The 4-rank of K_2O_F for real quadratic fields F

by

HOURONG QIN (Nanjing)

1. Introduction. Let F be a number field, and let O_F be the ring of its integers. Several formulas for the 4-rank of K_2O_F are known (see [7], [5], etc.). If $\sqrt{-1} \notin F$, then such formulas are related to S-ideal class groups of Fand $F(\sqrt{-1})$, and the numbers of dyadic places in F and $F(\sqrt{-1})$, where Sis the set of infinite dyadic places of F. In [11], the author proposes a method which can be applied to determine the 4-rank of K_2O_F for real quadratic fields F with $2 \notin NF$. The author also lists many real quadratic fields with the 2-Sylow subgroups of K_2O_F being isomorphic to $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$. In [12], the author gives a 4-rank K_2O_F formula for imaginary quadratic fields F. By the formula, it is enough to compute some Legendre symbols when one wants to know 4-rank K_2O_F for a given imaginary quadratic fields F. In the present paper, we give a similar formula for real quadratic fields F. Then we give 4-rank K_2O_F tables for real quadratic fields $F = \mathbb{Q}(\sqrt{d})$ whose discriminants have at most three odd prime divisors.

2. Preliminaries. Given integers a, b with $b \neq 0$, (a/b) denotes the Jacobi symbol, in particular, if b = p, an odd prime, then (a/p) is the Legendre symbol. Denote by \mathbb{N} the set of all positive integers. Let $F = \mathbb{Q}(\sqrt{d}), d \in \mathbb{N}$ squarefree. Put $\Delta = \{c \in F^{\cdot} \mid \{-1, c\} = 1\}$. Then by a result of Tate [13], it is quite easy to see that for any real quadratic field F, $[\Delta: F^{\cdot 2}] = 2$, and if $F \neq \mathbb{Q}(\sqrt{2})$, then $\Delta = F^{\cdot 2} \cup 2F^{\cdot 2}$. By [2], we know that if $c \in \{-1, 2, -2\} \cap NF$, then there are $u, w \in \mathbb{N}$ such that $d = u^2 - cw^2$. Also by [2], we have:

LEMMA 2.1. Let $F = \mathbb{Q}(\sqrt{d}), d \in \mathbb{N}$ squarefree. Then the subgroup of K_2O_F consisting of all elements of order ≤ 2 can be generated by the following elements:

• $\{-1, m\}, m \mid d;$

• $\{-1, u_i + \sqrt{d}\}$ with $d = u_i^2 - c_i w_i^2$, where $c_i \in \{-1, 2, -2\}$ and $u_i, w_i \in \mathbb{N}$.

H. Qin

In [11], the author shows the following theorem.

THEOREM 2.2. Let $F = \mathbb{Q}(\sqrt{d}), d \in \mathbb{N}$ squarefree. Then for every $m \mid d$ with $m \in \mathbb{N}$, there exists $\alpha \in K_2O_F$ with $\alpha^2 \in \{-1, m\}$ if and only if there exists $\varepsilon \in \{\pm 1, \pm 2\}$ such that

$$(dm^{-1}/p) = (\varepsilon/p)$$
 for every odd prime $p \mid m$;

and

$$(m/l) = (\varepsilon/l)$$
 for every odd prime $l \mid dm^{-1}$.

In the next section, we shall deal with the case when $2 \in NF$. Then we can obtain the 4-rank K_2O_F formula for a real quadratic field F.

3. The 4-rank of K_2O_F . Let $F = \mathbb{Q}(\sqrt{d}), d \in \mathbb{N}$ squarefree. Suppose that $2 \in NF$. Then $d = u^2 - 2w^2$ with $u, w \in \mathbb{N}$. We want to know when there exists $\alpha \in K_2O_F$ such that $\alpha^2 = \{-1, u + \sqrt{d}\}$. By a theorem due to Bass and Tate [8], we see that there exists $\beta \in K_2F$ such that $\{-1, u + \sqrt{d}\} = \beta^2$ if and only if there exist $x, y \in F$ with $x^2 + y^2 = u + \sqrt{d}$.

LEMMA 3.1. Let $F = \mathbb{Q}(\sqrt{d}), d \in \mathbb{N}$ squarefree. Assume that $d = u^2 - 2w^2 \equiv 1 \pmod{8}$, where $u, w \in \mathbb{N}$. If (u + w/d) = -1, then in F, $u + \sqrt{d}$ cannot be represented by the sum of two squares.

Proof. Since $d \equiv 1 \pmod{8}$, $2O_F = P\overline{P}$, where $P \neq \overline{P}$ is a prime ideal of F. We have F_P (the completion of F at P) $\cong \mathbb{Q}_2$. We may assume that $F \subseteq \mathbb{Q}_2$.

It follows from $d = u^2 - 2w^2$ that (-d/u+w) = 1. Hence, (u+w/d) = -1implies that $u + w \equiv 3 \pmod{4}$. We note that if v is a unit in \mathbb{Q}_2 , then the Hilbert symbol $\left(\frac{-1,v}{2}\right)_2 = (-1)^{(v-1)/2}$ (see [9]). Hence, $x^2 + y^2 = -(u+w)$ is solvable in \mathbb{Q}_2 . Therefore, $x^2 + dy^2 = -(u+w)$ is solvable in \mathbb{Q}_2 . Suppose $x_0, y_0 \in \mathbb{Q}_2$ is a solution of the equation $x^2 + dy^2 = -(u+w)$. Choose $g, h \in \mathbb{Q}_2$ such that $h = y_0$, $(u+w)g + wh = x_0$ and put $\alpha = g^2 + h^2$, $\theta = (g^2 - h^2 + 2gh)w$, $\lambda = (g^2 - h^2 - 2gh)w$. A computation shows that

$$\begin{aligned} \alpha u + \theta &= (\alpha u + \theta)(u + w)(u + w)^{-1} \\ &= (((u + w)g + wh)^2 + (u^2 - 2w^2)h^2)(u + w)^{-1} \\ &= (x_0^2 + dy_0^2)(u + w)^{-1} = -1. \end{aligned}$$

Hence, there are $\xi, \eta \in \mathbb{Q}_2$ such that

$$2(u+\theta/\alpha) = 2\alpha(\alpha u+\theta)/\alpha^2 = -(\xi^2+\eta^2).$$

Let

$$\begin{aligned} x &= -\xi + \lambda \eta, \quad y = \alpha \xi; \\ a &= -\eta - \lambda \xi, \quad b = \alpha \eta. \end{aligned}$$

Then

$$\left(\frac{x+y\sqrt{d}}{2}\right)^2 + \left(\frac{a+b\sqrt{d}}{2}\right)^2 = -(u+\sqrt{d}).$$

If $u + \sqrt{d} = e^2 + f^2$ with $e, f \in F \subseteq \mathbb{Q}_2$, then there are $s, t \in \mathbb{Q}_2$ such that $-1 = s^2 + t^2$. But in \mathbb{Q}_2 , $\left(\frac{-1, -1}{2}\right)_2 = -1$, contradiction. This concludes the proof.

THEOREM 3.2. Let $F = \mathbb{Q}(\sqrt{d}), d \in \mathbb{N}$ squarefree. Assume that $d = u^2 - 2w^2$ with $u, w \in \mathbb{N}$. Then there exists $\beta \in K_2O_F$ such that $\beta^2 = \{-1, u + \sqrt{d}\}$ if and only if there exists $\varepsilon \in \{\pm 1, \pm 2\}$ (equivalently, $\varepsilon \in \{\pm 1\}$) such that $(\varepsilon(u+w)/p) = 1$ for every odd prime $p \mid d$.

Proof. First, if $d \not\equiv 1 \pmod{8}$, or $d \equiv 1 \pmod{8}$ and (u + w/d) = 1, then analogously to the proof of Lemma 3.11 in [12], it can be shown that there exists a prime $p \equiv 1 \pmod{4}$ with $p \nmid d$, $p \nmid (u+w)$ and $p \nmid uw$ such that the Diophantine equation $X^2 + dY^2 = (u+w)pZ^2$ has nonzero solutions in \mathbb{Z} .

Second, entirely similarly to the proof of Lemma 3.12 in [12], it can be shown that there exists $\alpha \in K_2O_F$ with $\alpha^2 = \{-1, u + \sqrt{d}\}$ if and only if there exists $\varepsilon \in \{\pm 1, \pm 2\}$ such that the Diophantine equation $\varepsilon pN^2 = S^2 - dT^2$ has nonzero solutions in \mathbb{Z} . It amounts to the same thing to say that $(\varepsilon(u+w)/p) = 1$ for every odd prime $p \mid d$.

Finally, if $d \equiv 1 \pmod{8}$ and (u + w/d) = -1, then the number of primes p with $p \mid d$ and (u + w/p) = -1 must be odd. If there exists a prime $p \equiv 1 \pmod{8}$ with $p \mid d$ and (u + w/p) = -1, then $(\varepsilon(u + w)/p) = -1$ for every $\varepsilon \in \{\pm 1, \pm 2\}$. Otherwise, we may assume that for every $p \mid d$ with (u + w/p) = -1, $p \equiv 7 \pmod{8}$. Observe that $d \equiv 1 \pmod{8}$ and $2 \in NF$. Hence, we can find a prime $p \equiv 7 \pmod{8}$, $p \mid d$ and (u + w/p) = 1. For every $\varepsilon \in \{\pm 1, \pm 2\}$, we can find a prime $p \mid d$ such that $(\varepsilon(u + v)/p) = -1$. Our theorem is proved.

We now put Theorems 2.2 and 3.2 together and give the following theorem.

THEOREM 3.3. Let $F = \mathbb{Q}(\sqrt{d}), d \in \mathbb{N}$ squarefree. Suppose that $d = u^2 - 2w^2$ with $u, w \in \mathbb{N}$. Then for every $m \mid d$ with $m \in \mathbb{N}$, there exists $\alpha \in K_2O_F$ with $\alpha^2 = \{-1, m(u + \sqrt{d})\}$ if and only if we can find $\varepsilon \in \{\pm 1, \pm 2\}$ (in fact, $\varepsilon \in \{\pm 1\}$ will be enough) such that

$$(\varepsilon(u+w)/p) = (dm^{-1}/p)$$
 for every odd prime $p \mid m$

and

$$(\varepsilon(u+w)/p) = (m/p)$$
 for every odd prime $p \mid dm^{-1}$.

R e m a r k. When d has two odd prime divisors, a similar result has been obtained by B. Brauckmann (see [1]).

We conclude this section by giving a 4-rank K_2O_F formula for real quadratic fields F.

Let $F = \mathbb{Q}(\sqrt{d}), d \in \mathbb{N}$ squarefree. Put

 $K_0 = \{ m \mid m \in \mathbb{N}, m \mid d, m \neq 1, d, \frac{1}{2}d \text{ and } 2 \nmid m \},\$

 $K = \{m \mid m \in K_0, \text{ there exists } \varepsilon \in \{\pm 1, \pm 2\} \text{ such that } (dm^{-1}/p) = (\varepsilon/p) \text{ for every odd prime } p \mid m \text{ and } (m/l) = (\varepsilon/l) \text{ for every odd prime } l \mid dm^{-1}\},$

$$V_1 = \{ m(u + \sqrt{d}) \mid d = u^2 - 2w^2 \text{ with } u, w \in \mathbb{N}, \ m \in K_0 \cup \{1, d\} \}$$

 $V_0 = \{m(u + \sqrt{d}) \mid m(u + \sqrt{d}) \in V_1, \text{ there exists } \varepsilon \in \{\pm 1, \pm 2\} \text{ such that } (\varepsilon(u + w)/p) = (dm^{-1}/p) \text{ for every odd prime } p \mid m \text{ and } (\varepsilon(u + v)/p) = (m/p) \text{ for every odd prime } p \mid dm^{-1}\},$

$$V = \{ m(u+w) \mid m(u+\sqrt{d}) \in V_0 \}.$$

THEOREM 3.4. Notations being as above, let $r = \#(K \cup V)$. Then $r_4 = 4$ -rank $K_2O_F = \log_2 \frac{1}{2}(r+2)$.

Proof. If $x \in F$ with x < 0 or N(x) < 0, then one can easily verify that there is no $\beta \in K_2F$ with $\{-1, x\} = \beta^2$. Hence, if $y \in K_2O_F$ is an element of order 4, then $y^2 = \{-1, t\}$, by Theorems 2.2 and 3.3, $t \in K$ or $t \in V_0$. Therefore, we have $r = \#(K \cup V) = 2^{r_4+1} - 2$, this gives the desired 4-rank K_2O_F formula.

4. 4-rank K_2O_F tables

THEOREM 4.1. Let $F = \mathbb{Q}(\sqrt{d}), d \in \mathbb{N}$ squarefree. Suppose that d = pq, or 2pq or pqr or 2pqr, where p, q, r are odd primes. When $2 \in NF$, $d = u^2 - 2w^2$. For simplicity, we write v = u + w. Then we have the following tables.

F	$p,q (\mathrm{mod} 8)$	The Legendre symbols		4-rank $K_2 O_F$
	7,7			1
$\mathbb{Q}(\sqrt{pq})$	7, 1	(q/p) = 1	(v/q) = 1	2
$\mathbb{Q}(\sqrt{2pq})$		(q/p) = 1	(v/q) = -1	1
		(q/p) = -1		1
	1,1	(q/p) = 1	(v/p) = (v/q) = 1	2
			(v/p) = -1 or $(v/q) = -1$	1
		(q/p) = -1	(v/p) = (v/q)	1
			otherwise	0

Table I

F	$p,q (\mathrm{mod} 8)$	The Legendre symbols	4-rank $K_2 O_F$
$\mathbb{Q}(\sqrt{pq})$	7,5		1
$\mathbb{Q}(\sqrt{2pq})$	7, 3		1
	5, 3		1
	5, 1	(q/p) = 1	1
		otherwise	0
	3, 1	(q/p) = 1	1
		otherwise	0
$\mathbb{Q}(\sqrt{pq})$	5, 5		1
	3, 3		0
$\mathbb{Q}(\sqrt{2pq})$	5, 5		0
	3,3		1

Table II

R e m a r k. Most results of Tables I and II have been listed by P. E. Conner and J. Hurrelbrink [4].

F	$p, q, r \pmod{8}$	The Legendre symbols		4-rank $K_2 O_F$
$\mathbb{Q}(\sqrt{pqr})$	7, 7, 7	(r/p) = (r/q)	(v/p) = (v/q)	2
$\mathbb{Q}(\sqrt{2pqr})$	(q/p) = 1	otherwise		1
	7, 7, 1	(r/p) = (r/q) = 1	(v/r) = 1	2
	(q/p) = 1	(r/p) = (r/q) = -1	(v/p) = (v/q)	2
		otherwise		1
	7, 1, 1	(q/p) = (r/p)	(v/q) = (v/r) = 1	3
		=(r/q)=1		
			otherwise	2
		(q/p) = (r/p) = 1	(v/q) = (v/r)	2
		(r/q) = -1		
			(v/r) = 1	2
		(q/p) = -1		
		otherwise		1
	1, 1, 1	(q/p) = (r/p)	(v/p) = (v/q)	3
		= (r/q) = 1	= (v/r) = 1	
			otherwise	2
		(r/p) = (r/q) = 1	(v/p) = (v/q),	2
		(q/p) = -1	(v/r) = 1	
			otherwise	1
		(q/p) = (r/p) = -1	(v/(pqr)) = 1	1
			otherwise	0

Table III

Note. In Table IV, C1 means that either (q/p) = (r/p) = 1, (r/q) = -1or (q/p) = (r/q) = 1, (r/p) = -1 or (r/p) = (r/q) = 1, (q/p) = -1. C2 means that either (q/p) = (r/p) = -1, (r/q) = 1 or (q/p) = (r/q) = -1, (r/p) = 1 or (r/p) = (r/q) = -1, (r/p) = 1 or (r/p) = (r/q) = -1, (q/p) = 1.

H. Qin

Table IV

F	$p,q,r (\mathrm{mod}8)$	The Legendre symbols	4-rank $K_2 O_F$
$\mathbb{Q}(\sqrt{pqr})$	7, 7, 5	(r/p) = (r/q) = -1	2
$\mathbb{Q}(\sqrt{2pqr})$		otherwise	1
	7, 7, 3	(r/p) = (r/q) = -1	2
		otherwise	1
-	7, 5, 3		1
-	7, 5, 1	(r/p) = (r/q) = 1	2
		otherwise	1
-	7, 3, 1	(r/p) = (r/q) = 1	2
		otherwise	1
	5, 3, 1	(r/p) = (r/q) = 1	2
		otherwise	1
-	5, 1, 1	(q/p) = (r/p) = (r/q) = 1	2
		C1	1
		otherwise	0
-	3, 3, 3	(r/p) = 1	1
	(q/p) = 1	(r/p) = (r/q) = -1	1
	()	otherwise	0
-	3, 1, 1	(q/p) = (r/p) = (r/q) = 1	2
		C1	1
		otherwise	0
$\mathbb{Q}(\sqrt{pqr})$	7, 5, 5	(q/p) = (r/p) = 1	2
		otherwise	1
-	7, 3, 3	(q/p) = (r/p) = 1	2
		otherwise	1
-	5, 5, 5	(q/p) = (r/p) = (r/q) = 1	2
		C1	1
		otherwise	0
-	5, 5, 3	(r/p) = (r/q) = 1	2
		otherwise	1
-	5, 5, 1	(r/p) = (r/q) = 1	2
		otherwise	1
-	5, 3, 3	(q/p) = (r/p) = -1	2
		otherwise	1
	3, 3, 1	(r/p) = (r/q)	1
	, , ,	otherwise	0
$\mathbb{Q}(\sqrt{2pqr})$	7, 5, 5	(q/p) = (r/p) = -1	2
		otherwise	1
	7, 3, 3	(q/p) = (r/p) = -1	2
		otherwise	1
	5, 5, 5	(q/p) = (r/p) = (r/q) = -1	2
		C2	1
		otherwise	0

F	$p,q,r (\mathrm{mod} 8)$	The Legendre symbols	$4\operatorname{-rank} K_2 O_F$
$\mathbb{Q}(\sqrt{2pqr})$	5, 5, 3	(r/p) = (r/q) = -1	2
		otherwise	1
	5, 5, 1	(r/p) = (r/q)	1
		otherwise	0
	5, 3, 3	(q/p) = (r/p) = 1	2
		otherwise	1
	3, 3, 1	(r/p) = (r/q) = 1	2
		otherwise	1

Table IV (cont.)

When $p \equiv q \pmod{8}$, or $q \equiv r \pmod{8}$ or $p \equiv q \equiv r \pmod{8}$, in view of symmetry, we omit some possibilities.

Proof of Theorem 4.1. By Theorem 3.4, it is enough to give K and V for each case.

In what follows, the symbol ε (ε') always stands for an element of the set { $\pm 1, \pm 2$ }.

The verification of Tables I and II is direct. In fact, we have either $K = \emptyset$, or #(K) = 2 and #(K) = 2 if and only if $(\varepsilon/p) = (dp^{-1}/p)$ and $(\varepsilon/q) = (dq^{-1}/q)$. When $2 \in NF$, either $V = \emptyset$, or #(V) = 2, or #(V) = 4. We see that #(V) = 2 if and only if either $(\varepsilon v/p) = (\varepsilon v/q) = 1$ or $(\varepsilon' v/p) = (q/p)$ together with $(\varepsilon' v/q) = (p/q)$, but not both, and #(V) = 4 if and only if $(\varepsilon v/p) = (\varepsilon v/q) = 1$, $(\varepsilon' v/p) = (q/p)$ together with $(\varepsilon' v/q) = (p/q)$.

Next, we shall deal with the case when d has three odd prime divisors.

The case 7,7,7. Clearly, we can assume that (q/p) = 1. Suppose (p/r) = (q/r) = 1, then $K = \{q, pr\}$, if (v/p) = (v/q) = (v/r), then $V = \{v, dv, qv, prv\}$, if (v/p) = (v/q) = -(v/r), then $V = \{pv, qv, qrv, prv\}$; otherwise, $V = \emptyset$.

Suppose (p/r) = -1, (q/r) = 1. By a permutation $(p \leftrightarrow r)$, we see that this situation coincides with that of (p/r) = (q/r) = 1.

Suppose (p/r) = (q/r) = -1. By a permutation $(p \to r, q \to p, r \to q)$, we see that this situation also coincides with that of (p/r) = (q/r) = 1.

Suppose (p/r) = 1, (q/r) = -1. Then $K = \emptyset$. If (v/p) = (v/q) = (v/r), then $V = \{v, dv\}$; if (v/q) = (v/r) = -(v/p), then $V = \{qv, prv\}$; if (v/p) = (v/q) = -(v/r), then $V = \{pv, qrv\}$; if (v/p) = (v/r) = -(v/q), then $V = \{rv, pqv\}$.

The case 7,7,1. Assume (q/p) = 1. Suppose (r/p) = (r/q) = 1. Then $K = \{r, pq\}$ and for (v/r) = 1, we have: if (v/p) = (v/q), then $V = \{v, dv, rv, pqv\}$; if (v/p) = -(v/q), then $V = \{pv, qv, prv, qrv\}$. For (v/r) = -1, we have $V = \emptyset$. Suppose (r/p) = (r/q) = -1. Then $K = \{r, pq\}$ and for (v/p) = (v/q), we have: if (v/r) = 1, then $V = \{v, dv, rv, pqv\}$; if (v/r) = -1, then $V = \{pv, qv, prv, qrv\}$.

Suppose (r/p) = 1, (r/q) = -1. Then $K = \emptyset$. For (v/r) = 1, we have: if (v/p) = (v/q), then $V = \{v, dv\}$; if (v/p) = -(v/q), then $V = \{pv, qrv\}$. For (v/r) = -1, we have: if (v/p) = (v/q), then $V = \{qv, prv\}$; if (v/p) = -(v/q), then $V = \{rv, pqv\}$.

Similarly, suppose (r/p) = -1, (r/q) = 1. Then $K = \emptyset$ and #(V) = 2.

The case 7,1,1. Suppose (q/p) = (r/p) = (r/q) = 1. Then $p, q, r \in K$, hence #(K) = 6. If (v/q) = (v/r) = 1, then #(V) = 8; otherwise, $V = \emptyset$.

Suppose (q/p) = (r/p) = 1, (q/r) = -1. Then $K = \{p, qr\}$. If (v/q) = (v/r) = 1, then $V = \{v, dv, pv, qrv\}$; if (v/q) = (v/r) = -1, then $V = \{qv, rv, pqv, prv\}$; otherwise, $V = \emptyset$.

Suppose (q/p) = -1, (r/p) = (r/q) = 1. Then $K = \{r, pq\}$. If (v/q) = (v/r) = 1, then $V = \{v, dv, rv, pqv\}$; if (v/q) = -1, (v/r) = 1, then $V = \{pv, qrv, prv, qrv\}$; otherwise, $V = \emptyset$.

Suppose (q/p) = (r/p) = -1, (r/q) = 1. Then $K = \emptyset$. If (v/q) = (v/r) = 1, then $V = \{v, dv\}$; if (v/q) = (v/r) = -1, then $V = \{pv, qrv\}$; if (v/q) = -1, (v/r) = 1, then $V = \{qv, prv\}$; if (v/q) = 1, (v/r) = -1, then $V = \{rv, pqv\}$.

Similarly, suppose (q/p) = 1, (r/p) = (r/q) = -1 or (q/p) = (r/q) = 1, (r/p) = -1 or (q/p) = (r/p) = (r/q) = -1. Then $K = \emptyset$ and #(V) = 2.

The case 1, 1, 1. We only need to consider the following four possibilities:

1. (q/p) = (r/p) = (r/q) = 1;2. (q/p) = -1, (r/p) = (r/q) = 1;3. (q/p) = (r/p) = -1, (r/q) = 1;4. (q/p) = (r/p) = (r/q) = -1.

In case 1, we have $p, q, r \in K$, hence #(K) = 6. If (v/p) = (v/q) = (v/r) = 1, then $V = V_0$, hence #(V) = 8, so $r_4 = 3$. Otherwise, $V = \emptyset$. Hence, $r_4 = 2$. In case 2, we have $K = \{r, pq\}$. If (v/p) = (v/q) = (v/r) = 1, then $V = \{v, dv, rv, pqv\}$; if (v/p) = (v/q) = -1, (v/r) = 1, then $V = \{pv, qv, prv, qrv\}$; otherwise, $V = \emptyset$. In cases 3 and 4, we have $K = \emptyset$. If (v/p) = (v/q) = (v/r) = 1, then $V = \{v, dv\}$; if (v/p) = 1, (v/q) = (v/r) = -1, then $V = \{pv, qrv\}$; if (v/q) = 1, (v/p) = (v/r) = -1, then $V = \{qv, prv\}$; if (v/r) = 1, (v/p) = (v/q) = -1, then $V = \{rv, pqv\}$.

The case 7,7,5 and the case 7,7,3. For (r/p) = -1, we have: if (r/q) = -1, then $p, q, r \in K$, hence, #(K) = 6; if (r/q) = 1, then $K = \{p, qr\}$. For (r/p) = 1, we have: if (r/q) = -1, then $K = \{q, pr\}$; if (r/q) = 1, then $K = \{r, pq\}$. The case 7,5,5. Suppose $2 \nmid d$. If (q/p) = (r/p) = 1, then $p, q, r \in K$, hence, #(K) = 6; if (q/p) = (r/p) = -1, then $K = \{p, qr\}$; if (q/p) = 1, (r/p) = -1, then $K = \{q, pr\}$; if (q/p) = -1, (r/p) = 1, then $K = \{r, pq\}$.

Suppose 2 | d. If (q/p) = (r/p) = -1, then $p, q, r \in K$, hence, #(K) = 6; if (q/p) = (r/p) = 1, then $K = \{p, qr\}$; if (q/p) = -1, (r/p) = 1, then $K = \{q, pr\}$; if (q/p) = 1, (r/p) = -1, then $K = \{r, pq\}$.

The case 7,5,3. If $2 \nmid d$, then $K = \{q, pr\}$. If $2 \mid d$, then $K = \{r, pq\}$.

The case 7,5,1. If (r/p) = (r/q) = 1, then $p, q, r \in K$, hence, #(K) = 6; if (r/p) = 1, (r/q) = -1, then $K = \{p, qr\}$; if (r/p) = -1, (r/q) = 1, then $K = \{q, pr\}$; if (r/p) = (r/q) = -1, then $K = \{r, pq\}$.

The case 7,3,3. Suppose $2 \nmid d$. If (q/p) = (r/p) = 1, then $p, q, r \in K$, hence, #(K) = 6; if (q/p) = (r/p) = -1, then $K = \{p, qr\}$; if (q/p) = 1, (r/p) = -1, then $K = \{q, pr\}$; if (q/p) = -1, (r/p) = 1, then $K = \{r, pq\}$.

Suppose 2 | d. If (q/p) = (r/p) = -1, then $p, q, r \in K$, hence, #(K) = 6; if (q/p) = (r/p) = 1, then $K = \{p, qr\}$; if (q/p) = -1, (r/p) = 1, then $K = \{q, pr\}$; if (q/p) = 1, (r/p) = -1, then $K = \{r, pq\}$.

The case 7,3,1. If (r/p) = (r/q) = 1, then $p, q, r \in K$, hence, #(K) = 6; if (r/p) = 1, (r/q) = -1, then $K = \{p, qr\}$; if (r/p) = -1, (r/q) = 1, then $K = \{q, pr\}$; if (r/p) = (r/q) = -1, then $K = \{r, pq\}$.

The case 5,5,5. Suppose $2 \nmid d$. If (q/p) = (r/p) = (r/q) = 1, then $p,q,r \in K$, hence, #(K) = 6; if (q/p) = (r/p) = 1, (r/q) = -1, then $K = \{p,qr\}$; if (r/p) = (r/q) = -1, then $K = \emptyset$.

Suppose 2 | d. If (q/p) = (r/p) = (r/q) = -1, then $p, q, r \in K$, hence, #(K) = 6; if (q/p) = (r/p) = -1, (r/q) = 1, then $K = \{p, qr\}$; if (r/p) = (r/q) = 1, then $K = \emptyset$.

The case 5,5,3. Suppose $2 \nmid d$. If (r/p) = 1, (r/q) = -1, then $K = \{p,qr\}$; if (r/p) = -1, (r/q) = 1, then $K = \{q,pr\}$; if (r/p) = (r/q) = 1, then $K = \{r,pq\}$.

Suppose $2 \mid d$. If (r/p) = -1, (r/q) = 1, then $K = \{p, qr\}$; if (r/p) = 1, (r/q) = -1, then $K = \{q, pr\}$; if (r/p) = (r/q) = 1, then $K = \{r, pq\}$.

The case 5,5,1. Suppose $2 \nmid d$. If (r/p) = (r/q) = 1, then $p, q, r \in K$, hence, #(K) = 6; if (r/p) = 1, (r/q) = -1, then $K = \{p, qr\}$; if (r/p) = -1, (r/q) = 1, then $K = \{q, pr\}$; if (r/p) = (r/q) = -1, then $K = \{r, pq\}$.

Suppose $2 \mid d$. If (r/p) = (r/q), then $K = \{r, pq\}$; if (r/p) = -(r/q), then $K = \emptyset$.

The case 5,3,3. Suppose $2 \nmid d$. If (q/p) = (r/p) = -1, then $p, q, r \in K$, hence, #(K) = 6; if (q/p) = (r/p) = 1, then $K = \{p, qr\}$; if (q/p) = -1, (r/p) = 1, then $K = \{q, pr\}$; if (q/p) = 1, (r/p) = -1, then $K = \{r, pq\}$.

Suppose 2 | d. If (q/p) = (r/p) = 1, then $p, q, r \in K$, hence, #(K) = 6; if (q/p) = (r/p) = -1, then $K = \{p, qr\}$; if (q/p) = 1, (r/p) = -1, then $K = \{q, pr\}$; if (q/p) = -1, (r/p) = 1, then $K = \{r, pq\}$.

The case 5,3,1. If (r/p) = (r/q) = 1, then $p, q, r \in K$, hence, #(K) = 6; if (r/p) = 1, (r/q) = -1, then $K = \{p, qr\}$; if (r/p) = -1, (r/q) = 1, then $K = \{q, pr\}$; if (r/p) = (r/q) = -1, then $K = \{r, pq\}$.

The case 5,1,1. If (q/p) = (r/p) = (r/q) = 1, then $p, q, r \in K$, hence, #(K) = 6; if (q/p) = (r/p) = 1, (r/q) = -1, then $K = \{p, qr\}$; if (q/p) = (r/q) = 1, (r/p) = -1, then $K = \{q, pr\}$; if (q/p) = -1, (r/p) = (r/q) = 1, then $K = \{r, pq\}$; otherwise, $K = \emptyset$.

The case 3,3,3. Let (q/p) = 1. Suppose $2 \nmid d$. If (r/q) = -1, then $K = \{q, pr\}$; if (r/p) = (r/q) = 1, then $K = \{r, pq\}$; if (r/p) = -1, (r/q) = 1, then $K = \emptyset$.

Suppose 2 | d. If (r/p) = 1, then $K = \{p, qr\}$; if (r/p) = (r/q) = -1, then $K = \{r, pq\}$; if (r/p) = -1, (r/q) = 1, then $K = \emptyset$.

The case 3,3,1. Suppose $2 \nmid d$. If (r/p) = (r/q), then $K = \{r, pq\}$; otherwise, $K = \emptyset$.

Suppose 2 | d. If (r/p) = (r/q) = 1, then $p, q, r \in K$, hence, #(K) = 6; if (r/p) = 1, (r/q) = -1, then $K = \{p, qr\}$; if (r/p) = -1, (r/q) = 1, then $K = \{q, pr\}$; if (r/p) = (r/q) = -1, then $K = \{r, pq\}$.

The case 3,1,1. If (q/p) = (r/p) = (r/q) = 1, then $p, q, r \in K$, hence, #(K) = 6; if (q/p) = (r/p) = 1, (r/q) = -1, then $K = \{p, qr\}$; if (q/p) = (r/q) = 1, (r/p) = -1, then $K = \{q, pr\}$; if (q/p) = -1, (r/p) = (r/q) = 1, then $K = \{r, pq\}$; otherwise, $K = \emptyset$.

The proof is complete.

Acknowledgements. I would like to thank Prof. Zhou Boxun and Prof. Tong Wenting for their help. And I am also very grateful to Prof. J. Browkin for his valuable suggestions.

References

- B. Brauckmann, The 2-Sylow subgroup of the tame kernel of number fields, Canad. J. Math. 43 (1991), 215-264.
- [2] J. Browkin and A. Schinzel, On Sylow 2-subgroups of K_2O_F for quadratic fields F, J. Reine Angew. Math. 331 (1982), 104–113.
- [3] A. Candiotti and K. Kramer, On the 2-Sylow subgroup of the Hilbert kernel of K₂ of number fields, Acta Arith. 52 (1989), 49–65.
- [4] P. E. Conner and J. Hurrelbrink, Examples of quadratic number fields with $K_2\mathcal{O}$ containing no element of order four, preprint.
- [5] -, -, The 4-rank of $K_2\mathcal{O}$, Canad. J. Math. 41 (1989), 932–960.

- [6] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York, 1982.
- [7] M. Kolster, The structure of the 2-Sylow subgroup of $K_2(O)$. I, Comment. Math. Helv. 61 (1986), 576–588.
- [8] J. Milnor, Introduction to Algebraic K-theory, Ann. of Math. Stud. 72, Princeton University Press, 1971.
- [9] J. Neukirch, Class Field Theory, Springer, Berlin, 1986.
- [10] O. T. O'Meara, Introduction to Quadratic Forms, Springer, Berlin, 1963.
- [11] H. Qin, The 2-Sylow subgroups of K₂O_F for real quadratic fields F, Science in China Ser. A 23 (12) (1993), 1254–1263 (in Chinese).
- [12] —, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), 153–169.
- [13] J. Tate, Relations between K_2 and Galois cohomology, Invent. Math. 36 (1976), 257–274.
- [14] J. Urbanowicz, On the 2-primary part of a conjecture of Birch and Tate, Acta Arith. 43 (1983), 69-81.

DEPARTMENT OF MATHEMATICS NANJING UNIVERSITY NANJING 210008, P.R. CHINA

> Received on 24.5.1994 and in revised form on 21.10.1994

(2619)