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1. Introduction. Let k£ be a positive even integer and Sy be the
space of cusp forms of weight k on SLy(Z). Let f(z) € Sk be a normalized
Hecke eigenform with the Fourier expansion f(z) = Y oo, a(n)e*™"*. The
symmetric square L-function attached to f(z) is defined by

Lo(s. f) = [J(L = app™) 11 = apfp™) 1 (1 = Bp )7,
P
with o, + 3, = a(p) and a,3, = p*~1. Here the product is taken over all
rational primes.
The purpose of this paper is to prove the following theorem:

THEOREM. Let Ap(z) = >.07 | 7k(n)e*™ ™= € Sy, be the unique normal-

ized Hecke eigenform for k = 12,16,18,20,22, and 26. Let o be a zero
of C(s) or of La(s+ k —1,Ay) in the critical strip 0 < Re(s) < 1, with
C(20) # 0. Then for each positive integer n,

—20_—20 1-20 1 (0)I'(K)
_ 9 .9 20 20, 1-20 ~ \&/= \V/)
.920-2,—1/2 I'(o —1/2)I'(k)

I'k—1+p)

= Y m(m)org,(n—m)F(1 — o,k — 0;k;m/n)

o<m<n

+ Z (—=n/m)Fe7,(m)oy_a,(n —m)F(1 — o,k — 0; k;n/m),

n<m

+¢(2e—1)

where F(a,b;c; z) is the hypergeometric function and os(m) is the sum of
the s-th powers of positive divisors of m.

Remark. Let T'(n,k; o) be the right-hand side of the equality in the
theorem. For 0 < Re(p) < 1/2, the following conditions are equivalent:

[229]
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2. (C° automorphic forms. Let H = {z = 2+ -1y | y > 0}

be the upper half-plane. For v = (‘CIS) € SLy(Z) and z € H, we put

{(z) = (az + b)(cz + d)~L. We denote by 9y, the set of functions F' which
satisfy the following conditions:

(2.1) F is a C* function from H to C,
(2.2) F(y(2)) = (cz + d)*F(z) for all vy = (* ") € SLy(Z).

The function F' is called a C*° automorphic form on SLo(Z) of weight k,
and called of bounded growth if for every € > 0,

1 oo
ff |F(2)|y"2eY dy dx < oco.
00

For F' € 9, and f € S, we define the Petersson inner product

(fLF)= [ fEFGEYdedy.
SL2(Z)\H

We quote the following theorem:
THEOREM A (Sturm [2]). Let F' € My, be of bounded growth with the

Fourier expansion F(z) =Y °7 a(n,y)e*™™®. Assume k > 2. Let

c(n) =2-2m)F 10k —1)71 f a(n, y)e 2 yF=2 dy.
0

Then

h(z) = Z c(n)e?™* ¢ S, and (g,F) = (g,h) for all g € Sy.
n=1

We shall also use the following properties of the function La(s, f). Let
f(2) € Sk be a normalized Hecke eigenform. Then the function Ly(s, f) has
an integral representation

(1) La(s, f)
_(@a-%+D) (4

2 - k=2 dx dy.
CGs—k+1) I(s) [f()PE(z s — k+ 1)y*? dedy

SL2(Z)\H
Here E(z,s) is the Eisenstein series

_ 1 s —2s
(2) E(z,s) = 5 Z y’lez +d| 7.
¢,d€Z, (¢,d)=1
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Further, Ls(s, f) has a holomorphic continuation to the whole s-plane
(Shimura [1], Zagier [4]).

3. Proof of Theorem. Let e(x) = €>™*®. The Eisenstein series (2) has
the Fourier expansion E(z,8) =Y °_ _ amn(y,s)e(mxz) with

(3) ag(y,s) = y* + 720 (s = 1/2)1(s)"¢(2s = 1)¢(s) My
and

(4)  am(y,s) = C(28) " o1_s(m) - 20 |m|* V2D () Y 2Ky o (2m|mly)
oo
=((28) o1 as(m) -y T [ e(—my€)(1+€7) 70 dg
— 00
for m # 0. Here we have used the integral representation in [3, p. 172] for
the modified Bessel function K, (¢). Then there exist positive constants c;
and co depending only on s such that

(5) lag(y, s)| < ¢ (yRe(s) + yl—Re(s)>
and

(6) |am(y7 3)| S C2yRe(S)|O-1_28(m)|e*7'r\m\y/2
for m # 0.

LEMMA 1. For f(z) € Sk and s € C in 0 < Re(s) < 1, f(2)E(z,s) is a
C° automorphic form of bounded growth.

Proof. It is easy to see that f(z)E(z, s) is a C° automorphic form. We
show f(z)E(z,s) is of bounded growth. Let f(z) =Y - a(n)e(nz). Then

fREGEs) = 3 by ye(na)

with
oo
bs(n,y) = Z a(m)an—m(y, 3)672ﬂmy-
m=1

By (5), (6) and a(m) = O(mF/?), there exists a positive constant cs depend-
ing only on s such that

Z Z fla m)an—m (Y, s)y*2e” T gy

n=—oco0 m=1 0

< 4 Z {ka/z (n +m)~k+2- 3Re(s) | p—k/2+1—max(Re(s),1—Re(s ))}
n=—oo m=1
The last series is convergent for k > 12 and Re(s) > 0, hence f(z)E(z, s) is
of bounded growth. m
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LEMMA 2. Let f(z) € Sk be a normalized Hecke eigenform. Let o be a
zero of ((s) or of La(s+k —1,f) in the critical strip 0 < Re(s) < 1 with
((20) #0. Then

(f(2)E(z,0), f(2)) =0.

Proof. By (1),

— 2k m)®
La(o.f) = S C B s — ke 1, 70,
Since Lsy(s, f) is entire, (f(2)E(z,0), f(2)) =0 for o € {s € C | 0 < Re(s)
< 1} such that ((p) = 0 with ((20) # 0. We also see that (f(z)E(z, ),
f(z)) =0for p € {s € C|0 < Re(s) < 1} such that La(o+k—1,f) =0
with ((20) #0. =

Proof of Theorem. By Theorem A and Lemma 1, there exists

o0

h(z,s) = Zc(n, s)e(nz) € Sy

n=1

such that (g, Ag - E(z,s)) = (g, h) for all g € S. Here

o0

c(n, s) =(n) [ ba(n,y)e >k dy
0
with
Yr(n) =2 2an)* 1k —1)"!

and
oo

bs(n,y) = Z T (M) —m (Y, s)e*%my.

m=1

Using (3) and (4), for Re(s) > 1/2 we have
(1) cln,s)

_mln)

= 41228) mzl Ti(m)o1—2s(n —m)

m;zn

x j’oy’“—l-Se—%(m*”)y f e(—(n —m)y¢)(1 + €)™ dg dy

0 —00

I'(k—1+s) WI/QF(S—%) C(2s—1) I'(k—ys)
+ ’yk(n)m(n){ e T L) () }

Ik —s) —
SEOLTELY S S

m=1
m#n
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x [ {2m(m+n) + 2mi(n —m)&}FT (1 + €2) 77 de

—00

I'k—1+s) =/2I(s—4% 2s—1) I'(k—s
by { Pt | T =) (@a-l) Llk=s)]
(4mn)k—1+s I'(s) ¢(2s) (4mn)k—s
Here the interchange of summation and integration is justified by using (5)
and (6), and by Fubini’s theorem, the last equality also holds in the region

Re(s) > —k + 1.
For pge Cand 0 < c < 1,
felpq) == [ (U =it)™P(1+it) (1 +ict) " dt

=221 (14+¢)C(p) ' I(1—p)~*

1 1—c -
t7P(1 —t q+2p—2 1— t dt
X of ( ) 1+¢
=221 (14¢)" T (2p+q—-1)(p) ' T(p+q)~"
1—c

x F(1-p,q i
< p,q,p+q1+c>

Therefore, for m < n,

®) [ {27(m+n)+2mi(n —m)E} (14 £7) 70 de

= (2n) P22 25 . D(k — 1+ 8)[(s) ' T(k) ' F(1 — s,k — s;k;m/n)
and for m > n,

© [ {2r(m+n) +2mi(n —m)E} (14 62) 70 dg

= (=2m) 752272 Pk — 14 8)T(s) "' (k)" F(1 — s,k — s;k;n/m).
From Lemma 2 and dim S, = 1, we have h(z, 0) = 0, hence ¢(n, o) = 0 for

every positive integer n. Combining (7), (8) and (9), we conclude the proof
of Theorem. m
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