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function fields over finite fields
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1. Introduction. We present a new general construction of s-dimen-
sional low-discrepancy sequences which is based on the theory of algebraic
function fields with finite constant fields. In this framework, the best gen-
eral construction that was known so far, namely that in Niederreiter [8],
can then be viewed as the special case in which one operates in a rational
function field over a finite field. We show that the new construction yields
better low-discrepancy sequences than the earlier construction for a wide
range of dimensions s if one chooses for the underlying algebraic function
fields for example certain elliptic function fields over small finite fields. We
remark that the new construction improves on an earlier construction using
algebraic function fields over finite fields which was sketched in Niederreiter
[11, Section 5], [12, Section 5].

The most powerful known methods for the construction of low-discre-
pancy sequences are based on the theory of (t, s)-sequences. The standard
procedure is to use the so-called digital method (see Section 3 for details)
to obtain (t, s)-sequences, usually in a prime-power base q. In addition to
the constructions mentioned above, important previous constructions using
the digital method are those of Sobol’ [13], Faure [2], and Niederreiter [7].
Our new construction also employs the digital method as the fundamental
construction principle, and we concentrate on the case of a prime-power
base q. The main challenge in the digital method for this case is to choose
certain elements c(i)j,r from the finite field Fq of order q judiciously (compare
with Section 3), and this is where our use of algebraic function fields over
Fq comes in.

In Section 2 we provide the necessary background on (t,m, s)-nets and
(t, s)-sequences. In Section 3 we review the digital method (over finite fields)
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for constructing point sets and sequences and we prove some necessary con-
ditions for the parameters of digital (t,m, s)-nets and digital (t, s)-sequences.
Section 4 serves to establish some basic notation and terminology for alge-
braic function fields. Our new construction of (t, s)-sequences by the digital
method is described in detail in Section 5, and the main results pertaining
to this construction are proved in Section 6. The arguments make heavy use
of the theory of algebraic function fields. In Section 7 we present an example
of an elliptic function field over F2 which demonstrates that with its use we
can, for a wide range of dimensions s, obtain better (t, s)-sequences in base
2 than with the construction in [8] operating in the rational function field
over F2. An analogous example of an elliptic function field over F3, yielding
better (t, s)-sequences in base 3 for many dimensions s, is given in Section 8.

2. (t,m, s)-nets and (t, s)-sequences. With regard to low-discrepancy
point sets and sequences we follow the terminology in the book of Nieder-
reiter [10], to which we refer also for a general background on these topics.
For s ≥ 1 let Is = [0, 1)s be the s-dimensional half-open unit cube. For
a subinterval J of Is and for a point set P consisting of the N points
x0,x1, . . . ,xN−1 ∈ Is we write A(J ;P ) for the number of integers n with
0 ≤ n ≤ N − 1 and xn ∈ J . The star discrepancy D∗N (P ) of P is defined by

D∗N (P ) = sup
J

∣∣∣∣
A(J ;P )
N

− λs(J)
∣∣∣∣,

where the supremum is extended over all subintervals J of Is with one
vertex at the origin and where λs is the s-dimensional Lebesgue measure.
For a sequence S of points in Is, the star discrepancy D∗N (S) is meant to
be the star discrepancy of the first N terms of S.

Let b ≥ 2 and 0 ≤ t ≤ m be integers. Then a (t,m, s)-net in base b is a
point set P consisting of bm points in Is such that A(J ;P ) = bt for every
subinterval J of Is of the form

J =
s∏

i=1

[aib−di , (ai + 1)b−di)

with integers di ≥ 0 and 0 ≤ ai < bdi for 1 ≤ i ≤ s and with λs(J) = bt−m.
For integers b ≥ 2 and t ≥ 0, a sequence x0,x1, . . . of points in Is is a
(t, s)-sequence in base b if, for all integers k ≥ 0 and m > t, the point set
consisting of the xn with kbm ≤ n < (k + 1)bm is a (t,m, s)-net in base b.

Any (t, s)-sequence S in base b is a low-discrepancy sequence, in the
sense that D∗N (S) = O(N−1(logN)s). More precisely, it was shown in [7,
Section 4] (see also [10, Theorem 4.17]) that

D∗N (S) ≤ B(b, s)btN−1(logN)s +O(btN−1(logN)s−1) for all N ≥ 2,
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where the implied constant in the Landau symbol depends only on b and s.
Here

B(b, s) =
1
s

(
b− 1
2 log b

)s

if either s = 2 or b = 2, s = 3, 4; otherwise

B(b, s) =
1
s!
· b− 1

2bb/2c
(bb/2c

log b

)s
.

It is clear from this discrepancy bound, and also from the definition of a
(t, s)-sequence in base b, that small values of t are preferable if one wants
sequences with strong uniformity properties. Therefore, the aim in the con-
struction of (t, s)-sequences in base b is to make the value of t as small as
possible for given b and s. The number t in a (t,m, s)-net or a (t, s)-sequence
is sometimes referred to as the “quality parameter”.

3. The digital method for constructing point sets and sequences.
A general principle for the construction of (t,m, s)-nets and (t, s)-sequences
in base b was introduced in [7, Section 6] and it is referred to as the digital
method . This method can be applied with any base b, but for the purposes
of the present paper it suffices to consider prime-power bases. To conform
with standard notation, we write q for a prime-power base.

Let Fq be the finite field of order q and let m ≥ 1 and s ≥ 1 be integers.
We write Zq = {0, 1, . . . , q − 1} for the least residue system mod q. Now we
choose the following:

(N1) bijections ψr : Zq → Fq for 0 ≤ r ≤ m− 1;
(N2) bijections ηi,j : Fq → Zq for 1 ≤ i ≤ s and 1 ≤ j ≤ m;
(N3) elements c(i)j,r ∈ Fq for 1 ≤ i ≤ s, 1 ≤ j ≤ m, and 0 ≤ r ≤ m− 1.

For n = 0, 1, . . . , qm − 1 let

n =
m−1∑
r=0

ar(n)qr with all ar(n) ∈ Zq

be the digit expansion of n in base q. We put

x(i)
n =

m∑

j=1

y
(i)
n,jq

−j for 0 ≤ n < qm and 1 ≤ i ≤ s,

with

y
(i)
n,j = ηi,j

(m−1∑
r=0

c
(i)
j,rψr(ar(n))

)
∈ Zq for 0 ≤ n < qm, 1 ≤ i ≤ s, 1 ≤ j ≤ m,

and define the point set

(1) xn = (x(1)
n , . . . , x(s)

n ) ∈ Is for n = 0, 1, . . . , qm − 1.
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If this point set is a (t,m, s)-net in base q, then it is called a digital (t,m, s)-
net in base q .

For the construction of sequences one proceeds in an analogous fashion.
Let the prime power q and the dimension s ≥ 1 be given. Then we choose
the following:

(S1) bijections ψr : Zq → Fq for r ≥ 0, with ψr(0) = 0 for all sufficiently
large r;

(S2) bijections ηi,j : Fq → Zq for 1 ≤ i ≤ s and j ≥ 1, with ηi,j(0) = 0
for 1 ≤ i ≤ s and all sufficiently large j;

(S3) elements c(i)j,r ∈ Fq for 1 ≤ i ≤ s, j ≥ 1, and r ≥ 0, where for fixed i

and r we have c(i)j,r = 0 for all sufficiently large j.

For n = 0, 1, . . . let

n =
∞∑
r=0

ar(n)qr

be the digit expansion of n in base q, where ar(n) ∈ Zq for r ≥ 0 and
ar(n) = 0 for all sufficiently large r. We put

x(i)
n =

∞∑

j=1

y
(i)
n,jq

−j for n ≥ 0 and 1 ≤ i ≤ s,
with

y
(i)
n,j = ηi,j

( ∞∑
r=0

c
(i)
j,rψr(ar(n))

)
∈ Zq for n ≥ 0, 1 ≤ i ≤ s, and j ≥ 1.

Note that the sum over r is a finite sum since ψr(0) = 0 and ar(n) = 0
for all sufficiently large r. From the conditions (S2) and (S3) it follows that
each x(i)

n is given by an expansion with finitely many terms. We now define
the sequence

(2) xn = (x(1)
n , . . . , x(s)

n ) ∈ Is for n = 0, 1, . . .

If this sequence is a (t, s)-sequence in base q, then it is called a digital
(t, s)-sequence in base q . A recent survey of (t,m, s)-net and (t, s)-sequence
constructions, most of which use the digital method, is given in [6].

R e m a r k 1. In the terminology of Larcher, Niederreiter, and Schmid [3]
we would have to speak of digital (t,m, s)-nets and digital (t, s)-sequences
“constructed over the finite field Fq”, but since for each prime power q there
is exactly one finite field of order q (up to field isomorphisms), our shorter
terminology will cause no confusion.

The quality parameter t arising from the construction of nets by the
digital method is determined by Lemma 1 below. The following definition
is a special case of [10, Definition 4.27].
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Definition 1. For a two-parameter system C = {c(i)
j ∈ Fm : 1 ≤ i

≤ s, 1 ≤ j ≤ m} of vectors in Fm, where F is an arbitrary field, let %(C) be
the largest integer d such that any subsystem {c(i)

j : 1 ≤ j ≤ di, 1 ≤ i ≤ s}
with 0 ≤ di ≤ m for 1 ≤ i ≤ s and

∑s
i=1 di = d is linearly independent over

F (here the empty system is viewed as linearly independent).

Lemma 1. Let C = {c(i)
j ∈ Fmq : 1 ≤ i ≤ s, 1 ≤ j ≤ m} with

c(i)
j = (c(i)j,0, . . . , c

(i)
j,m−1) for 1 ≤ i ≤ s, 1 ≤ j ≤ m,

where the elements c(i)j,r ∈ Fq are as in (N3). Then the point set in (1) is a
digital (t,m, s)-net in base q if and only if %(C) ≥ m− t.

P r o o f. This follows by combining Theorems 6.10 and 6.14 in [7]. Ob-
serve that the quantity %(C) used in [7, Section 6] exceeds the quantity %(C)
given by Definition 1 above by 1.

To get an analogous result for sequences, we let F∞q be the sequence
space over Fq and we consider the two-parameter system

C(∞) = {c(i)
j ∈ F∞q : 1 ≤ i ≤ s and j ≥ 1},

where
c(i)
j = (c(i)j,0, c

(i)
j,1, . . .) for 1 ≤ i ≤ s and j ≥ 1

and where the elements c(i)j,r ∈ Fq are as in (S3). For m ≥ 1 we define the
projection

πm : (c0, c1, . . .) ∈ F∞q 7→ (c0, . . . , cm−1) ∈ Fmq ,
and we put

C(m) = {πm(c(i)
j ) ∈ Fmq : 1 ≤ i ≤ s, 1 ≤ j ≤ m}.

Lemma 2. With the notation above, the sequence in (2) is a digital (t, s)-
sequence in base q if and only if

%(C(m)) ≥ m− t for all integers m > t.

P r o o f. This follows by combining Theorems 6.23 and 6.25 in [7] and
using the observation in the proof of Lemma 1.

R e m a r k 2. It follows from Lemmas 1 and 2 that the quality parameter
t in digital (t,m, s)-nets and digital (t, s)-sequences in base q depends only
on the elements c(i)j,r ∈ Fq in (N3) and (S3), respectively, and not on the
bijections chosen in the digital method.

The best general construction of digital (t, s)-sequences in a prime-power
base q that was available so far is the construction in Niederreiter [8, Sec-
tion 3]. This construction yields, for every prime power q and every dimen-
sion s ≥ 1, a digital (Tq(s), s)-sequence in base q, where the number Tq(s)



286 H. Niederreiter and C. P. Xing

is defined as follows. We list all monic irreducible polynomials over Fq by
nondecreasing degrees in a sequence k1, k2, . . . , and then with ei = deg(ki)
we put

(3) Tq(s) =
s∑

i=1

(ei − 1).

It follows from [8, Theorem 2] that

(4) Tq(s) = O(s log s).

A software implementation of these sequences was carried out by Bratley,
Fox, and Niederreiter [1]. The numerical experiments in [1] indicate that
among these sequences, those in base q = 2 perform best in the important
task of multidimensional numerical integration. The case q = 2 is also the
most convenient one for computer implementation. For these reasons, and
also for the sake of comparison with our new construction, we tabulate some
values of Tq(s) for q = 2. Table 1 is extracted from [8, Table II]. Further
values of T2(s) can be found in Table 2.

Table 1. Values of T2(s) for 1 ≤ s ≤ 15

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T2(s) 0 0 1 3 5 8 11 14 18 22 26 30 34 38 43

The following lemma is a variant of [7, Lemma 5.15].

Lemma 3. If there exists a digital (t, s)-sequence in base q , then for every
m ≥ t there exists a digital (t,m, s+ 1)-net in base q.

P r o o f. Let

xn = (x(1)
n , . . . , x(s)

n ) ∈ Is for n = 0, 1, . . .

be a digital (t, s)-sequence in base q. In view of Remark 2 we can assume
that the bijections ψr in (S1) are chosen in such a way that ψr(0) = 0 for
all r ≥ 0. For fixed m ≥ t the points

yn = (x(1)
n , . . . , x(s)

n , n/qm) ∈ Is+1 for n = 0, 1, . . . , qm − 1

form a (t,m, s + 1)-net in base q by [7, Lemma 5.15]. It remains to prove
that the yn (with appropriate truncations of the q-adic expansions of the
coordinates x(i)

n ) are obtained by the digital method for the construction
of nets, and it clearly suffices to show this for the last coordinates of these
points. In (N2) we choose ηs+1,j to be the inverse map of ψm−j for 1 ≤ j ≤
m, and in (N3) we choose

c
(s+1)
j,r = δr,m−j for 1 ≤ j ≤ m and 0 ≤ r ≤ m− 1,



Low-discrepancy sequences 287

where on the right-hand side we have the Kronecker symbol viewed as an
element of Fq. Then the digital method yields x(s+1)

n = n/qm for 0 ≤ n
< qm.

The following result is based on an idea of Larcher and Schmid [4]. We
present a slightly different proof that allows us to use a well-known bound
from coding theory (the connection between digital nets and coding theory
was already pointed out in [7, Remark 7.13]).

Proposition 1. Suppose that for some integers s ≥ 1, t ≥ 0, and u ≥ 0
there exists a digital (t, t+ u, s)-net in base q. Then

min(bu/2c,s)∑

h=0

(
s

h

)
(q − 1)h ≤ qt+u.

P r o o f. We can assume u ≥ 2 and m := t + u < s, for otherwise the
bound is trivial. Let C = {c(i)

j ∈ Fmq : 1 ≤ i ≤ s, 1 ≤ j ≤ m} be the system
derived from the given digital (t, t+u, s)-net in base q as in Lemma 1. By this
lemma we have %(C) ≥ m− t = u, hence any u of the vectors c(i)

1 , 1 ≤ i ≤ s,
are linearly independent over Fq. Now we use the c(i)

1 , 1 ≤ i ≤ s, as the
columns of an m × s parity-check matrix of a linear code L over Fq with
length s and dimension k ≥ s − m. In view of [5, Lemma 8.14], L has
minimum distance ≥ u + 1, and so L can correct up to bu/2c errors by [5,
Theorem 8.12]. Now the Hamming bound [5, Theorem 8.25] yields

qk
bu/2c∑

h=0

(
s

h

)
(q − 1)h ≤ qs,

and this implies the desired result.

Corollary 1. Suppose that for some integers s ≥ 1 and t ≥ 0 there
exists a digital (t, s)-sequence in base q. Then

min(u,s+1)∑

h=0

(
s+ 1
h

)
(q − 1)h ≤ qt+2u for all integers u ≥ 0.

P r o o f. This follows from Lemma 3 and Proposition 1.

Corollary 2. Suppose that for some integers s ≥ 1 and t ≥ 0 there
exists a digital (t, s)-sequence in base q. Then

s+ 1 <
q2e

q − 1
(bt log qc+ 1).

P r o o f. Put u = bt log qc + 1. If u > s + 1, then the bound is trivial. If
u ≤ s+ 1, then an application of Corollary 1 yields
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(
s+ 1
u

)u
(q − 1)u ≤

(
s+ 1
u

)
(q − 1)u < qt+2u,

and so

s+ 1 <
q2

q − 1
uqt/u <

q2e

q − 1
u.

R e m a r k 3. Corollary 2 shows that, for fixed q, the least value dq(s) of t
such that there exists a digital (t, s)-sequence in base q grows at least linearly
with s. On the other hand, we have dq(s) = O(s log s) by (4). In particu-
lar, the construction of digital (t, s)-sequences in base q due to Niederreiter
[8, Section 3] yields quality parameters t which, in terms of asymptotic or-
ders of magnitude as s→∞, are off by at most a factor log s from dq(s).

4. Notation and terminology for algebraic function fields. For
the theory of algebraic function fields we mostly follow the notation and
terminology in the book of Stichtenoth [14]. For an arbitrary field F , let K
be an algebraic function field with F as its full constant field. We express
this fact by simply saying that K/F is an algebraic function field. The genus
of K/F is denoted by g.

We write νP for the normalized discrete valuation corresponding to the
place P of K/F . Let x ∈ K\{0} and denote by Z(x), respectively N(x), the
set of zeros, respectively poles, of x. Then we define the zero divisor of x by

(x)0 =
∑

P∈Z(x)

νP (x)P

and the pole divisor of x by

(x)∞ =
∑

P∈N(x)

(−νP (x))P.

Furthermore, the principal divisor of x is given by

(x) = (x)0 − (x)∞.

For an arbitrary divisor D of K/F we put

L(D) = {x ∈ K\{0} : (x) +D ≥ 0} ∪ {0}.
Then L(D) is a finite-dimensional vector space over F , and we denote its
dimension by l(D).

If P∞ is a place of K/F of degree 1 and z is a local uniformizing param-
eter at P∞, then every x ∈ K has an expansion

x =
∞∑
r=v

arz
r,

where νP∞(x) ≥ v and all ar ∈ F . The following definition is crucial.



Low-discrepancy sequences 289

Definition 2. A positive integer n is called a pole number of P∞ if there
exists an element x ∈ K with (x)∞ = nP∞. Otherwise, n is called a gap
number of P∞.

By the Weierstrass gap theorem [14, Theorem I.6.7], there are exactly
g gap numbers of P∞, and 1 is a gap number of P∞ whenever g > 0.
In particular, if n1 < n2 < . . . are the pole numbers of P∞ arranged in
increasing order, then

(5) nr ≤ g + r for r = 1, 2, . . .

R e m a r k 4. If K/F is a rational function field, then g = 0 and we have
nr = r for all r ≥ 1.

R e m a r k 5. If K/F is an elliptic function field, then g = 1 and we have
nr = r + 1 for all r ≥ 1.

5. The new construction of sequences. The notation in Section 4
will remain operative. For the purpose of constructing digital (t, s)-sequences
in base q, it suffices to consider algebraic function fields K/Fq, but the
arguments leading to Theorem 1 in Section 6 are valid for general algebraic
function fields K/F .

We fix a place P∞ of K/F of degree 1 and let R be the ring

R = {x ∈ K : νP (x) ≥ 0 for all places P 6= P∞ of K/F} .
Given an integer s ≥ 1, we choose k1, . . . , ks ∈ R satisfying the following
two conditions:

(i) the zero sets Z(k1), . . . , Z(ks) are pairwise disjoint;
(ii) nei − ei < n1 for 1 ≤ i ≤ s, where ei := −νP∞(ki) ≥ 1 for 1 ≤ i ≤ s.
Since nr is a pole number of P∞, we can find wr ∈ R such that (wr)∞ =

nrP∞ for r ≥ 1. Note that each ei, 1 ≤ i ≤ s, is a pole number of P∞ since
(ki)∞ = eiP∞. Thus, for each 1 ≤ i ≤ s there exists a uniquely determined
positive integer fi with nfi = ei, and it is trivial that fi ≤ ei. For each
1 ≤ i ≤ s we define the set

{wi,0, wi,1, . . . , wi,ei−1} = {1, w1, . . . , wei}\{wfi}.
Lemma 4. For each 1 ≤ i ≤ s, the element ki is not an F-linear combi-

nation of wi,0, wi,1, . . . , wi,ei−1.

P r o o f. For n ≥ 1 we have l(nP∞) − l((n − 1)P∞) = 0 or 1, and the
latter case happens if and only if n is a pole number of P∞. Also wr ∈
L(nrP∞)\L((nr − 1)P∞) for r ≥ 1, and so {1, w1, . . . , wfi} is a basis of
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L(eiP∞). Since ki ∈ L(eiP∞), we have

ki = a0 +
fi∑

h=1

ahwh

with a0, a1, . . . , afi ∈ F , and it is easy to see that afi 6= 0 since νP∞(ki) =
−ei = νP∞(wfi). On the other hand, the elements 1, w1, . . . , wei are linearly
independent over F , and so ki is not an F -linear combination of the elements
of {1, w1, . . . , wei}\{wfi}.

We can now define the elements c(i)j,r ∈ F which in the case F = Fq serve
as the elements in (S3) in the construction of sequences described in Section
3. For 1 ≤ i ≤ s and j ≥ 1 we write

j − 1 = Q(i, j)ei + u(i, j)

with integers Q(i, j) and u(i, j), where 0 ≤ u(i, j) ≤ ei − 1. Then

νP∞(wi,u(i,j)k
−Q(i,j)−1
i ) ≥ νP∞(wei)− (Q(i, j) + 1)νP∞(ki)

= −nei + (Q(i, j) + 1)ei ≥ ei − nei ≥ −g,
where we used (5) in the last step. Hence we have the following expansion
at P∞:

(6) wi,u(i,j)k
−Q(i,j)−1
i = z−g

∞∑
r=0

c
(i)
j,rz

r with c
(i)
j,r ∈ F.

For fixed i it is clear that Q(i, j) → ∞ as j → ∞, and so for fixed i and r

we have c(i)j,r = 0 for all sufficiently large j. Thus, in the case F = Fq the
condition in (S3) in Section 3 is satisfied.

R e m a r k 6. The condition (ii) above is clearly satisfied if the set of gap
numbers of P∞ is {1, . . . , g}. Properties equivalent to the latter property are:
(a) n1 = g + 1; (b) nr = g + r for all r ≥ 1; (c) l(nP∞) = n + 1 − g for
all n ≥ g. In particular, the condition (ii) is satisfied if K/F is a rational
function field or an elliptic function field (compare with Remarks 4 and 5).

6. The main results. Let the elements c(i)j,r ∈ F be defined by (6). In
analogy with the definition of the two-parameter system C(∞) in Section 3
we put

c(i)
j = (c(i)j,0, c

(i)
j,1, . . .) ∈ F∞ for 1 ≤ i ≤ s and j ≥ 1,

and
C(∞) = {c(i)

j : 1 ≤ i ≤ s and j ≥ 1}.
Furthermore, with the projection

πm : (c0, c1, . . .) ∈ F∞ 7→ (c0, . . . , cm−1) ∈ Fm for m ≥ 1
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we define

C(m) = {πm(c(i)
j ) ∈ Fm : 1 ≤ i ≤ s, 1 ≤ j ≤ m}.

Then for the numbers %(C(m)) given by Definition 1 we have the following
result.

Theorem 1. With the notation above, and under the conditions in Sec-
tion 5, we have

%(C(m)) ≥ m− g − 1−
s∑

i=1

(ei − 1) for all m ≥ 1,

where g is the genus of K/F and ei = −νP∞(ki) for 1 ≤ i ≤ s.
P r o o f. It suffices to verify the following property: for any integer m >

g + 1 +
∑s
i=1(ei − 1) and any integers d1, . . . , ds ≥ 0 with 1 ≤ ∑s

i=1 di ≤
m− g − 1−∑s

i=1(ei − 1), the vectors

πm(c(i)
j ) = (c(i)j,0, . . . , c

(i)
j,m−1) ∈ Fm for 1 ≤ j ≤ di, 1 ≤ i ≤ s,

are linearly independent over F . Suppose that we have

(7)
s∑

i=1

di∑

j=1

a
(i)
j πm(c(i)

j ) = 0 ∈ Fm

for some a(i)
j ∈ F , where we can assume without loss of generality that all

di ≥ 1. Then we consider the element k ∈ K given by

k =
s∑

i=1

di∑

j=1

a
(i)
j wi,u(i,j)k

−Q(i,j)−1
i

=
s∑

i=1

di∑

j=1

a
(i)
j z−g

∞∑
r=0

c
(i)
j,rz

r = z−g
∞∑
r=0

( s∑

i=1

di∑

j=1

a
(i)
j c

(i)
j,r

)
zr.

From (7) we get νP∞(k) ≥ m− g.
By collecting equal powers of ki, we can write k in the form

k =
s∑

i=1

Qi+1∑

h=1

pi,hk
−h
i ,

where Qi = b(di − 1)/eic and pi,h ∈ R is an F -linear combination of
wi,0, wi,1, . . . , wi,ei−1. Let

b =
s∏

i=1

kQi+1
i ∈ R.
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Then kb ∈ R and

νP∞(kb) ≥ m− g −
s∑

i=1

(Qi + 1)ei ≥ m− g −
s∑

i=1

(di − 1 + ei) ≥ 1.

It follows that k = 0, hence

(8)
s∑

i=1

Qi+1∑

h=1

pi,hk
−h
i = 0.

Now we fix an i with 1 ≤ i ≤ s. From (8) and condition (i) in Section 5
we obtain

pi,Qi+1 = kix with some x ∈ R.
Suppose we had pi,Qi+1 6= 0. Then, since pi,Qi+1 is an F -linear combination
of 1, w1, . . . , wei , we get

neiP∞ ≥ (pi,Qi+1)∞ = (kix)∞ = eiP∞ + (x)∞,

and so
(x)∞ ≤ (nei − ei)P∞ < n1P∞

by condition (ii) in Section 5. But n1 is the least pole number of P∞, hence we
must have x ∈ F . It follows that ki = x−1pi,Qi+1 is an F -linear combination
of wi,0, wi,1, . . . , wi,ei−1, which is a contradiction to Lemma 4. Thus we have
proved that pi,Qi+1 = 0.

Now we return to (8) and, using the same arguments, we can show that
pi,h = 0 for all i and h, that is, a(i)

j = 0 for 1 ≤ j ≤ di, 1 ≤ i ≤ s.
R e m a r k 7. If K/F is a rational function field, then g = 0 and fi = ei

for 1 ≤ i ≤ s by Remark 4. Thus, in Section 5 we have

νP∞(wi,u(i,j)k
−Q(i,j)−1
i ) ≥ 1 = −g + 1,

and so obvious modifications in the proof of Theorem 1 yield the result

%(C(m)) ≥ m− g −
s∑

i=1

(ei − 1) = m−
s∑

i=1

(ei − 1) for all m ≥ 1.

Now we specialize F to be the finite field Fq. We choose bijections ψr
and ηi,j as in (S1) and (S2), respectively, in Section 3. Furthermore, we
determine the elements c(i)j,r ∈ Fq by (6), where we work with an algebraic

function field K/Fq in Section 5. These c(i)j,r serve as the elements in (S3)
in Section 3. If we now follow the digital method for the construction of
sequences described in Section 3, then we obtain the sequence x0,x1, . . . of
points in Is.

Theorem 2. Let q be a prime power and s ≥ 1. Then, under the condi-
tions in Section 5 relating to the algebraic function field K/Fq, the sequence
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x0,x1, . . . defined above is a digital (t, s)-sequence in base q with

t = g + 1 +
s∑

i=1

(ei − 1),

where g is the genus of K/Fq and ei = −νP∞(ki) for 1 ≤ i ≤ s.
P r o o f. This follows from Lemma 2 and the case F = Fq of Theorem 1.

Corollary 3. Let q be a prime power and s ≥ 1. Suppose that the
conditions in Section 5 relating to the algebraic function field K/Fq are
satisfied , and let t be as in Theorem 2. Then for every m ≥ t there exists a
digital (t,m, s+ 1)-net in base q.

P r o o f. This follows from Lemma 3 and Theorem 2.

R e m a r k 8. Let Fq(z) be the rational function field over Fq. In the
construction described in Section 5, we choose P∞ to be the pole of z and
we let k1, . . . , ks be s distinct monic irreducible polynomials over Fq of least
degrees. Then condition (i) in Section 5 holds trivially and condition (ii)
in Section 5 holds in view of Remark 6, and we note that ei = deg(ki) for
1 ≤ i ≤ s. If we also take into account Remark 7, then the construction in
Section 5 yields a digital (Tq(s), s)-sequence in base q, where Tq(s) is as in
(3). Therefore the present construction, when applied to Fq(z), yields the
same quality parameters as the construction in [8, Section 3].

R e m a r k 9. The result of Theorem 1 with F = Fq is also of relevance
in the combinatorial problem for vector spaces over finite fields discussed by
Niederreiter [9], [12, Section 5].

7. An example for q = 2. We show by way of an example that our
new construction yields (t, s)-sequences in base 2 which, for a wide range of
dimensions s of practical interest (e.g. for 16 ≤ s ≤ 126), have the currently
smallest quality parameters t. In particular, this example demonstrates that
certain algebraic function fields K/F2 of positive genus produce better se-
quences than the rational function field over F2 (see Remark 8 for the latter).
We recall from Section 3 that (t, s)-sequences in base 2 tend to be the most
useful ones from the practical point of view. For this and the following sec-
tion, we refer to [14, Chapters V and VI] for the necessary background.

Let K/F2 be the function field of the elliptic curve

y2 + y = x3 + x+ 1 over F2.

This curve has exactly one F2-rational point, namely the point (0 : 1 : 0) at
infinity. Therefore, the elliptic function field K/F2 has a unique place P∞ of
degree 1, and the class number of K/F2 is 1, where by the class number we
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mean the index of the subgroup of principal divisors in the group of divisors
of degree 0.

We list all places 6= P∞ of K/F2 by nondecreasing degrees in a sequence
P1, P2, . . . Since K/F2 has class number 1, the divisor

Pi − (deg(Pi))P∞

is principal for i = 1, 2, . . . Given s ≥ 1, we choose k1, . . . , ks ∈ K such that

(9) (ki) = Pi − (deg(Pi))P∞ for 1 ≤ i ≤ s.
Each ki is in R, and the condition (i) in Section 5 is clearly satisfied. In view
of Remark 6, the condition (ii) in Section 5 is also satisfied, and by (9) we
have ei = −νP∞(ki) = deg(Pi). We put

E2(s) = 2 +
s∑

i=1

(ei − 1).

Then we can deduce the following results from Theorem 2 and Corollary 3.

Theorem 3. For every s ≥ 1 there exists a digital (E2(s), s)-sequence in
base 2.

Corollary 4. For every s ≥ 1 and m ≥ E2(s) there exists a digital
(E2(s),m, s+ 1)-net in base 2.

For r ≥ 1 let Br be the number of places of K/F2 of degree r, and put
M1 = 0 and

Mn =
n∑
r=2

Br for n ≥ 2.

For given s ≥ 1 let n(s) be the largest integer with Mn(s) ≤ s. Then we
clearly have

(10) E2(s) = 2 +
n(s)∑
r=2

(r − 1)Br + (s−Mn(s))n(s).

To tabulate E2(s), it remains to find a formula for Br. Let L ∈ Z[u] be the
L-polynomial of K/F2, i.e., the numerator of the zeta function of K/F2 (see
[14, Definition V.1.14]). Then L(u) = 2u2− 2u+ 1 by [14, Theorem V.1.15],
and α1 = 1 + i and α2 = 1− i are the reciprocals of the complex roots of L.
We put

Sr = αr1 + αr2 = 2(r+2)/2 cos
πr

4
for r = 1, 2, . . .

Then by [14, Proposition V.2.9] we have

Br =
1
r

∑

d|r
µ

(
r

d

)
(2d − Sd) for r ≥ 2,
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where the sum is over all positive integers d dividing r and µ is the Möbius
function. Together with (10) this allows the straightforward calculation of
E2(s).

We tabulate some values of E2(s) in Table 2. Since the tables of quality
parameters in [6] extend to dimension s = 50, we go up to this value of s as
well. When we compare the values of E2(s) with those of T2(s) from (3) in
this range, we find that E2(s) > T2(s) for 1 ≤ s ≤ 14, E2(15) = T2(15), and
E2(s) < T2(s) for 16 ≤ s ≤ 50. For the purpose of getting (t, s)-sequences
in base 2 with smaller quality parameters t, it is thus the last range which
is of interest. The following values of Br are needed for this range:

B2 = 2, B3 = 4, B4 = 5, B5 = 8, B6 = 8, B7 = 16, B8 = 25.

In Table 2 we include the values of T2(s) for 16 ≤ s ≤ 50 for the sake of
comparison.

Table 2. Values of E2(s) and T2(s) for 16 ≤ s ≤ 50

s 16 17 18 19 20 21 22 23 24 25 26 27

E2(s) 47 51 55 59 64 69 74 79 84 89 94 99

T2(s) 48 53 58 63 68 73 78 83 89 95 101 107

s 28 29 30 31 32 33 34 35 36 37 38

E2(s) 105 111 117 123 129 135 141 147 153 159 165

T2(s) 113 119 125 131 137 143 149 155 161 167 173

s 39 40 41 42 43 44 45 46 47 48 49 50

E2(s) 171 177 183 189 195 202 209 216 223 230 237 244

T2(s) 179 185 191 198 205 212 219 226 233 240 247 254

The calculation of the values of E2(s) can easily be carried further.
A comparison with the values of T2(s) yields the following results:

E2(s) < T2(s) for 16 ≤ s ≤ 126,

E2(s) = T2(s) for 127 ≤ s ≤ 218,

E2(s) > T2(s) for 219 ≤ s ≤ 1378,

E2(1379) = T2(1379),

E2(1380) < T2(1380).

We conjecture that the oscillating behavior of the differences E2(s)− T2(s)
continues indefinitely.

An asymptotic upper bound for E2(s) can be obtained in a straightfor-
ward manner. First of all, (10) implies

E2(s) ≤ n(s)s+ 2.
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Next, for n ≥ 1 we have

(Mn + 1)n = n

n∑
r=1

Br ≥
∑

d|n
dBd.

By using the formula (2.23) on p. 178 of [14] and the Hasse–Weil bound, we
get

(Mn + 1)n ≥ 2n + 1− 2(n+2)/2.

Thus, the definition of n(s) yields n(s) = O(log s), and so

E2(s) = O(s log s).

By (4) this is the same result as for T2(s).

R e m a r k 10. For those dimensions s for which E2(s) < T2(s), we get
improved (t, s)-sequences in base b for all b ≡ 2 mod 4. This follows by using
Theorem 3 of the present paper in the proof of [10, Corollary 4.51].

8. An example for q = 3. We proceed in analogy with Section 7 to ob-
tain (t, s)-sequences in base 3 with the currently smallest quality parameters
t for certain dimensions s.

Let K/F3 be the function field of the elliptic curve

y2 = x3 + 2x+ 2 over F3.

This curve has exactly one F3-rational point, namely the point (0 : 1 : 0) at
infinity. Therefore, the elliptic function field K/F3 has a unique place P∞ of
degree 1, and the class number ofK/F3 is 1. We continue in complete analogy
with Section 7. In particular, for given s ≥ 1 we choose k1, . . . , ks ∈ R such
that (9) holds. Then the conditions (i) and (ii) in Section 5 are satisfied.
With ei = deg(Pi) for 1 ≤ i ≤ s we put

E3(s) = 2 +
s∑

i=1

(ei − 1).

Then we have the following analogs of Theorem 3 and Corollary 4, respec-
tively.

Theorem 4. For every s ≥ 1 there exists a digital (E3(s), s)-sequence in
base 3.

Corollary 5. For every s ≥ 1 and m ≥ E3(s) there exists a digital
(E3(s),m, s+ 1)-net in base 3.

Values of E3(s) are calculated by (10), with Br and Mn now referring of
course to K/F3. The L-polynomial of K/F3 is L(u) = 3u2 − 3u + 1. If α1

and α2 are the reciprocals of the complex roots of L, then we put

Sr = αr1 + αr2 for r = 0, 1, . . .
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The Sr are most conveniently computed by the recursion

Sr+2 = 3Sr+1 − 3Sr for r ≥ 0,

with initial values S0 = 2 and S1 = 3. We have

Br =
1
r

∑

d|r
µ

(
r

d

)
(3d − Sd) for r ≥ 2.

The actual calculation of the values of E3(s) and the comparison with
the values of T3(s) from (3) shows that the least dimension s for which
E3(s) < T3(s) is s = 199. We tabulate some selected values of E3(s) and
the corresponding values of T3(s) in Table 3. The following values of Br are
needed to get the values of E3(s) in Table 3:

B2 = 3, B3 = 9, B4 = 21, B5 = 54, B6 = 125.

Table 3. Selected values of E3(s) and T3(s)

s 3 10 100 197 198 199 200 201 202 203 204

E3(s) 5 19 367 852 857 862 867 872 877 882 887

T3(s) 0 11 365 851 857 863 869 875 881 887 893

s 205 206 207 208 209 210 211 212

E3(s) 892 897 902 907 912 917 922 927

T3(s) 899 905 911 917 923 929 935 941

Further calculations of E3(s) using B7 = 324 and B8 = 819 show, for
instance, that E3(s) < T3(s) for 199 ≤ s ≤ 1355. It seems likely, however,
that E3(s)− T3(s) is oscillating (compare with our analogous conjecture in
Section 7). As before one proves that

E3(s) = O(s log s).

Furthermore, the analog of Remark 10 holds for bases b ≡ 3 or 6 mod 9.
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sion s), Acta Arith. 41 (1982), 337–351.

[3] G. Larcher, H. Niederre i ter and W. C. Schmid, Digital nets and sequences
constructed over finite rings and their application to quasi-Monte Carlo integration,
Monatsh. Math., to appear.



298 H. Niederreiter and C. P. Xing

[4] G. Larcher and W. C. Schmid, Multivariate Walsh series, digital nets and quasi-
Monte Carlo integration, in: Monte Carlo and Quasi-Monte Carlo Methods in Scien-
tific Computing, H. Niederreiter and P. J.-S. Shiue (eds.), Lecture Notes in Statist.,
Springer, Berlin, to appear.

[5] R. Lid l and H. Niederre i ter, Introduction to Finite Fields and Their Applica-
tions, revised ed., Cambridge Univ. Press, Cambridge, 1994.

[6] G. L. Mul len, A. Mahalanabis and H. Niederre i ter, Tables of (t,m, s)-net
and (t, s)-sequence parameters, in: Monte Carlo and Quasi-Monte Carlo Methods
in Scientific Computing, H. Niederreiter and P. J.-S. Shiue (eds.), Lecture Notes in
Statist., Springer, Berlin, to appear.

[7] H. Niederre i ter, Point sets and sequences with small discrepancy, Monatsh. Math.
104 (1987), 273–337.

[8] —, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988),
51–70.

[9] —, A combinatorial problem for vector spaces over finite fields, Discrete Math. 96
(1991), 221–228.

[10] —, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadel-
phia, Penn., 1992.

[11] —, Pseudorandom numbers and quasirandom points, Z. Angew. Math. Mech. 73
(1993), T648–T652.

[12] —, Factorization of polynomials and some linear-algebra problems over finite fields,
Linear Algebra Appl. 192 (1993), 301–328.

[13] I. M. Sobol ’, The distribution of points in a cube and the approximate evaluation
of integrals, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 784–802 (in Russian).

[14] H. St ichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
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