/55]>e%izsems/ﬁs:0,

Jj=0 I1C{1,....,k} J
{Esell/ﬂs}ze

Z Z (71)”‘627”'25610%/55[1}]” —0.

veV(9) IC{1,...k}
25611/652’0

3

i.e.
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Case 1: |V(6)] < m. In this case

Z [v]"f(v) =0 for every n=0,1,...,|V(0)] — 1.
veV(0)

Hence (8) holds since f(v) =0 for all v € V(6) (Vandermonde).
Case 2: |V(0)] > m. In this case, U(0) C V(0) and

SR+ Y. p"fv) =0

veU(6) VeV (9)\U(0)
for each n =0,1,...,m — 1. According to Lemma 4,
Z au [ (V) = Z < H [[:L}:[[UD)“(U):0 for all u € U(0).
VeV (9) vev(e) N oo e

So in either case we have (8).
(d)=-(a). Assume that (d) holds. Let 6 € S. For u,v € U(6),

T —v 1 ifu=w,
Quv = H r—u _{O if u # v.
zeU(0)
TH#U
Case 1: |V(0)] < m. In this case V(0) CU(0). As
fw)= Y awf(v)=0 foreachue V(0),
veV(0)
we get
Z f@)[v]* =0 foralln=0,1,2,...
veV(6)

Case 2: |V(0)] > m. In this case U(#) C V(0), so for any u € U(6)
and v € V(0) we have {u} = {v} = 0 and hence [u] — [v] = u — v. Since

z] —[v
Z < H [=] — | ]>f(v): Z Ay f(0) =0
VeV (0) N z€U(0) =] = [ul vev (6)
TH#U
for every u € U(0), it follows from Lemma 4 that

S o= Y )+ > ptfw) =0

veV(6) vel(6) veV (0)\U(0)

foralln=0,1,...,m — 1.
In both cases,

Z f@[v]*=0 forn=0,1,...,m—1.

veV ()
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Thus for each nonnegative integer n < m,

> (W) = X ) st )l
veV(0) 7=0

veV(0)
1 & :
= ) Isng) S )l =
T =0 veV(0)
where s(n,j) (0<j <

Z (_1)\II Z[Zsezl/ﬁss627riESEIQS/5S

IC{1,....k}
{ZSGII/BS}ZG

) are Stirling numbers of the first kind, i.e.

-y ¥ <[Z]>(_1)|162mzsezas/@s o,

veV () IC{1,...,
SEIl/BS—U

Therefore by the proof of (b)=-(c),
lim Z (_1)|I\Tzsell/ﬂse27ri2561as/ﬁs/(1 _pym-l

r—1
IC{1,...k}
{25611/65}:9

:nmj_:(—w( 3 (_1)|1([Zsegl/ﬁsgemzsems/m)tn_mﬂ

t—0
IC{L,....k}
{25611/65}:9

=0.
Now for every integer x,

k
H(l o T,l/ﬁse%ri(asfw)/ﬁs)
s=1

— Z (_1)|I|7~25611/ﬂ5627ri2561(a5_m)/ﬁ5

IC{1,...,k}
_ 2 6727ria:9 § (_1)|I|T.Es€11/ﬁs627”'2.951045/55
9es IC{1,...k}

{25611/55}:9
= Z e o1 —r)ym Y =o(1—r)™ Y (r—1).
0esS

Applying Lemma 1 we then obtain part (a).
The proof of Theorem 1 is now complete.
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3. Reciprocals of common differences. In 1989 M. Z. Zhang [19]
showed the following surprising result analytically: Provided that (2) is a
cover of Z, Y ., 1/ng € Z* for some I C {1,...,k}. Here we give

THEOREM 2. Let (1) be a cover of Z. Then for any J C {1,...,k} there
is an I C{1,...,k} with I # J such that

1 1
9) - — — € Z.
252

Proof. Set = {>°._;1/3,}. By Theorem 1,
Z (—1)|I| <[28661/6S]>eQTriEsEIas/ﬁs = 07

IC{1,..., k}
{Esell/ﬂs}ze

that is,
Z (_1)|I‘627T7:2561a5/ﬁ5 — _(_1)\‘]\62#72256‘]045/,85.
JAIC{1,....k}
{Esell/ﬁs}ze
Therefore

{Ig{l,...,k}:I;&Jand{Zé}zQ}#@.

sel
We are done.

In the case J = (), Theorem 2 yields a generalization of Zhang’s result

([19))-

Provided that (1) is an m-cover of Z with m € Z*, Theorem 2 asserts
that for any J C {1,...,k},

1 1
10 S(J)=<qIC{l,...,k}:I#J and — — EZ}
I A R IESDI,
is nonempty. This becomes trivial if
1 1
11 — = — forsome I C{1,...,k} with I # J.
w o 5-Ys C {1, k) with 1 £

What can we say about

(12) 2=+ - Lresw
B B
selI 7% seg s

if it does not contain zero? The following theorem gives us more information.

THEOREM 3. Assume that (1) is an m-cover of Z. Let J be a subset of
{1,...,k} such that (11) fails, i.e. 0 & Z(J) where S(J) and Z(J) are given
by (10) and (12). Then
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(i) |Z(J)| = m and hence

k
(13) Zﬁlzmduw{zﬁl}zm,

s=1""% seJ 78
where d(J) is the least positive integer that can be written as the difference
of two (distinct) numbers of the form

1 1
Z—GZ%—Zf where I C{1,...,k}.
ﬁs seJﬁS

sel

(ii) When d(J) > [Zle 1/Bs]/m, d(J) equals [Zle 1/Bs]/m and di-
vides [y ¢ ;1/Bs], and for every n =0,1,...,m there exist at least

<7Z> / <m[28@ l/ﬁ:]n/[Zfl 1/@1)
subsets I of {1,...,k} such that

w S5l {5

hence
m

S(J)| >2™m -1

SO (i st 110)
Proof. Let 0 = {3 ,.;1/8s}, V(0), U(0) and f(x) be as in Theorem 1.

If [V(0)] < m, then V(0) C U(0), hence by Theorem 1 for all u € V(0) C

U).
ORI | = R

veV(0) * zeU(0)
TH#U

which is impossible since 0 ¢ Z(J) and

f(z 1 > — (—1)VIe2miSsesas/Bs 4 g

= Bs

and |Z(J)| = m.

Thus |V(0)| > m.
(i) Let vg < v1 < ... < v, be the first m + 1 elements of V(0) in
ascending order. Clearly

L+ [2(N)] = 12(J) U{0}] =

{U—Zﬁl:UEV(H)}‘:\V(H)IEWH-I

seJ 78
and

m—1

k
1
;ﬁs Zv?ﬁ(};)vzvm: ;(”¢+1—Ui)+”02md(‘])+0'
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(ii) If [V'(0)] > m + 1 then

k
1
E — > max v > v, +1>1+md(J)+6.
= Bs T vev(o)

Now suppose that d(J) > [>%_,1/8,]/m. Then we must have |V ()| =

s=1

m + 1, thus V(0) = {vo,v1,...,vn} and |Z(J)| = |V (0)| — 1 =m. As

k m—1
md(J) > [Z;J > [vm] =00 — 0+ Y (vig1 —vi) > [vo] + md(J),

s=1 =0
"1
ma) =L 5] =0
s=1 ﬂs
and
n—1 n—1
[on] =vo =0+ > (vig1 —v;) =0+ > _d(J) = nd(J)
=0 =0
forn=1,...,m.

Choose 0 < j < m such that v; = > . ;1/8s. Then

e[zl (54}

seJ s=1

Set
U'0)={v;:0<i<m, i+#j}.
By Theorem 1, for any n =0,1,...,m with n # 7,

o= > (11 2= (1T 22 )se

veEV(0) ~ zeU’(0) t=0 * i=0
THv, i#gm
I e id(J) + 60— (td(J) + 6
- ;( UO id(7) +0— (nd(J) +0 >f(”t)
N z;é__],n
(17 ‘-t
= Z< H i_ﬂ)f(vt)
t=0 1=0
i#£j,n
m i—j
— s+ (I 122 ) 5w
1=0
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Since
S A L R PR( [T o, izn(i—m)
E) i-n  n—j / j—n
i#£jn
— Hz O(Z_]) Hz J+1(Z ,7)
H?:ol(Z —n)- H?;H_l(i —n)
— (_1)1]'(m_])' — (_1)i—n+1 m m
S~ (0)/ ()
we have

Z (_1)'”627"i25€10¢s/65

IC{1,...k}
- st = () (5) (2 5)

Sserl/Bs=nd(J)+0
seJ

_ (—1)in <7:) (T) _1(_1)|J|ezmzse.]as/ﬁs

and hence
H P 1
o T2 (54
sel ﬁ m s=1 ’8 seJ 55
IC{1,...k}
Yserl/Bs=nd(J)+0
> 3 (1)l 2miSaera/fs| <m)/<m>
IC{1,....k} n J
Sse1l/Bs=nd(J)+0
therefore
1415 =[{rc i X 2 evo]
SEI

{1c{1 k) Zﬁs Oy = (J)+9H

sel

-
£ (/()-()

This ends the proof.
Now let us apply Theorem 3 to those m-covers (1) with lezl 1/8s =m.
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THEOREM 4. Let (1) be an m-cover of Z with Z’;Zl 1/Bs = m € ZT,
which happens if (1) is an exact m-cover of Z by residue classes. Then

(i) For everyl=1,...,k—1 we have

K
(15) 2 ﬁls = : G}

Rl max{f,...

(ii) For any 0 # J C {1,...,k} there exists an I C {1,...,k} with I # J
such that

(16) Zézzé,

furthermore when ) ., 1/Bs € 7 there are at least

< " ) >m>1
ESEJ 1/65 -
subsets I of {1,...,k} satisfying (16).

Proof. (i) Forl =1,...,k—1 (15) follows from part (ii) in the case

J={l+1,...,k}, so we proceed to the proof of part (ii).
(ii) If (11) fails then by part (i) of Theorem 3 and the equality > . _; 1/0,

= m we must have
1 1
— =0, ie. — € Z.
3 2.5

seJ seJ
Observe that

k
1 1
0<> — <> —=m
= Bs i Bs
If) . c;1/Bs € Z,thenm > 1and ) . ;1/8; = nforsomen =1,...,m—1,

by part (i) of Theorem 3 there are at least () /() = () > m subsets I
of {1,...,k} such that

sel Bs m a—1 Bs Bs Bs .
We are done.

Remark. In 1992 Z. W. Sun ([17]) proved that if (2) is an exact
m-~cover of Z then for each n=1,...,m there exist at least (7;1) subsets I of

{1,...,k} such that > ; 1/n, equals n. The lower bounds (") (1<n< m)
are best possible, and the Riemann zeta function was used in the proof.

From Theorem 3 we can also deduce the following theorem which extends
Zhang’s result ([19]) and the theorem of Sun [17] even in the case [ = k.
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THEOREM 5. Let (1) be an m-cover of Z and l a positive integer not
exceeding k such that

1
(17) min{l,,.. } >
& 1<t<k ﬁ ¢
where Yy ;1 1/ Bt is considered to be zero for | = k. Then
(i) There are at least m positive integers representable by
(18) Z Z where I C{1,...,k},
seI 1<t<k 5
thus we have

| 1 1
(19) Zﬂs—zﬁs—lgngm.

t

(ii) Provided that any positive integer less than [Eizl 1/Bs]/m cannot

be expressed as the difference of two integers of the form (18), [Zle 1/5s]
1s divisible by m and for each n =0,1,...,m there are at least (7:;) subsets

I of {1,...,k} such that

20) > - m[Z ok

sel

Zﬂt

1<t<k
hence there ezist at least 2™ — 1 subsets [ of{l ook} with
—eZt+
; l<zt<:k Be
Proof Let J={1<t<k:t>1}. By (17),
1] { 1} 1
S0 wa [y Aloy L
|:tEJ B B 2 P
For any I C {1,...,k}, if I C J then

O<Zﬂt Z—<1

teJ
and if I Z J then

Z Z>mln{1 1§5§l} Z*>0
Ps l<t<k

So (11) fails, moreover Z(J) given by (12) contains only positive integers.
Applying Theorem 3 we obtain the desired results.
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Erdds conjectured (before 1950) that if (2) is a cover of Z with 1 < ny <
ng < ... < ng then 25:1 1/ns > 1. H. Davenport, L. Mirsky, D. Newman
and R. Radé confirmed this conjecture (independently) by proving that if
(2) is an exact cover of Z with 1 <mny < ... <ng_1 < ng then ng_; = ng.
For further improvements see Znam [20], M. Newman [10], Porubsky [11,
12], M. A. Berger, A. Felzenbaum and A. S. Fraenkel [1]. The best record
in this direction is the following result due to the author which is partially

announced in [15] and completely proved in [16]: Let A1,..., Ay be complex
numbers and ng € ZT a period of the function
k
o(z) = Z As-

s=1
r=as (mod ng)

If d € ZT does not divide ng and
k

As )
Z — £ (0 for some integer a,
nS
d|ns, aSSE_al(mod d)
then
d
<s< > _ >
{asmodd:1<s<k, dns}| I<Ill<k ecd(d.n) > p(d),
ding
where p(d) is the least prime divisor of d. Here we have
THEOREM 6. Let (1) be an m-cover of Z with 1 < ... < [ <

Bk—i41 = ... = P where 1 <1 < k. Then either
(21) [ > Bk/max{l,ﬁk_l} (> 1 Zf ﬁk > 1),
or there are at least m positive integers in the form
22 —, where I C{1,...,k},
(22) ; 5 { }
and hence

Eoq kg Eoq
23 — >y — —
23) 25725 2n 52
(Also, 3204 1/Bs > Yoy 1/ 2 k= m if B < 1)
Proof. Clearly | < 8/ max{1, 8,—;} if and only if

. 1 1 r
mln{l,ﬁl,...,ﬁk_l}> Z E(—l/ﬁk)

k—l<t<k

Therefore Theorem 6 follows from part (i) of Theorem 5.
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Note that when fx—; > 1 and B /Bk—1 € Z
Br/ max{l, Bx_1} = Br/Br-1 = p(Br/Br-1) (= p(Br) if Br—i, Br € Z).

4. Some local-global results. In 1958 S. K. Stein [14] conjectured
that whenever the residue classes in (2) are pairwise disjoint and the moduli
ni,...,n > 1 are distinct there exists an integer  with 1 < 2 < 2F
such that x is not covered by (2). Erdés [6] confirmed this conjecture with
k - 2% instead of 2*. Since the Davenport-Mirsky Newman-Radé result
indicates that an exact cover of Z by (finitely many) residue classes cannot
have its moduli distinct and greater than one, Erdds proposed the stronger
conjecture that any system of k residue classes not covering all the integers
omits a positive integer not exceeding 2¥. Both conjectures have some local-
global character. In 1969 R. B. Crittenden and C. L. Vanden Eynden [2]
claimed their positive answer to the stronger conjecture. Later in [3] a long
indirect and awkward proof was given for k£ > 20, the authors concluded the
paper with the statements: “Of course it remains to show the conjecture is
true for k£ < 20. This may be checked by more special arguments.”

In 1970 Crittenden and Vanden Eynden [4] conjectured further that if
all the moduli ng in (2) are greater than an integer 0 <! < k then (2) is
a cover of Z if it covers all the integers in the interval [1,287!(I + 1)]. In
contrast with the Crittenden—Vanden Eynden conjecture we give

THEOREM 7. For any m € Z*, (1) is an m-cover of Z if it covers
2F=M (M + 1) consecutive integers at least m times, where

(24) M = max {1 <s<k:f[s=/0}

1<t<k

Proof. Let # > 0 be a number such that J = {1 < s <k : s =} has
cardinality M. As

H{;ﬁt}:]g{l,...,kz}}‘
< { 3 ﬁler 3 é:[cﬂ,...,k}}’

I;:IQJH.‘{Z;S:Ig{l,...,k}\J}‘

sel
1] }
—:I1CJ
< {5 -

= (|J|+1)- 28I = 9k=M (1 4 1),

Theorem 1 implies Theorem 7.

IN
—

H{ITC{1,... k}\ J}
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The following example noted by Crittenden and Vanden Eynden [4]
shows that the number g(k, M) = 28=M (M + 1) in Theorem 7 is best pos-
sible.

EXAMPLE. Let M = n —1 € Z*. Consider the system A consisting of
the following k > M residue classes:

14+nzZ, 2+nZ, ..., M+nZ,
n+2nZ, 2n+2%nZ, ..., 2F"M-lp 4 ok=Mpz

Observe that A together with 2~ nZ forms an exact cover of Z. So A
covers positive integers from 1 to 28~ (M 4 1) — 1, but it does not cover
all the integers.

Result (IT) stated in Section 1 follows from Theorem 7 and Example,
since (1) covers a + Bz (where a € R, 3 € R" and x € Z) at least m times

if and only if { *7* + %Z}le covers x at least m times, and 28=!(1+1) >
2F=M (M +1)if k > M > 1> 0. (The case [ = 0 can be reduced to the case
I=1)

5. Several open problems. Theorem 1 tells us that (2) is a cover of
Z if it covers integers from 1 to

H{Zﬁl} I e {17-"7’“}}‘ < ok < gmitetnn

sel

This suggests

PrOBLEM 1. Can we find a polynomial P with integer coefficients such
that a finite system (2) of residue classes forms a cover of Z whenever it
covers all positive integers not exceeding P(ny + ...+ ng)?

In 1973 L. J. Stockmeyer and A. R. Meyer proved that the problem
whether there exists an integer not covered by a given (2) is NP-complete.
In 1991 S. P. Tung [18] extended this result to algebraic integer rings. If the
required P in Problem 1 exists, then there is a polynomial time algorithm
to decide whether (2) covers all the integers or not. So a positive answer to
Problem 1 would imply that NP = P.

By appearances Theorems 2—7 involve no roots of unity. Perhaps vast
generalizations of them could be made.

PROBLEM 2. Let Aq,..., A be sets of natural numbers having pos-
itive densities d(A1),...,d(Ax) respectively. If no A, contains m, € Z*
consecutive integers, does U’;Zl A, have density 1 when it covers mq...my
arbitrarily large consecutive integers? Suppose that {A,}%_; covers all the
natural numbers; does there exist, for any J C {1,...,k},an I C {1,... k}
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with I # J such that
D d(Ay) =D d(A,) €27

sel seJ
PrOBLEM 3. Let K be an algebraic number field and Og the ring of
algebraic integers in K. Let ay,...,ar € Og and Ay, ..., Aj be ideals of Ox
with norms N(A;),..., N(Ay) respectively. If {as + A }*_; forms an exact
m-cover of O for some m € Z*, is it true that for any () # J C {1,...,k}
there exists a subset I of {1,...,k} with I # J such that

1 1
2 WA & WAy

sel
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