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A mean value estimate for real character sums
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D. R. Heath-Brown (Oxford)

1. Introduction. There are a number of well known estimates for
averages of Dirichlet polynomials. For example one has

(1)
T∫

0

∣∣∣ ∑
n≤N

ann
−it

∣∣∣2 dt� (T +N)
∑
n≤N

|an|2,

for any complex numbers an. This is a weak consequence of Theorem 6.1
of Montgomery [6]. Similarly, for Dirichlet polynomials involving characters
one has

(2)
∑

χ (mod q)

∣∣∣ ∑
n≤N

anχ(n)
∣∣∣2 � (q +N)

∑
n≤N

|an|2

and

(3)
∑
q≤Q

∑∗

χ (mod q)

∣∣∣ ∑
n≤N

anχ(n)
∣∣∣2 � (Q2 +N)

∑
n≤N

|an|2,

where
∑∗ indicates summation over primitive characters only. These last

two bounds follow respectively from Theorem 6.2 of Montgomery [6] and
from the large sieve in the form due to Gallagher [2], for example. In each
case one may interpret the upper bound as being composed of two terms,
the first of which reflects the long term average, and the second of which
reflects the contribution of a single point where the Dirichlet polynomial is
large. Thus for example one has

(4)
T∫

0

∣∣∣ ∑
n≤N

ann
−it

∣∣∣2 dt ∼ T
∑
n≤N

|an|2,

as T →∞, and

(5)
∣∣∣ ∑

n≤N

ann
−it

∣∣∣2 ≤ N
∑
n≤N

|an|2,

[235]
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for any t ∈ [0, T ]. In each of (1), (2) and (3) the “long term average” is∑
n |an|2, as in (4), while the contribution from a single point is given by

Cauchy’s inequality, as in (5).
These mean-value estimates have important consequences for averages of

the Riemann Zeta-function ζ(s) and Dirichlet L-functions L(s, χ), as well as
for zero-density theorems for these functions, as in Montgomery [6; Chapters
10 and 12].

The purpose of this paper is to give an analogous mean-value estimate
for sums over real characters. A weak result of the type we have in mind is
given by Elliott [1] as

∑
p≤M

∣∣∣∣ ∑
n≤N

an

(
n

p

)∣∣∣∣2 �M
∑

n1n2=�, 2�

|an1an2 |+N logN
( ∑

n≤N

|an|
)2

,

where p runs over odd primes, and where the notation in the first sum on the
right means that the sum is over pairs n1, n2 ≤ N for which n1n2 is either a
square or twice a square. The proof of this result is straightforward. Indeed,
if we allow m to run over all positive odd integers then on expanding we
have ∑

m≤M

odd
∣∣∣∣ ∑

n≤N

an

(
n

m

)∣∣∣∣2 =
∑

n1,n2

an1an2

∑
m≤M

(
n1n2

m

)
.

Here and throughout the paper
∑odd will indicate summation restricted to

an odd variable. Now χ(m) = (n1n2/m) is a Dirichlet character of conductor
at most 4n1n2 ≤ 4N2, and is non-principal unless n1n2 is a square. In the
remaining case the Pólya–Vinogradov inequality yields∑

m≤M

(
n1n2

m

)
� N logN,

so that∑
m≤M

odd
∣∣∣∣ ∑

n≤N

an

(
n

m

)∣∣∣∣2 �M
∑

n1n2=�

|an1an2 |+N logN
( ∑

n≤N

|an|
)2

.

The above estimate clearly implies Elliott’s result. If we choose an = 1
for n a square, and an = 0 otherwise, then the left hand side will be of
order MN. Thus it is impossible to replace the first term on the right by
something like M

∑
|an|2, which would be of order MN1/2 only. However,

if we insist that the coefficients an are supported on the square-free integers
then the double sum reduces to

∑
|an|2. On applying Cauchy’s inequality

to the sum (
∑
|an|)2, our bound becomes
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(6)
∑

m≤M

odd
∣∣∣∣ ∑

n≤N

µ2(n)an

(
n

m

)∣∣∣∣2 � (M +N2 logN)
∑
n≤N

|an|2.

This form of Elliott’s estimate is more readily comparable with (1), (2)
and (3). However, it is clearly imperfect, in as much as the term N2 logN
appears to over-estimate the contribution arising from an individual value of
m. Indeed, referring to the original form of Elliott’s bound, Montgomery [6;
Chapter 9] says: “This can be expected to be sharp only when N is smaller
than M1/2; it would be nice to have a result like this when N is as large as
M.” However, one cannot hope for such an improvement of (6), since when
an = 1 for all n, the contribution from square values of m will be of order
M1/2N

∑
|an|2. With this in mind we restrict m also to run over square-free

values only, so that our problem becomes to improve on the estimate∑∗

m≤M

∣∣∣∣ ∑∗

n≤N

an

(
n

m

)∣∣∣∣2 � (M +N2 logN)
∑∗

n≤N

|an|2,

where
∑∗ henceforth indicates restriction to positive odd square-free values.

We can now state our primary result.

Theorem 1. Let M , N be positive integers, and let a1, . . . , an be arbi-
trary complex numbers. Then∑∗

m≤M

∣∣∣∣ ∑∗

n≤N

an

(
n

m

)∣∣∣∣2 �ε (MN)ε(M +N)
∑∗

n≤N

|an|2,

for any ε > 0.

From this one may easily deduce several corollaries. Firstly we extend
our result to other primitive real characters, these being of the form χ(n) =
(n/m)η(n), where η(n) is a primitive character to modulus 4 or 8.

Corollary 1. Let N , Q be positive integers, and let a1, . . . , an be arbi-
trary complex numbers. Let S(Q) denote the set of all real primitive char-
acters of conductor at most Q. Then∑

χ∈S(Q)

∣∣∣ ∑
n≤N

µ2(n)anχ(n)
∣∣∣2 �ε (QN)ε(Q+N)

∑
n≤N

µ2(n)|an|2,

for any ε > 0.

Our second corollary allows us to sum over values of n that are not
necessarily square-free.
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Corollary 2. Let N , Q be positive integers, and let a1, . . . , an be ar-
bitrary complex numbers. Let S(Q) be as in Corollary 1. Then∑

χ∈S(Q)

∣∣∣ ∑
n≤N

anχ(n)
∣∣∣2 �ε (QN)ε(Q+N)

∑
n1n2=�

|an1an2 |,

for any ε > 0.

Our next corollary simplifies the above result, at the expense of using
the supremum norm for the an.

Corollary 3. Let N , Q be positive integers, and let a1, . . . , an be ar-
bitrary complex numbers. Let S(Q) be as in Corollary 1. Then∑

χ∈S(Q)

∣∣∣ ∑
n≤N

anχ(n)
∣∣∣2 �ε Q

εN1+ε(Q+N) max
n≤N

|an|2,

for any ε > 0.

We can also give an estimate for a bilinear form.

Corollary 4. Let M , N be positive integers, and let a1, . . . , aM and
b1, . . . , bN be arbitrary complex numbers satisfying |am|, |bn| ≤ 1. Then∑

m≤M

odd ∑
n≤N

ambn

(
n

m

)
�ε (MN)ε(MN1/2 +M1/2N),

for any ε > 0.

We can use our results to prove a new mean-value estimate for Dirichlet
L-functions.

Theorem 2. Let S(Q) be as in Corollary 1. Then∑
χ∈S(Q)

|L(σ + it, χ)|4 �ε {Q+ (Q(|t|+ 1))2−2σ}{Q(|t|+ 1)}ε

for any fixed σ ∈ [1/2, 1] and any ε > 0. Indeed , if 1/2 < σ < 1, and δ > 0,
we have ∑

χ∈S(Q)

|L(σ + it, χ)|4 = CQ+ o(Q),

uniformly for |t| ≤ Q(2σ−1)/(2−2σ)−δ, for a certain constant C = C(σ + it),
given explicitly by (33).

In contrast, we note that Jutila [3] has proved that

(7)
∑

χ∈S(Q)

T∫
−T

|L(1/2 + it, χ)|2 dt�ε (QT )1+ε
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for T ≥ 1. (Actually, Jutila’s result is somewhat stronger.) Our theorem is
weaker in that it does not include an average over t, but is stronger in that
it bounds a fourth power. The large sieve may be used to show that∑

χ∈D(Q)

T∫
−T

|L(1/2 + it, χ)|4 dt�ε Q
2+εT 1+ε,

∑
χ∈D(Q)

T∫
−T

|L(1/2 + it, χ)|6 dt�ε Q
εT ε(Q2T + (QT )3/2),

and ∑
χ∈D(Q)

T∫
−T

|L(1/2 + it, χ)|8 dt�ε (QT )2+ε,

where D(Q) is the set of all primitive characters of conductor at most Q.
These results are weaker with respect to Q than the bound given by Theo-
rem 2.

Our approach does not allow us to replace Theorem 2 by an asymptotic
formula when σ = 1/2. For the second moment in place of the fourth this
is, however, possible. Jutila [5] has shown that∑

χ∈S(Q)

|L(1/2, χ)|2 = cQ log3Q+Oε(Q(logQ)5/2+ε),

for an explicit constant c > 0, and Guo (to appear) has obtained an asymp-
totic formula in which one saves a small power of Q.

By using (7) and related estimates Jutila [4] has shown that

(8)
∑

χ∈S(Q)

N(σ, T, χ) �ε (QT )(7−6σ)/(6−4σ)+ε,

where N(σ, T, χ) is the number of zeros of L(s, χ) in the rectangle

σ ≤ <(s) ≤ 1, |=(s)| ≤ T,

as usual. As a corollary of this result he shows that∑
χ∈S(Q)

∣∣∣ ∑
p≤Qγ

χ(p)
∣∣∣ �ε Q

h(γ)+ε,

where

h(γ) =


1 + 1

2γ, γ ≤ 1
2 ,

3
2 (1 + γ)− (2γ)1/2, 1

2 ≤ γ ≤ 2,
1
2 + γ, γ ≥ 2.

This estimate is now an immediate consequence of Corollary 4. Indeed, one



240 D. R. Heath-Brown

has the improved exponent

h(γ) = max
(
1 + 1

2γ,
1
2 + γ

)
.

Theorems 1 and 2 enable us to establish a new zero-density estimate.

Theorem 3. Let S(Q) be as in Corollary 1. Then∑
χ∈S(Q)

N(σ, T, χ) �ε (QT )εQ3(1−σ)/(2−σ)T (3−2σ)/(2−σ)

for any ε > 0.

This estimate is sharper than Jutila’s bound (8) in its Q-aspect, but
weaker with respect to T. This is natural, since Theorem 3 is based on
Theorem 1, in which the saving is in the Q-aspect only.

2. Proof of Theorem 1; the plan of attack. The basic sum which
we shall study is

Σ1 =
∑∗

M<m≤2M

∣∣∣∣ ∑
N<n≤2N

an

(
n

m

)∣∣∣∣2,
in which the coefficients an are supported on the odd square-free integers in
(N, 2N ]. It is a straightforward matter to recover an estimate for the sum
in Theorem 1 from a bound for sums of the form Σ1. We observe that

Σ1 �MN
∑

N<n≤2N

|an|2

by Cauchy’s inequality, so that we may define

B(M,N) = sup
Σ1∑

N<n≤2N |an|2
,

where the supremum is over all admissible sets of complex numbers an for
which the denominator is non-vanishing. The argument above yields the
trivial bound

(9) B(M,N) �MN.

Naturally we aim to prove that B(M,N) � (MN)ε(M +N).
Our first result shows that B(M,N) is, essentially, symmetric.

Lemma 1. We have B(M,N) ≤ 2B(N,M). Moreover , there exist coeffi-
cients a′n with |an| = |a′n| such that∑∗

M<m≤2M

∣∣∣∣ ∑
N<n≤2N

an

(
n

m

)∣∣∣∣2 ≤ 2
∑∗

M<m≤2M

∣∣∣∣ ∑
N<n≤2N

a′n

(
m

n

)∣∣∣∣2.
We shall prove this in the next section.
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Lemma 1 shows that we may replace the Jacobi symbol
(

n
m

)
by

(
m
n

)
in the definition of Σ1, at the expense of a factor 2. We then introduce a
weight W (m/M), given by

W (x) =

{
exp

(
− 1

(2x− 1)(5− 2x)

)
if 1/2 < x < 5/2,

0 otherwise.
This function is infinitely differentiable for all x. We now see that

(10) Σ1 �
∞∑

m=−∞

∗
W

(
m

M

)∣∣∣∣ ∑
N<n≤2N

an

(
m

n

)∣∣∣∣2.
The condition that m should be square-free is very difficult to handle, and
it turns out to be easier to include certain extra values of m into the sum.
For any positive integer m we shall write s(m) for the largest square-free
factor of m. We then have

(11) Σ1 �
∑

m; s(m)>K

odd
W

(
m

M

)∣∣∣∣ ∑
n

an

(
m

n

)∣∣∣∣2
for any K ≤ M/2. The plan is now to estimate the expression on the right
as the sum over all odd m, less the sum over those odd m which have a
large square factor. The two sums thus produced are more readily handled,
at least if K is not too large. On the other hand, if K is not too small it
turns out that there is no serious loss incurred by including the extra terms
in the transition from (10) to (11). Roughly speaking, the critical size for
K is of order N2M−1, when N ≤M. With the above discussion in mind we
therefore define B(M,N,K) to be the supremum of{ ∑

m; s(m)>K

odd
W

(
m

M

)∣∣∣∣ ∑
n

an

(
m

n

)∣∣∣∣2}/{∑
n

|an|2
}

taken over all admissible sequences an, so that B(M,N) � B(M,N,K).
We may expand the sum on the left of (11) to obtain

Σ1 �
∑

n1,n2

an1an2

∑
m; s(m)>K

odd
W

(
m

M

)(
m

n1n2

)
.

If n1 and n2 have a common factor, the character

χ(m) =
(

m

n1n2

)
is imprimitive. This causes considerable technical difficulties, but it turns
out that we may restrict our attention to the case in which (n1, n2) is small.
We therefore take an to be a sequence of complex numbers supported on
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the odd square-free integers in (N, 2N ], and we write

Σ2 =
∑

(n1,n2)=∆

an1an2

∑
m; s(m)>K

odd
W

(
m

M

)(
m

n1n2

)
.

We then define C(M,N,K,∆) to be the supremum of

Σ2

/∑
|an|2

taken over all admissible sequences an, and we proceed to investigate the
norm C(M,N,K,∆) for small values of ∆. It is quite easy to bound
B(M,N,K) in terms of C(M,N,K,∆), as the following lemma shows.

Lemma 2. Let ε > 0 be given. Then for any positive number K ≤M/2
and any ∆0 in the range 1 ≤ ∆0 ≤ N we have

B(M,N,K) � NεB(M,N1,K) +
∑

∆≤∆0

C(M,N,K,∆),

for some N1 ≤ N/∆0.

This will be proved in Section 4.

To handle C(M,N,K,∆) we decompose Σ2 as Σ3 −Σ4 with

(12) Σ3 =
∑

(n1,n2)=∆

an1an2

∑
m

odd
W

(
m

M

)(
m

n1n2

)
and

(13) Σ4 =
∑

(n1,n2)=∆

an1an2

∑
m; s(m)≤K

odd
W

(
m

M

)(
m

n1n2

)
.

Our analysis of these sums produces a main term for each, together with
a number of subsidiary terms, all of which will be estimated via the norm
B(M,N). It turns out that the two leading terms cancel to a large extent.
Specifically, we prove in Section 5 the following.

Lemma 3. Let ε > 0 be given. Let N > ∆ and

N2M−1(MN)ε ≤ K ≤M(MN)−ε.

For any two positive integers n1, n2 we write

q = q(n1, n2) =
n1n2

(n1, n2)2
.

Moreover , we define

κ(∆, q) =
∏
p|∆

(
1−

(
p

q

)
p−1/2

)
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and

m0 = min
{

1,
N/
√
MB

D1D2

}
.

Then
Σ3 = M3 + E3

∑
|an|2,

where

M3 =
∑∗

b≤K

√
M

b

∑
(n1,n2)=∆

an1an2

φ(q)
2q

κ(∆, q)
(
b

q

) ∞∫
0

W (x2) dx,

and

E3 �ε 1 + (MN)ε∆
M

N
m0

√
D1D2B

(
B,

N

D1∆

)1/2

B
(
B,

N

D2∆

)1/2

,

for certain values of B,D1 and D2, subject to D1, D2 � (MN)−ε, and
1 � B � K.

Similarly, in Section 6 we shall prove:

Lemma 4. Let N > ∆ and 0 < K ≤M1−ε. Then

Σ4 = M4 + E4

∑
|an|2,

where

M4 =
∑∗

v≤K
(v,2∆)=1

√
M

v

∑
(n1,n2)=∆

an1an2

φ(q∆)
2q∆

(
v

q

) ∞∫
0

W (x2) dx

and

E4 �ε 1 + (MN)ε

(
M

BD1D2

)1/2

B
(
B,

N

D1∆

)1/2

B
(
B,

N

D2∆

)1/2

,

for certain values of B,D1, D2 � (MN)−ε, subject to B � K and

D1D2 � (MN)−ε∆−1M1/2B−1/2.

The next lemma, which we prove in Section 7, demonstrates that the
leading terms in Lemmas 3 and 4 are indeed very similar.

Lemma 5. For 1 � ∆� N and 0 < K ≤M we have

M3 −M4 �M1/2K−1/2(MN)εB(K∆2(MN)ε, N(MN)ε).

The strategy of the proof is now to combine Lemmas 2–5 to provide a
recursive estimate for B(M,N). We begin, in Section 8, by using Lemmas
3–5 to bound C(M,N,K,∆) in terms of B.

Lemma 6. Suppose 1 < ξ ≤ 2 is such that

(14) B(M,N) �ε (MN)ε(M +N ξ)
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for any ε > 0 and 1 ≤ N ≤M. Then

C(M,N,K,∆) � ∆4(MN)ε(M +N +M1/2Kξ−1/2 +M1/2NK−1/2),

providing that 1 ≤ ∆ < N and N2M−1(MN)ε < K ≤M(MN)−ε.

In view of the estimate (6), established in our introduction, we see that
ξ = 2 is admissible here.

When the above result is inserted into Lemma 2 one deduces a new
bound for B(M,N). The outcome, in Section 8, is as follows.

Lemma 7. If (14) holds for any ε > 0, then

B(M,N) �ε (MN)ε(M +M1−ξN (2ξ−1))

for any ε > 0.

Finally, we deduce a new bound of the form (14), again in Section 8.

Lemma 8. If (14) holds for any ε > 0, with ξ > 1, then

B(M,N) �ε (MN)ε(M +N (2ξ−1)/ξ)

for any ε > 0.

Since (2ξ − 1)/ξ < ξ for ξ > 1 we see that the infimum of the possible
values for ξ must be 1, and Theorem 1 follows.

3. Preliminary lemmas. In this section we shall prove various results
which are either of independent interest, or which will be required more
than once in the proof of Theorem 1.

We begin by establishing Lemma 1, given in the previous section. To do
this we use the duality principle, as given by Montgomery [6; Chapter 9].
This shows that B(M,N) is the supremum of{ ∑∗

N<n≤2N

∣∣∣∣ ∑∗

M<m≤2M

bm

(
n

m

)∣∣∣∣2}/{ ∑∗

M<m≤2M

|bm|2
}
,

for complex numbers bm for which the denominator is non-zero. However,
the law of quadratic reciprocity shows that if n ≡ 1 (mod 4) then∑∗

M<m≤2M

bm

(
n

m

)
=

∑∗

M<m≤2M

bm

(
m

n

)
,

while if n ≡ 3 (mod 4) then∑∗

M<m≤2M

bm

(
n

m

)
=

∑∗

M<m≤2M

(−1)(m−1)/2bm

(
m

n

)
.
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We deduce that∑∗

N<n≤2N

∣∣∣∣ ∑∗

M<m≤2M

bm

(
n

m

)∣∣∣∣2

≤
∑∗

N<n≤2N

∣∣∣∣ ∑∗

M<m≤2M

bm

(
m

n

)∣∣∣∣2

+
∑∗

N<n≤2N

∣∣∣∣ ∑∗

M<m≤2M

(−1)(m−1)/2bm

(
m

n

)∣∣∣∣2

≤ 2B(N,M)
∑∗

M<m≤2M

|bm|2,

and the first part of the lemma follows. For the second part we split the
sum into two parts depending on the value of m (mod 4) and take a′n = an

or (−1)(n−1)/2an accordingly.
We remark that the argument here allows us to replace

(
n
m

)
by

(
m
n

)
in

the definition of B(M,N), at the expense of a factor 2. We shall use this
fact frequently in what follows, without further comment.

Our next result shows that B(M,N) is, essentially, increasing with re-
spect to M and N.

Lemma 9. There is an absolute constant C ≥ 1 as follows. Let M1, N ≥
1 and M2 ≥ CM1 log(2M1N). Then

B(M1, N) � B(M2, N).

Similarly , if M,N1 ≥ 1 and N2 ≥ CN1 log(2N1M), then

B(M,N1) � B(M,N2).

For the proof it is convenient to write K = M2/M1. We begin by con-
sidering an odd prime p satisfying 2K/3 < p < 4K/3. We observe that∣∣∣∣ ∑∗

N<n≤2N

an

(
n

m

)∣∣∣∣2 ≤ 2
∣∣∣∣ ∑∗

N<n≤2N
p - n

an

(
n

m

)∣∣∣∣2 + 2
∣∣∣∣ ∑∗

N<n≤2N
p|n

an

(
n

m

)∣∣∣∣2,
so that ∑

m

∣∣∣ ∑
n

∣∣∣2 ≤ ∑
p|m

∣∣∣ ∑
n

∣∣∣2 + 2
∑
p - m

∣∣∣ ∑
p - n

∣∣∣2 + 2
∑
p - m

∣∣∣ ∑
p|n

∣∣∣2.
We shall consider two cases depending on whether m lies in

(
M1,

3
2M1

]
or(

3
2M1, 2M1

]
, and we shall restrict p to the intervals

(
K, 4

3K
)

and
(

2
3K,K

)
accordingly. For the second sum on the right we then have
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∑∗

N<n≤2N
p - n

an

(
n

m

)
=

∑∗

N<n≤2N
p - n

bn

(
n

pm

)
,

where bn =
(

n
p

)
an. Here pm will be odd and square-free, and will lie in the

interval (M2, 2M2], by our condition on p. It follows that∑∗

αM1<m≤βM1
p - m

∣∣∣∣ ∑∗

N<n≤2N
p - n

an

(
n

m

)∣∣∣∣2 ≤ ∑∗

M2<r≤2M2

∣∣∣∣ ∑∗

N<n≤2N

bn

(
n

r

)∣∣∣∣2

≤ B(M2, N)
∑

n

|an|2,

where (α, β) is either (1, 3/2) or (3/2, 2).
For the sum ∑

p - m

∣∣∣ ∑
p|n

∣∣∣2
we have ∑∗

M1<m≤2M1
p - m

∣∣∣∣ ∑∗

N<n≤2N
p|n

an

(
n

m

)∣∣∣∣2 ≤ B(M1, N)
∑
p|n

|an|2.

We therefore see that∑∗

αM1<m≤βM1

∣∣∣∣ ∑∗

N<n≤2N

an

(
n

m

)∣∣∣∣2

�
∑∗

M1<m≤2M1
p|m

∣∣∣∣ ∑∗

N<n≤2N

an

(
n

m

)∣∣∣∣2

+ B(M2, N)
∑

n

|an|2 + B(M1, N)
∑
p|n

|an|2

with α and β as before, and p in the appropriate range.
We now sum over all relevent primes p. We note that the number of avail-

able primes is of exact order K/ logK, and that the integers m,n can have
O(log(2M1N)/ logK) prime factors from the interval under consideration.
We deduce that

K

logK

∑∗

αM1<m≤βM1

∣∣∣∣ ∑∗

N<n≤2N

an

(
n

m

)∣∣∣∣2

� log(2M1N)
logK

∑∗

M1<m≤2M1

∣∣∣∣ ∑∗

N<n≤2N

an

(
n

m

)∣∣∣∣2
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+
K

logK
B(M2, N)

∑
n

|an|2 +
log(2M1N)

logK
B(M1, N)

∑
n

|an|2

�
{

log(2M1N)
logK

B(M1, N) +
K

logK
B(M2, N)

+
log(2M1N)

logK
B(M1, N)

} ∑
n

|an|2.

On combining the alternative ranges for m this yields

K

logK

∑∗

M1<m≤2M1

∣∣∣∣ ∑∗

N<n≤2N

an

(
n

m

)∣∣∣∣2
�

{
log(2M1N)

logK
B(M1, N) +

K

logK
B(M2, N)

} ∑
n

|an|2.

We may choose the coefficients an so that∑∗

M1<m≤2M1

∣∣∣∣ ∑∗

N<n≤2N

an

(
n

m

)∣∣∣∣2 = B(M1, N)
∑

n

|an|2.

Thus if K ≥ C log(2M1N) with a sufficiently large absolute constant C, we
will deduce that

B(M1, N) � B(M2, N),

as claimed. Of course we may deduce the second part of the lemma from
the first, via Lemma 1.

The next result allows us to estimate sums involving two different se-
quences, and with restrictions on the indices, in terms of the norm B.

Lemma 10. Let an, bn be sequences of complex numbers supported on
the odd square-free integers in (N, 2N ]. Then there exist D1, D2, satisfying

1
log(2MN)

� Di � D and
D

log2(2MN)
� D1D2 �

D

log2(2MN)
,

such that∑
D<d≤2D

∑∗

M<m≤2M

∣∣∣∣ ∑
(n1,n2)=1

d|n1n2

an1bn2

(
m

n1n2

)∣∣∣∣
� (MN)η(D1D2)1/2

{
B(M,N/D1)

∑
|an|2

}1/2{
B(M,N/D2)

∑
|bn|2

}1/2

,

for any η > 0.
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If we decompose the sum over n1, n2 according to the value of (n1, d) =
d1, say, we find that ∑

d

∣∣∣ ∑
(n1,n2)=1

d|n1n2

∣∣∣ ≤ ∑
d

∑
d1|d

∣∣∣ ∑
n1,n2

∣∣∣,
where the final sum is subject to the condition (n1, n2) = 1 together with
the requirements that (n1, d) = d1 and dd−1

1 |n2. If we now write d2 = d/d1

it follows that the sum, S say, in Lemma 10 satisfies

S ≤
∑

D<d1d2≤2D

∑∗

M<m≤2M

∣∣∣∣ ∑
(n1,n2)=1

d1|n1, d2|n2

an1bn2

(
m

n1n2

)∣∣∣∣.
We now pick out the condition (n1, n2) = 1 by introducing a factor∑

d|n1,n2

µ(d).

We therefore see that

S ≤
∑

d≤2N

∑
D<d1d2≤2D

∑∗

M<m≤2M

∣∣∣∣ ∑
dd1|n1, dd2|n2

an1bn2

(
m

n1n2

)∣∣∣∣.
At this point we decompose the available ranges for d1 and d2 into intervals
Di < di ≤ 2Di, where each Di runs over powers of 2 and D � D1D2 � D.
Since there are O(logD) possible pairs D1, D2, and the lemma is trivial
unless D � N, we see that there is some pair D1, D2 for which

S � (logN)
∑

d≤2N

∑
Di<di≤2Di

∑∗

M<m≤2M

∣∣∣∣ ∑
dd1|n1, dd2|n2

an1bn2

(
m

n1n2

)∣∣∣∣.
The double sum over n1, n2 factorizes as{ ∑

dd1|n1

an1

(
m

n1

)}{ ∑
dd2|n2

bn2

(
m

n2

)}
.

Hence Cauchy’s inequality shows that

S � (logN)Σ1/2
a Σ

1/2
b ,

where

Σa =
∑

d≤2N

∑
Di<di≤2Di

∑∗

M<m≤2M

∣∣∣∣ ∑
dd1|n

an

(
m

n

)∣∣∣∣2,
and similarly for Σb. We now put an,d1 = an/d1 when d1 |n, and an,d1 = 0
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otherwise. Then ∣∣∣∣ ∑
dd1|n

an

(
m

n

)∣∣∣∣ ≤ ∣∣∣∣ ∑
d|n

an,d1

(
m

n

)∣∣∣∣.
Moreover, ∑∗

M<m≤2M

∣∣∣∣ ∑
d|n

an,d1

(
m

n

)∣∣∣∣2 ≤ B(M,N/d1)
∑
d|n

|an,d1 |2

= B(M,N/d1)
∑

dd1|n

|an|2.

However, Lemma 9 yields B(M,N/d1) �B(M, θN/D1) for θ= C log(2MN),
and so

Σa �
∑

d≤2N

∑
Di<di≤2Di

B(M, θN/D1)
∑

dd1|n

|an|2

� Nη/2D2B(M, θN/D1)
∑

n

|an|2,

and similarly for Σb. Since D � D1D2 � D, the lemma now follows, on
replacing Di by θDi.

Our fourth result applies the Poisson summation formula to a weighted
character sum.

Lemma 11. Let W (x) be an infinitely differentiable function supported on
a compact subinterval of (0,∞). Then if q is odd , positive and square-free
we have

∞∑
m=1

W

(
m

M

)(
m

q

)
=
Mτ(q)
q

∞∑
h=−∞

Ŵ

(
h

q/M

)(
h

q

)
,

where τ(q) is the usual quadratic Gauss sum.

For the proof we split the sum on the left into residue classes, and apply
the Poisson summation formula to each. This yields

∞∑
m=1

W

(
m

M

)(
m

q

)
=

∑
a (mod q)

(
a

q

) ∞∑
b=−∞

W

(
a+ bq

M

)

=
∑

a (mod q)

(
a

q

) ∞∑
h=−∞

∞∫
−∞

W

(
a+ xq

M

)
e(−hx) dx

=
∑

a (mod q)

(
a

q

) ∞∑
h=−∞

eq(ah)
M

q
Ŵ

(
h

q/M

)
.



250 D. R. Heath-Brown

The lemma now follows from the relation∑
a (mod q)

(
a

q

)
eq(ah) = τ(q)

(
h

q

)
,

which holds for odd square-free q.

Our next result will be used to “separate the variables” in a function of
a product.

Lemma 12. Let % : R → R be an infinitely differentiable function whose
derivatives satisfy %(k)(x) �k,A |x|−A for |x| ≥ 1, for any positive constant
A. Let

%+(s) =
∞∫

0

%(x)xs−1 dx

and

%−(s) =
∞∫

0

%(−x)xs−1 dx.

Then %+(s) and %−(s) are holomorphic in <(s) = σ > 0, and satisfy

%+(s), %−(s) �A,σ |s|−A

there, for any positive constant A. Moreover , if σ > 0 we have

%(x) =
1

2πi

σ+i∞∫
σ−i∞

%+(s)x−s ds

and

%(−x) =
1

2πi

σ+i∞∫
σ−i∞

%−(s)x−s ds

for any positive x.

This requires little comment. The bounds for %±(s) may be obtained by
repeated integration by parts, and the expressions for %(±x) are examples
of the Mellin inversion formula.

Our next result is an attempt to carry out the Poisson summation for-
mula over the integers coprime to a given natural number k.

Lemma 13. Let ψ : R → R be an infinitely differentiable function with
derivatives satisfying ψ(j)(x) �j,A |x|−A for |x| > 0, for any positive con-
stant A. Let 0 < X1 ≤ X ≤ X2, and let 0 < J ≤ min(X/X1, X2/X). Then
for any integer k ≥ 2 we have
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∑
(n,k)=1

ψ

(
n

X

)
=
φ(k)
k

X
∞∫

−∞
ψ(x) dx− ψ(0)

∑
d|k, d≤X2

µ(d)(15)

−
∑

d|k, d>X2

µ(d)
X

d

∞∫
−∞

ψ(x) dx

+
∑

1≤|l|≤L

∑
d|k

X1<d≤X2

µ(d)
X

d
ψ̂

(
lX

d

)
+OA(XJ−A)

for any positive constant A, and any L ≥ (X2/X)2.

The lemma shows that the first term dominates providing that k ≤ X1−ε.
In general the subsidiary terms will be required.

To prove the lemma we write the sum on the left as∑
d|k

µ(d)
∞∑

m=−∞
ψ

(
md

X

)
,

and we consider separately the cases d > X2 and d ≤ X2. For the former
case we have ∑

d>X2

µ(d)ψ(0) = −ψ(0)
∑

d≤X2

µ(d),

since k ≥ 2, and∑
d>X2

∑
m6=0

∣∣∣∣ψ(
md

X

)∣∣∣∣ � ∑
d>X2

∑
m6=0

(
|m|d
X

)−A

� X(X2/X)1−A.

For the remaining values of d we apply the Poisson summation formula to
obtain ∑

d|k, d≤X2

µ(d)
∞∑

m=−∞
ψ

(
md

X

)
=

∞∑
l=−∞

∑
d|k, d≤X2

µ(d)
X

d
ψ̂

(
lX

d

)
.

Since ∑
d|k, d≤X2

µ(d)
d

=
φ(k)
k

−
∑

d|k, d>X2

µ(d)
d

and

ψ̂(0) =
∞∫

−∞
ψ(x) dx

we see that the terms with l = 0 produce the first and third contributions
on the right of (15). When d ≤ X1 we find that∑

d≤X1

∑
l 6=0

X

d

∣∣∣∣ψ̂(
lX

d

)∣∣∣∣ � ∑
d≤X1

∑
l 6=0

X

d

(
|l|X
d

)−A

� X(X/X1)−A,
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since we have ψ̂(x) �A |x|−A for any positive A, by repeated integration by
parts. Similarly for X1 < d ≤ X2 we have∑

X1<d≤X2

∑
|l|>L

X

d

∣∣∣∣ψ̂(
lX

d

)∣∣∣∣ � ∑
X1<d≤X2

∑
|l|>L

X

d

(
|l|X
d

)−A

� X1−AXA
2 L

1−A � X(X2/X)2−A.

These estimates combine to yield the formula of the lemma, with a new
value for A.

The final result of this section is a curiosity concerning Fourier integrals.

Lemma 14. Let W (x) be an infinitely differentiable function, supported
on a compact subset of (0,∞). Then

∞∫
−∞

Ŵ (αx2) dx =
1− sign(α)i√

|α|

∞∫
0

W (x2) dx

for any non-zero real α.

For the proof we begin by noting that Ŵ (x) �A |x|−A for any constant
A. This will ensure the absolute convergence of all the integrals we shall
consider. We shall suppose that W is supported on [a, b], with 0 < a < b.
Then the left hand integral is

lim
K→∞

K∫
−K

Ŵ (αx2) dx = lim
K→∞

K∫
−K

b∫
a

W (t)e(−αx2t) dt dx

= lim
K→∞

b∫
a

W (t)
K∫

−K

e(−αx2t) dx dt,

by Fubini’s Theorem. However,
∞∫

K

e(−αx2t) dx =
[
e(−αx2t)
−4πiαxt

]∞
K

+
∞∫

K

e(−αx2t)
dx

4πiαx2t
� 1
|α|Kt

,

by integration by parts. A similar estimate holds for the integral over the
range (−∞,−K). Since α 6= 0 is fixed, and t ≥ a > 0 with a fixed, we see
that

b∫
a

W (t)
K∫

−K

e(−αx2t) dx dt =
b∫

a

W (t)
∞∫

−∞
e(−αx2t) dx dt+O(K−1),

whence
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∞∫
−∞

Ŵ (αx2) dx =
b∫

a

W (t)
∞∫

−∞
e(−αx2t) dx dt

=
b∫

a

W (t)
dt

(1 + sign(α)i)
√
|α|t

,

and the result follows on substituting t = x2.

4. Proof of Lemma 2. We begin the demonstration of Lemma 2 by
expanding ∑

m; s(m)>K

odd
W

(
m

M

)∣∣∣∣ ∑
n

an

(
m

n

)∣∣∣∣2
and sorting the resulting terms to produce∑

∆

∑
s(m)>K

odd
W

(
m

M

) ∑
(n1,n2)=∆

an1an2

(
m

n1n2

)
.

The terms for which ∆ ≤ ∆0 are immediately estimated as being at most∑
∆≤∆0

C(M,N,K,∆)
∑

n

|an|2.

For any other ∆ the contribution is

≤
∑

s(m)>K

odd
W

(
m

M

)∣∣∣∣ ∑
(n1,n2)=∆

an1an2

(
m

n1n2

)∣∣∣∣
≤

∑
s(m)>K

odd
W

(
m

M

)∣∣∣∣ ∑
(n1,n2)=1

an1∆an2∆

(
m

n1n2

)∣∣∣∣
on replacing ni by ni∆. We can pick out the condition (n1, n2) = 1 by using
a sum involving the Möbius function to give

≤
∑

d

∑
s(m)>K

odd
W

(
m

M

)∣∣∣∣ ∑
d|n1,n2

an1∆an2∆

(
m

n1n2

)∣∣∣∣
=

∑
d

∑
s(m)>K

odd
W

(
m

M

)∣∣∣∣ ∑
d|n

an∆

(
m

n

)∣∣∣∣2
≤

∑
d

B(M,N/∆,K)
∑
d|n

|an∆|2

≤ B(M,N/∆,K)
∑

n

d(n)|an∆|2

≤ B∗(M,K)
∑

n

d(n)|an∆|2,
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where
B∗(M,K) = max

N1≤N/∆0

B(M,N1,K).

Now when we sum over ∆ > ∆0 we get

≤ B∗(M,K)
∑
∆

∑
n

d(n)|an∆|2

≤ B∗(M,K)
∑

n

d(n)2|an|2

� NεB∗(M,K)
∑

n

|an|2,

and the lemma follows.

5. The sum Σ3. We begin by recalling the definition (12), namely

Σ3 =
∑

(n1,n2)=∆

an1an2

∑
m

odd
W

(
m

M

)(
m

n1n2

)
.

If we set q = n1n2∆
−2 as in Lemma 3, the inner sum becomes∑

(m,2∆)=1

W

(
m

M

)(
m

q

)
=

∑
e|2∆

µ(e)
(
e

q

) ∑
m′

W

(
m′

M/e

)(
m′

q

)
,

and since q will be square-free Lemma 11 shows that this is∑
e|2∆

µ(e)
(
e

q

)
Mτ(q)
eq

∞∑
h=−∞

Ŵ

(
h

eq/M

)(
h

q

)
.

When h = 0 the Jacobi symbol vanishes, since q ≥ N2∆−2 > 1. The
remaining values of h we write in the form h = abc2, where a = ±1 or ±2,
and b is positive, odd and square-free. Thus

Σ3 =
∑
e|2∆

Mµ(e)
e

∑
a

∞∑
c=1

∑
(n1,n2)=1

a(1)
n1
a(1)

n2

∑∗

b

Ŵ

(
abc2

en1n2/M

)(
b

n1n2

)
,

where

a(1)
n = an∆

τ(n)
n

(
eac2

n

)
.

We first consider the contribution to Σ3 from terms with b > K, namely∑
e|2∆

Mµ(e)
e

∑
a

∑
c

∑
(n1,n2)=1

a(1)
n1
a(1)

n2

∑∗

b>K

Ŵ

(
abc2

en1n2/M

)(
b

n1n2

)
.

Since Ŵ (x) �A |x|−A and K ≥ N2M−1(MN)ε, we see that this sum is
Oε(

∑
|an|2), providing that we choose A sufficiently large in terms of ε.

This is satisfactory for Lemma 3.
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We now examine the terms in Σ3 for which b ≤ K.We break the available
range for b into intervals (B, 2B], with B = 2−kK. For each such range we
have therefore to consider∑

e|2∆

Mµ(e)
e

∑
a

∑∗

b

∑
(n1,n2)=1

a(2)
n1
a(2)

n2
S(n1n2)

(
b

n1n2

)
,

where we now take

a(2)
n = an∆

τ(n)
n

(
ea

n

)
and

S(q) =
∞∑

c=1
(c,q)=1

Ŵ

(
abc2

eq/M

)
.

Since q > 1 we have (0, q) = 0, so that

S(q) =
1
2

∞∑
c=−∞
(c,q)=1

Ŵ

(
abc2

eq/M

)
.

We may now apply Lemma 13 to S(q), taking X =
√
eq/(Mb) and ψ(x) =

Ŵ (ax2). Moreover, we shall take

X1 = (MN)−η/2

√
e

∆
N(MB)−1/2 and X2 = (MN)η

√
e

∆
N(MB)−1/2,

with η > 0, so that we may choose J = (MN)η/4 and L = (MN)3η. It is
then immediately apparent that the error term in (15) makes a negligible
contribution to Σ3, providing that we choose A sufficiently large compared
with η.

The leading term in Lemma 13 will be

φ(q)
q

√
eq

Mb

∞∫
−∞

Ŵ (ax2) dx = φ(q)
√

e

Mbq
· 1− sign(a)i√

|a|

∞∫
0

W (x2) dx,

by Lemma 14. To find the corresponding contribution to Σ3 we must per-
form the summations over a and e, using the observation that∑

e|2∆

∑
a=±1,±2

µ(e)√
e

(
ea

q

)
1− sign(a)i√

|a|
=
√
q

τ(q)
κ(∆, q),

where κ(∆, q) is as given in Lemma 3. For each range (B, 2B] we find that
the total contribution to Σ3 is

1
2

∑∗

B<b≤2B

√
M

b

∑
(n1,n2)=∆

an1an2

φ(q)
q
κ(∆, q)

(
b

q

) ∞∫
0

W (x2) dx,
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so that we have∑∗

b≤K

√
M

b

∑
(n1,n2)=∆

an1an2

φ(q)
2q

κ(∆, q)
(
b

q

) ∞∫
0

W (x2) dx,

on summing over B.
We next examine the error terms arising from the divisor sums in Lemma

13. The first sum contributes

(16) �M∆η
∑

d≤X2

∑∗

b

∣∣∣∣ ∑
(n1,n2)=1

d|n1n2

a(2)
n1
a(2)

n2

(
b

n1n2

)∣∣∣∣,
for some choice of e and a. If we decompose the sum over d into ranges
D < d ≤ 2D, we can apply Lemma 10 to each, giving a contribution

� (MN)2ηMN−1∆
√
D1D2B

(
B,

N

D1∆

)1/2

B
(
B,

N

D2∆

)1/2 ∑
|an|2.

There are O(logX2) = O((MN)η) ranges (D, 2D] and O(logK) =
O((MN)η) ranges (B, 2B], so that the total contribution to Σ3 is

� (MN)4ηM∆

N

√
D1D2B

(
B,

N

D1∆

)1/2

B
(
B,

N

D2∆

)1/2

,

for some choice of D1, D2 and B. However, if

m0 = min
{

1,
N/
√
MB

D1D2

}
,

then
1 � (MN)ηm0,

since

D1D2 � X2 = (MN)η

√
e

∆
N(MB)−1/2 � (MN)ηN(MB)−1/2.

Thus (16) is

� (MN)5ηM∆

N
m0

√
D1D2B

(
B,

N

D1∆

)1/2

B
(
B,

N

D2∆

)1/2 ∑
|an|2,

which is of the form required for Lemma 3, on setting η = ε/5.
We now consider the contribution from the second divisor sum in (15),

for a given range b ∈ (B, 2B]. In view of the fact that X =
√
eq/(Mb) this

will be

(17) �M1/2B−1/2∆η
∑

d>X2

d−1
∑∗

B<b≤2B

∣∣∣∣ ∑
(n1,n2)=1

d|n1n2

a(3)
n1
a(3)

n2

(
b

n1n2

)∣∣∣∣.
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Here we have set

a(3)
n = an∆

τ(n)√
n

(
ea

n

)
and we have chosen e and a so as to maximize (17). We again decompose
the range for d into subintervals D < d ≤ 2D, with X2 � D � N2, and
apply Lemma 10 for each, to obtain a bound

� (MN∆)η

√
M

BD1D2
B

(
B,

N

D1∆

)1/2

B
(
B,

N

D2∆

)1/2 ∑
|an|2.

As before, there are O((MN)η) possibilities for each of B and D, and√
M

BD1D2
� M

N

√
D1D2 min

{
∆,

N/
√
MB

D1D2

}
� ∆

M

N

√
D1D2 min

{
1,
N/
√
MB

D1D2

}
,

since

D1D2 �
X2

log2(2MN)
� N∆−1(MB)−1/2.

It follows that the corresponding contribution to Σ3 can again be put into
the correct form for Lemma 3 by taking η = ε/4.

For the final divisor sum in (15) we have an estimate

M1/2B−1/2L∆η

×
∑

X1<d≤X2

d−1
∑∗

b

∣∣∣∣ ∑
(n1,n2)=1

d|n1n2

a(3)
n1
a(3)

n2
ψ̂

(
l

d

√
en1n2

Mb

)(
b

n1n2

)∣∣∣∣,
for appropriate values of a, e and l. We remove the factor ψ̂ by means of
Lemma 12, with %(x) = ψ̂(x). It follows that %(k)(x) �k,A |x|−A, as re-
quired. Taking l > 0 for definiteness, our estimate becomes

M1/2B−1/2L∆η
∑

X1<d≤X2

d−1
∑∗

b

∣∣∣∣ ∑
(n1,n2)=1

d|n1n2

a(3)
n1
a(3)

n2

(
b

n1n2

)
I(d, b, n1, n2)

∣∣∣∣,
where

I(d, b, n1, n2) =
1

2πi

σ+i∞∫
σ−i∞

%+(s)
(
l

d

√
en1n2

Mb

)−s

ds.

We therefore obtain a bound

�M1/2+σB−1/2+σXσ
2 L∆

η
∞∫

−∞
|%+(σ + it)|

∑
X1<d≤X2

d−1S(σ + it, d) dt,
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where

S(s, d) =
∑∗

b

∣∣∣∣ ∑
(n1,n2)=1

d|n1n2

a(3)
n1
a(3)

n2

(
b

n1n2

)
(n1n2)−s/2

∣∣∣∣.
We may note here that X2 � (MN)2, so that Xσ

2 � (MN)2σ. We again
decompose the range for d into subintervals D < d ≤ 2D and apply Lemma
10 for each, observing that

∞∫
−∞

|%+(σ + it)| dt�σ 1.

Allowing for O((MN)η) values for each of B and D, we obtain a total
contribution

� L(MB)σNη(MN)3η+2σ

×
√

M

BD1D2
B

(
B,

N

D1∆

)1/2

B
(
B,

N

D2∆

)1/2 ∑
|an|2

to Σ3. This time we have√
M

BD1D2
� ∆(MN)ηM

N

√
D1D2 min

{
1,
N/
√
MB

D1D2

}
,

since

D1D2 �
X1

log2(2MN)
� (MN)−ηN∆−1(MB)−1/2.

However, if we choose σ = η = ε/11 we have

L(MB)σNη(MN)4η+2σ � (MN)ε,

in view of the constraint that B � K � M. It follows that our error term
can again be put into a form suitable for Lemma 3. This completes the
proof of the lemma.

6. The sum Σ4. We begin by recalling the definition of Σ4, given by
(13) as

Σ4 =
∑

(n1,n2)=∆

an1an2

∑∗

m; s(m)≤K

W

(
m

M

)(
m

n1n2

)
.

We put m = u2v with v square-free, and we write q = n1n2∆
−2 as usual.

Then

Σ4 =
∑

(n1,n2)=∆

an1an2

∑∗

1≤v≤K
(v,2∆)=1

(
v

q

)
Σ5(v, q),
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where

Σ5(v, q) =
∞∑

u=1
(u,2q∆)=1

ψ

(
u√
M/v

)
=

1
2

∞∑
u=−∞

(u,2q∆)=1

ψ

(
u√
M/v

)
,

with ψ(x) = W (x2). The final sum is of the form needed for an application
of Lemma 13. We break the available range for v into subintervals (B, 2B].
For each such range we apply Lemma 13 with X =

√
M/v and

X1 = (MN)−ηM1/2B−1/2 and X2 = (MN)ηM1/2B−1/2,

with η > 0, so that we may choose J = (MN)η/2 and L = (MN)3η. It is
then immediately apparent that the error term in (15) makes a negligible
contribution to Σ4, providing that we choose A sufficiently large compared
with η.

We begin by examining the leading terms. For each range (B, 2B] these
are

1
2

∑∗

B<v≤2B
(v,2∆)=1

√
M

v

∑
(n1,n2)=∆

an1an2

φ(2q∆)
2q∆

(
v

q

) ∞∫
−∞

ψ(x) dx.

Since
1
2

∞∫
−∞

ψ(x) dx =
∞∫

0

W (x2) dx,

the leading terms are of the correct form for Lemma 4, after combining the
intervals (B, 2B] to produce [1,K].

We now consider the sums over divisors in Lemma 13. Since ψ(0) =
W (0) = 0 the first sum vanishes. The second sum contributes to Σ4 a total

�
√
M

B

∑
d>X2

d−1
∑∗

B<v≤2B

∣∣∣∣ ∑
(n1,n2)=∆

d|2q∆

an1an2

(
v

q

)∣∣∣∣.
We replace ni by ni∆ and we write d = (d, 2∆)e. Then each value of e can
arise from O(Nη) values of d, so that the above bound becomes

� Nη

√
M

B

∑
e>X2/2∆

e−1
∑∗

B<v≤2B

∣∣∣∣ ∑
(n1,n2)=1

e|n1n2

an1∆an2∆

(
v

n1n2

)∣∣∣∣.
We break the range for e into intervals D < e ≤ 2D, where X2/∆ � D �
N2. We can then apply Lemma 10 to give a bound

(18) � (MN)3η

√
M

BD1D2
B

(
B,

N

D1∆

)1/2

B
(
B,

N

D2∆

)1/2 ∑
|an|2,
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where

D1D2 �
X2

∆ log2(2MN)
.

There remains the third divisor sum in Lemma 13. When v is in a given
range B < v ≤ 2B the corresponding contribution to Σ4 is

1
2

∑∗

B<v≤2B

∑
1≤|l|≤L

∑
X1<d≤X2

µ(d)

√
M/v

d
ψ̂

(
l
√
M/v

d

)
S(d, v),

where

S(d, v) =
∑

(n1,n2)=∆, d|2q∆

an1an2

(
v

q

)
.

Since ψ̂(x) � 1 we obtain a bound

� L
∑

X1<d≤X2

√
M/B

d

∑∗

B<v≤2B

|S(d, v)|.

This may now be handled as before, to give an estimate

� (MN)5η

√
M

BD1D2
B

(
B,

N

D1∆

)1/2

B
(
B,

N

D2∆

)1/2 ∑
|an|2,

where

D1D2 �
X1

∆ log2(2MN)
.

We then see that both this bound and (18) are acceptable for Lemma 4,
after choosing η = ε/5.

7. Comparison of the leading terms. This section is devoted to the
proof of Lemma 5. We begin with the observation that

κ(∆, q) =
∑
e|∆

µ(e)√
e

(
e

q

)
,

so that ∑∗

b≤K

1√
b
κ(∆, q)

(
b

q

)
=

∑
w

α(w)√
w

(
w

q

)
,

where
α(w) =

∑
w=be

µ(e),

subject to the conditions

e |∆, b ≤ K, b odd and square-free.
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Similarly we have
φ(q∆)
2q∆

=
φ(q)
2q

· φ(∆)
∆

and
φ(∆)
∆

=
∑
u|∆

µ(u)√
u2

(
u2

q

)
,

since (q,∆) = 1. Thus∑∗

v≤K
(v,2∆)=1

1√
v
· φ(∆)

∆

(
v

q

)
=

∑
w

β(w)√
w

(
w

q

)
,

where

β(w) =
∑

w=vu2

µ(u),

subject to the conditions

u |∆, v ≤ K, (v, 2∆) = 1, v square-free.

We see at once that if α(w) 6= 0 then w is odd, w ≤ K∆ and w = rs2 with
r square-free and s |∆. The same is true for β(w) except that the upper
bound is now w ≤ K∆2. Moreover, if w is odd and w ≤ K, then

α(w) =
∑

e|(w,∆)

µ(e)µ2(w/e),

and

β(w) =
∑

w=vu2, u|∆
(v,∆)=1

µ(u)µ2(v).

The two expressions on the right are each multiplicative functions of w,
and it is an elementary exercise to show that they are identically equal. It
follows that the function γ(w) = α(w) − β(w) is supported on the interval
(K,K∆2]. Moreover, γ(w) � d(w), and, as we saw earlier, if γ(w) 6= 0 then
w = rs2 with r square-free and s |∆. It should also be observed that the
function γ is independent of q. We now see that

M3 −M4 �M1/2
∑
w

|γ(w)|√
w

∣∣∣∣ ∑
(n1,n2)=∆

an1an2

φ(q)
q

(
w

q

)∣∣∣∣
�M1/2K−1/2(MN)η

×
∑
s|∆

∑∗

K∆−2<r≤K∆2

∣∣∣∣ ∑
(n1,n2)=∆

an1an2

φ(q)
q

(
rs2

q

)∣∣∣∣.
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We write, temporarily, ni = mi∆ and we set

a(4)
n =

φ(n)
n

an∆

if (n, s) = 1 and a
(4)
n = 0 otherwise. We then decompose the range for r

into subintervals R < r ≤ 2R, so that

M3 −M4 �M1/2K−1/2(MN)2η
∑∗

R<r≤2R

∣∣∣∣ ∑
(m1,m2)=1

a(4)
m1
a(4)

m2

(
r

m1m2

)∣∣∣∣,
for appropriate values of s and R. We may now apply Lemma 10 to show
that

M3 −M4 �M1/2K−1/2(MN)3ηB(R,N ′)
∑

|an|2,

for some N ′ � N(MN)η. Finally, an application of Lemma 9 allows us to
replace R by K∆2(MN)4η, and N ′ by N(MN)4η with the loss of a further
factor (MN)η. Lemma 5 now follows, on setting η = ε/4.

8. The recursive estimates. In this section we shall prove the recur-
sive estimates given by Lemmas 6, 7 and 8. We remark at the outset that
although Lemma 6 assumes that N ≤M, we will still have

B(M,N) �ε (MN)ε(M +N ξ)

when M ≤ N. To see this we apply Lemma 1, which shows that

B(M,N) � B(N,M) �ε (MN)ε(N +Mξ) �ε (MN)ε(M +N ξ),

on noting that N and Mξ are both at most N ξ. Similarly we can show that

B(M,N) �ε (MN)ε(N +Mξ).

We may also observe that the conditions M,N ≥ 1 are redundant, since the
bound given is trivial when M or N is less than 1. (Indeed, B(M,N) = 0
when either M or N is less than 1/2.)

For the proof of Lemma 6 we combine Lemmas 3, 4 and 5, using our
assumption about B(M,N) to bound the error terms that arise. We begin
by investigating the error term E3, so that we must consider

(19) ∆(MN)εM

N

√
D1D2

×min
{

1,
N/
√
MB

D1D2

}
B

(
B,

N

D1∆

)1/2

B
(
B,

N

D2∆

)1/2

,

where 1 � B � K and D1, D2 � (MN)−ε. Then, according to our hy-
pothesis, we have
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(20) B
(
B,

N

D1∆

)1/2

B
(
B,

N

D2∆

)1/2

� (BN)2ε(Bξ +N/D1)1/2(Bξ +N/D2)1/2

� (MN)ε(Bξ +Bξ/2N1/2 +ND
−1/2
1 D

−1/2
2 ).

Since

min
{

1,
N/
√
MB

D1D2

}
≤ N/

√
MB

D1D2
,

we find that

M

N

√
D1D2 min

{
1,
N/
√
MB

D1D2

}
Bξ � (MN)εM1/2Bξ−1/2.

Similarly, since

min
{

1,
N/
√
MB

D1D2

}
≤

(
N/
√
MB

D1D2

)1/2

,

we have

M

N

√
D1D2 min

{
1,
N/
√
MB

D1D2

}
Bξ/2N1/2 ≤M3/4Bξ/2−1/4.

Finally, since

min
{

1,
N/
√
MB

D1D2

}
≤ 1,

we have

M

N

√
D1D2 min

{
1,
N/
√
MB

D1D2

}
N(D1D2)−1/2 ≤M.

However,

M3/4Bξ/2−1/4 = {M1/2Bξ−1/2}1/2M1/2 �M1/2Bξ−1/2 +M,

whence (19) may be estimated as

� ∆(MN)3ε(M1/2Bξ−1/2 +M).

After replacing ε by ε/3 this will be satisfactory for Lemma 6, in view of
the constraint that B � K.

We now turn to the error E4 occurring in Lemma 4. Here we investigate

(21) (MN)ε

(
M

BD1D2

)1/2

B
(
B,

N

D1∆

)1/2

B
(
B,

N

D2∆

)1/2

,

with parameters B,D1, D2 � (MN)−ε, subject to B � K and

(22) D1D2 � (MN)−ε∆−1M1/2B−1/2.
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We shall use (20) as before. Since D1D2 � (MN)−2ε the first term con-
tributes

� (MN)3εM1/2Bξ−1/2.

For the remaining terms we use the lower bound for D1D2 given by (22),
leading to a contribution

� (MN)3ε(∆1/2M1/4N1/2Bξ/2−1/4 +∆N).

However,

M1/4N1/2Bξ/2−1/4 = {M1/2Bξ−1/2}1/2N1/2 �M1/2Bξ−1/2 +N,

whence (21) can be estimated as

� ∆(MN)3ε(M1/2Bξ−1/2 +N).

This too is satisfactory for Lemma 6, in view of the constraint that B � K.

Finally, we consider the contribution from Lemma 5, which is

M1/2K−1/2(MN)εB(K∆2(MN)ε, N(MN)ε)

� (MN)4εM1/2K−1/2{(K∆2)ξ +N}

� ∆4(MN)4ε(M1/2Kξ−1/2 +M1/2NK−1/2),

since ξ ≤ 2. This is again satisfactory for Lemma 6.

We now turn to the proof of Lemma 7. When we feed Lemma 6 into
Lemma 2 we find that

B(M,N,K)
� (MN)ε{B(M,N1,K) +∆5

0(M +N +M1/2Kξ−1/2 +M1/2NK−1/2)},

with N1 ≤ N/∆0, providing that 1 ≤ ∆0 < N and

N2M−1(MN)ε ≤ K ≤M(MN)−ε.

It follows that if 1 ≤ ∆0 < N ≤ N0 and

N2
0M

−1(MN0)ε ≤ K ≤M(MN0)−ε,

then

B(M,N,K)
� (MN0)ε{B(M,N1,K) +∆5

0(M +N0 +M1/2Kξ−1/2 +M1/2N0K
−1/2)}.

We shall choose K = N2
0M

−1(MN0)ε, which is admissible providing that

(23) N0(MN0)ε ≤M.

Our bound now becomes

(24) B(M,N,K) � (MN0)3ε{B(M,N1,K) +∆5
0(M +M1−ξN2ξ−1

0 )},
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since ξ ≤ 2. We now choose a large integer R, and we set ∆0 = N
1/R
0 . With

this choice we apply (24) to derive successive estimates

B(M,Nr−1,K) � (MN0)3ε{B(M,Nr,K) +∆5
0(M +M1−ξN2ξ−1

0 )},

with Nr ≤ ∆−r
0 N0. We terminate the process at r = r0, where

(25) Nr0 ≤ ∆0 < Nr0−1.

Our choice of ∆0 ensures that this occurs for r0 ≤ R. On combining our
estimates we find that

B(M,N0,K) �R (MN0)3Rε{B(M,Nr0 ,K) +∆5
0(M +M1−ξN2ξ−1

0 )}.

The bound (25) yields

B(M,Nr0 ,K) �M∆0,

in view of the trivial estimate B(M,N,K) � MN. We therefore deduce
that

B(M,N0,K) �R (MN0)3Rε∆5
0(M +M1−ξN2ξ−1

0 )

�R (MN0)3RεN
5/R
0 (M +M1−ξN2ξ−1

0 ),

subject to (23). Since B(M,N0) ≤ B(M,N0,K), we also have the corre-
sponding bound for B(M,N0). When (23) fails we can simply use the bound

B(M,N0) � (MN0)ε(M +N ξ
0 )

= (MN0)ε(M +M1−ξN2ξ−1
0 (M/N0)ξ−1)

� (MN0)2ε(M +M1−ξN2ξ−1
0 ).

Since R can be chosen arbitrarily large Lemma 7 follows.

It remains to deduce Lemma 8 from Lemma 7. The result is immediate
when N (2ξ−1)/ξ ≤ M, since M1−ξN2ξ−1 ≤ N (2ξ−1)/ξ in this case. In the
alternative case Lemmas 7 and 9 yield

B(M,N) � B(N (2ξ−1)/ξ(MN)ε, N)

� (MN)2ε{N (2ξ−1)/ξ + (N (2ξ−1)/ξ)1−ξN2ξ−1}
� (MN)2εN (2ξ−1)/ξ,

and the result again follows.

9. Proof of the corollaries. For the proof of Corollary 1 we begin by
observing that∑

n≤N

µ2(n)anχ(n) =
∑∗

n≤N

anχ(n) + χ(2)
∑∗

n≤N/2

a2nχ(n),
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so that Cauchy’s inequality yields∣∣∣ ∑
n≤N

µ2(n)anχ(n)
∣∣∣2 � ∣∣∣ ∑∗

n≤N

anχ(n)
∣∣∣2 +

∣∣∣ ∑∗

n≤N/2

a2nχ(n)
∣∣∣2.

It follows that it will be sufficient to prove Corollary 1 when an is supported
on the odd square-free integers. We now break the sum over χ ∈ S(Q) into
four parts corresponding to characters χ of the form

(
n
m

)
or

(
n
m

)(−1
n

)
or(

n
m

)(
2
n

)
or

(
n
m

)(−2
n

)
. We replace an by a′n = an or an

(−1
n

)
or an

(
2
n

)
or

an

(−2
n

)
accordingly, and apply Theorem 1 to each part. The result then

follows.

To derive Corollary 2 from Corollary 1 we write f = fχ for the conductor
of χ. Thus if n = kr2 with k square-free, we have

anχ(n) = akr2χ(k)
( ∑

h|(f,r)

µ(h)
)
.

It therefore follows by Cauchy’s inequality that∣∣∣ ∑
n≤N

anχ(n)
∣∣∣2 ≤ d(f)

∑
h|f

∣∣∣ ∑
r: h|r

∑
k≤Nr−2

µ2(k)akr2χ(k)
∣∣∣2.

We now write

bk,h =
∑
r: h|r

akr2 ,

so that ∣∣∣ ∑
n≤N

anχ(n)
∣∣∣2 � Qε

∞∑
h=1

∣∣∣ ∑
k

µ2(k)bk,hχ(k)
∣∣∣2.

Since the sequence an is supported on the range [1, N ] the summation over
k can be taken to run over 1 ≤ k ≤ N. We can now use Corollary 1 for each
value of h, to obtain∑

χ∈S(Q)

∣∣∣ ∑
n≤N

anχ(n)
∣∣∣2 �ε (QN)ε(Q+N)

∑
h

∑
k≤N

µ2(k)|bk,h|2.

However, ∑
k≤N

µ2(k)|bk,h|2 =
∑

n1n2=�, h2|(n1,n2)

|an1an2 |,

whence∑
h

∑
k≤N

µ2(k)|bk,h|2 ≤
∑

n1n2=�

|an1an2 |
∑
h|n1

1 � Nε
∑

n1n2=�

|an1an2 |.

The required result then follows.
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It is now an easy matter to derive Corollary 3. It suffices to show that∑
n1n2=�

1 � N1+ε.

However, if n1n2 is a square, then we must have n1 = kr2 and n2 = ks2 for
some k, r, s. Hence ∑

n1n2=�

1 ≤
∑
k≤N

(√
N

k

)2

� N logN,

and the result follows.

Finally, we consider Corollary 4. We first examine the case in which m
is restricted to be square-free. Since |am|, |bn| ≤ 1 we have∑∗

m≤M

∑
n≤N

ambn

(
n

m

)
�

∑∗

m≤M

∣∣∣∣ ∑
n≤N

bn

(
n

m

)∣∣∣∣
�M1/2

( ∑∗

m≤M

∣∣∣∣ ∑
n≤N

bn

(
n

m

)∣∣∣∣2)1/2

�M1/2(MεN1+ε(M +N))1/2,

by Cauchy’s inequality and Corollary 3. This establishes Corollary 4 when
m is restricted to be square-free. In general we have∑

m≤M

odd ∑
n≤N

ambn

(
n

m

)
=

∑
r≤M1/2

∑∗

k≤Mr−2

∑
n≤N

akr2bn,r

(
n

k

)

�
∑

r≤M1/2

(MN)ε

((
M

r2

)
N1/2 +

(
M

r2

)1/2

N

)
� (MN)ε(MN1/2 +M1/2N) logM,

where bn,r = bn if (n, r) = 1 and bn,r = 0 otherwise. The required result
then follows.

10. Proof of Theorem 2. For the proof of Theorem 2 we shall write

S(Q, s) =
∑

χ∈S(2Q)−S(Q)

|L(s, χ)|4,

and we define ν(σ) to be the infimum of those exponents ν for which

S(Q, σ + it) � (Q+ (QT )2−2σ)(QT )ν ,

uniformly in Q and t. Here we have written T = |t| + 1 for convenience of
notation.
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We begin by using the formula

L(s, χ)2 =
∞∑

n=1

d(n)χ(n)n−se−n/U(26)

− 1
2πi

α+i∞∫
α−i∞

L(w,χ)2Γ (w − s)Uw−s dw,

which will be valid for 0 ≤ α < σ = <(s) ≤ 1. In view of the bound

Γ (x+ iy) �x e
−|y|,

Cauchy’s inequality leads to the estimate

S(Q, s) �
∑

χ∈S(2Q)−S(Q)

∣∣∣ ∞∑
n=1

d(n)χ(n)n−se−n/U
∣∣∣2

+ U2(α−σ)
∞∫

−∞
S(Q,α+ iτ)e−|τ−t| dτ,

for fixed σ and α, where s = σ + it. The functional equation shows that

|L(α+ iτ, χ)|4 � (QT )2−4α|L(1− α+ iτ, χ)|4,

whence

S(Q,α+ iτ) � (QTτ )2−4α(Q+ (QTτ )2α)(QTτ )ν(1−α)+ε,

where Tτ = |τ |+ 1. It therefore follows that

S(Q, s) �
∑

χ∈S(2Q)−S(Q)

∣∣∣ ∞∑
n=1

d(n)χ(n)n−se−n/U
∣∣∣2

+ U2(α−σ)(QT )2−4α{Q+ (QT )2α}(QT )ν(1−α)+ε,

for any ε > 0. To handle the sum on the right we first observe that the
contribution from terms with n > N0 = U log2QT will be negligible. We
break the remaining sum into O(logN0) ranges N < n ≤ 2N with N � N0,
and apply Cauchy’s inequality. Since∑

χ∈S(2Q)−S(Q)

∣∣∣ ∑
N<n≤2N

d(n)χ(n)n−se−n/U
∣∣∣2 � QεN1−2σ+ε(Q+N),

by Corollary 3, we deduce that∑
χ∈S(2Q)−S(Q)

∣∣∣ ∞∑
n=1

d(n)χ(n)n−se−n/U
∣∣∣2 � (QTU)ε(Q+ U2−2σ),

for 1/2 ≤ σ ≤ 1. On comparing estimates we see that
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S(Q, s) � (QTU)ε{Q+ U2−2σ}(27)
+ U2(α−σ)(QT )2−4α{Q+ (QT )2α}(QT )ν(1−α)+ε,

for 1/2 ≤ σ ≤ 1 and 0 ≤ α < σ.

To prove Theorem 2 we first consider the case in which σ > 1/2. We pick
α = 1− σ, so that (27) yields

S(Q, s) � (QTU)ε{(Q+U2−2σ)+(QTU−1)4σ−2(Q+(QT )2−2σ)(QT )ν(σ)}.

On taking U = (QT )1+δ, with 0 < δ < 1, we therefore see that

S(Q, s) � (QT )3ε{Q+ (QT )2−2σ}{(QT )δ + (QT )ν(σ)−(4σ−2)δ}

uniformly in t. Since ε is arbitrary it follows from the definition of ν(σ) that

ν(σ) ≤ max(δ, ν(σ)− (4σ − 2)δ).

However, (4σ−2)δ > 0, so that we must have ν(σ) ≤ δ. Finally, we conclude
that ν(σ) ≤ 0, since δ may be taken arbitrarily small. This proves the first
part of Theorem 2, in the case 1/2 < σ ≤ 1.

To handle the case σ = 1/2 we take α = 1/2 − ε in (27). We have just
established that ν(β) ≤ 0 whenever 1/2 < β ≤ 1, so that, in particular,
ν(1− α) ≤ 0. Thus (27) yields

S(Q, s) � (QTU)ε(Q+ U) + U−2ε(Q+ (QT )1−2ε)(QT )5ε,

uniformly in t, for σ = 1/2. Hence, on setting U = QT, for example, and
taking ε arbitrarily small, we see that ν(1/2) ≤ 0 also. This proves the first
part of Theorem 2 in the remaining case σ = 1/2.

To handle the remaining assertion of Theorem 2 we return to the formula
(26) and separate off the sum

Σ(s, χ) =
M∑

n=1

d(n)χ(n)n−se−n/U ,

where M is a parameter to be chosen in due course. Proceeding as before,
with α = 1/2 and U = QT, we find that

(28)
∑

χ∈S(2Q)−S(Q)

|L(s, χ)2 −Σ(s, χ)|2

� (QT )3ε(QM1−2σ + (QT )2−2σ) = o(Q),

for |t| ≤ Q(2σ−1)/(2−2σ)−δ, providing that M is at least a fixed power of Q.
In order to handle the sum

(29)
∑

χ∈S(2Q)−S(Q)

|Σ(s, χ)|2
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we shall require the estimate

(30)
∑

χ∈S(2Q)−S(Q)

χ(n) � (nQ)1/2 log n,

which is valid for any positive, non-square integer n. We shall prove this at
the end of this section. If we expand (29) to give

(31)
M∑

m,n=1

d(m)d(n)m−sn−se−(m+n)/U
∑

χ∈S(2Q)−S(Q)

χ(mn),

and apply (30) to those terms for which mn is not a square, the correspond-
ing contribution will be

� Q1/2
M∑

m,n=1

1 � Q1/2M2,

in view of the fact that σ > 1/2. As we shall see later, we have

(32)
∑∗

q≤Q
(q,k)=1

1 = Q
∏
p|2k

(1− p−1)
∏

p - 2k

(1− p−2) +O(Q1/2d(k)).

Since the conductor of χ ∈ S(Q) is either an odd square-free integer, or 4
times such an integer, or (in two cases) 8 times such an integer, it follows
that ∑

χ∈S(2Q)−S(Q)

χ(k2) = Q
∏
p|k

(1− p−1)
∏
p - k

(1− p−2) +O(Q1/2d(k))

= Q
6
π2

∏
p|k

(1 + p−1)−1 +O(Q1/2d(k))

if k is even, and∑
χ∈S(2Q)−S(Q)

χ(k2) =
3
2
Q

∏
p|2k

(1− p−1)
∏

p - 2k

(1− p−2) +O(Q1/2d(k))

= Q
9
π2

∏
p|2k

(1 + p−1)−1 +O(Q1/2d(k))

if k is odd. We therefore see that, in either case,∑
χ∈S(2Q)−S(Q)

χ(k2) =
6
π2
F (k)Q+O(Q1/2d(k)),

where F (k) is the multiplicative function satisfying F (pe) = p/(p+ 1) for
every prime p.
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We now see that the contribution to (29) corresponding to terms for
which mn is a square will be

6
π2
Q

∑
m,n≤M, mn=�

d(m)d(n)m−sn−se−(m+n)/UF (mn) +O(Q1/2M2),

on observing, as before, that σ is strictly greater than one-half. Since U =
QT, we may remove the factor e−(m+n)/U = 1 +O(M/Q) at the expense of
a total error O(M2), and then extend the sum so as to run over all pairs
m,n with mn = �, at the cost of a further error

� Q
∑

mn=�, mn>M

(mn)ε−σ � Q
∑

k>M1/2

k3ε−2σ � QM3ε−(2σ−1)/2.

On comparing all our estimates we now find that (29) is

CQ+O(Q1/2M2) +O(QM3ε−(2σ−1)/2),

where the constant C is given by

(33) C =
6
π2

∑
mn=�

d(m)d(n)m−sn−sF (mn).

We choose M = Q1/8, so that∑
χ∈S(2Q)−S(Q)

|Σ(s, χ)|2 = CQ+ o(Q).

In view of (28) we have∑
χ∈S(2Q)−S(Q)

|L(s, χ)2 −Σ(s, χ)| · |Σ(s, χ)| = o(Q),

by Cauchy’s inequality, and the theorem then follows, on expressing |L(s, χ)|4
as

|L(s, χ)2 −Σ(s, χ)|2 + |Σ(s, χ)|2 + 2<{(L(s, χ)2 −Σ(s, χ))Σ(s, χ)}.

It remains to establish the estimates (30) and (32). For (30) it suffices
to consider ∑∗

q≤Q

χn(q)

for a non-principal character χn whose conductor is of order n. However,
the above sum is∑

d≤Q1/2

odd
µ(d)χn(d2)

∑
k≤Qd−2

odd
χn(k) �

∑
d≤Q1/2

n1/2 log n� (nQ)1/2 log n.
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To prove (32) we observe that∑∗

q≤Q
(q,k)=1

1 =
∑
a|2k

µ(a)
∑

(b,2k)=1

µ(b)
∑

q≤Q, ab2|q

1

=
∑
a|2k

µ(a)
∑

(b,2k)=1, b≤Q1/2

µ(b)(a−1b−2Q+O(1))

= Q
∏
p|2k

(1− p−1)
{ ∑

(b,2k)=1, b≤Q1/2

µ(b)b−2
}

+O(Q1/2d(k))

= Q
∏
p|2k

(1− p−1)
{ ∏

p - 2k

(1− p−2) +O(Q−1/2)
}

+O(Q1/2d(k))

= Q
∏
p|2k

(1− p−1)
∏

p - 2k

(1− p−2) +O(Q1/2d(k))

as required.

11. Proof of Theorem 3. For the proof of Theorem 3 it will suffice
to show that the number N of characters χ ∈ S(Q) for which L(s, χ) has a
zero in the square

(34) σ ≤ <(s) < σ + (logQT )−1, τ ≤ =(s) < τ + (logQT )−1

satisfies

(35) N � (QT )ε(Q3T )(1−σ)/(2−σ)

for |τ | ≤ T. We assume that σ > 1/2 + (logQT )−1, since otherwise the
required bound is trivial. Following the standard procedure laid down by
Montgomery [6; Chapter 12], we give ourselves parameters Y � X � 1,
and define a function

MX(s, χ) =
∑
n≤X

µ(n)χ(n)n−s.

Two cases then arise. Firstly, there may be � N characters χ, with corre-
sponding zeros % = β + iγ, for which∣∣∣ A log QT∫
−A log QT

L
(

1
2+iγ+iu, χ

)
MX

(
1
2+iγ+iu, χ

)
Y 1/2−β+iuΓ

(
1
2−β+iu

)
du

∣∣∣ � 1.

Secondly, there may be an integer U in the range X ≤ U ≤ Y 2, and �
N(log Y )−1 characters χ, with corresponding zeros % = β + iγ, for which

(36)
∣∣∣ ∑

U<n≤2U

anχ(n)n−%e−n/Y
∣∣∣ � (log Y )−1.
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Here an = an(X) is given by the expansion

L(s, χ)MX(s, χ) =
∞∑

n=1

anχ(n)n−s.

In the first case, since % must lie in the square (34) we see that
τ+1+A log QT∫
τ−A log QT

∣∣L(
1
2 + iu, χ

)
MX

(
1
2 + iu, χ

)∣∣ du� Y σ−1/2(logQT )−1.

We now apply Hölder’s inequality, and sum over the characters, to obtain
the bound

N(Y σ−1/2(logQT )−1)4/3(logQT )−1/3

�
τ+1+A log QT∫
τ−A log QT

∑
χ∈S(Q)

∣∣L(
1
2 + iu, χ

)
MX

(
1
2 + iu, χ

)∣∣4/3
du

�
( τ+1+A log QT∫

τ−A log QT

∑
χ∈S(Q)

∣∣L(
1
2 + iu, χ

)∣∣4 du)1/3

×
( τ+1+A log QT∫

τ−A log QT

∑
χ∈S(Q)

∣∣MX

(
1
2 + iu, χ

)∣∣2du)2/3

.

The first integral will be O((QT )1+ε), by Theorem 2, and the second integral
may be handled by breaking the sum for MX(s, χ) into ranges V < n ≤ 2V
and applying Cauchy’s inequality. Thus

τ+1+A log QT∫
τ−A log QT

∑
χ∈S(Q)

∣∣MX

(
1
2 + iu, χ

)∣∣2 du
� (logX)

∑
V

τ+1+A log QT∫
τ−A log QT

∑
χ∈S(Q)

∣∣∣ ∑
V <n≤2V

µ(n)χ(n)n−1/2−iu
∣∣∣2 du

� (logX)
∑
V

(QV )ε(Q+ V )

� (QX)2ε(Q+X),

by Corollary 3. We therefore obtain

(37) N � Y (2−4σ)/3(QT )1/3(Q+X)2/3(QTY )3ε,

in the first case.
We now examine the second case. We shall assume that Y ≤ (QT )A for

some constant A. If % is in the square (34) we see via partial summation
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that ∑
U<n≤2U

anχ(n)n−%e−n/Y

�
∣∣∣ ∑

U<n≤2U

anχ(n)n−se−n/Y
∣∣∣ +

2U∫
U

∣∣∣ ∑
U<n≤V

anχ(n)n−se−n/Y
∣∣∣dV
V
,

where s = σ + iτ. It follows from Cauchy’s inequality that∣∣∣ ∑
U<n≤2U

anχ(n)n−se−n/Y
∣∣∣2 +

2U∫
U

∣∣∣ ∑
U<n≤V

anχ(n)n−se−n/Y
∣∣∣2 dV
V

� (logQT )−2

for � N(logQT )−1 characters χ. Thus, on summing over all χ ∈ S(Q) we
have ∑

χ∈S(Q)

∣∣∣ ∑
U<n≤2U

anχ(n)n−se−n/Y
∣∣∣2

+
2U∫

U

∑
χ∈S(Q)

∣∣∣ ∑
U<n≤V

anχ(n)n−se−n/Y
∣∣∣2 dV
V

� N(logQT )−3.

However, Corollary 3 shows that∑
χ∈S(Q)

∣∣∣ ∑
U<n≤V

anχ(n)n−se−n/Y
∣∣∣2 � (QT )ε(Q+ U)U1−2σe−U/Y ,

since |an| ≤ d(n) � nε for any ε > 0. We therefore conclude in the second
case that

N � (QT )2ε(Q+ U)U1−2σe−U/Y ,

for some U in the range X ≤ U ≤ Y 2, and hence that

(38) N � (QT )2ε(QX1−2σ + Y 2−2σ).

A comparison of (36) and (37) now shows that

N � (QT )ε{Y (2−4σ)/3(QT )1/3(Q+X)2/3 +QX1−2σ + Y 2−2σ}
for any ε > 0. It remains to choose X and Y optimally. This may be done
by taking X = Q and

Y = (Q3T )1/(4−2σ),

whence
N � (QT )ε(Q3T )(1−σ)/(2−σ).

This establishes the bound (35) and Theorem 3 follows.
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